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Abstract

After a brief review of available results the main focus of the paper is on the tran-
sient behaviour of positive systems and their stability radii with respect to highly
structured perturbations. Simple upper bounds for the transient gain of positive
systems are obtained by means of linear Lyapunov functions on the positive or-
thant. The minimization of these bounds is discussed and algorithms for computing
optimal Lyapunov vectors are presented. By means of linear Lyapunov functions
we get new formulae for the stability radii of positive linear systems with respect to
structured and time-varying perturbations of Gershgorin-Brualdi type. With every
time-invariant linear system we associate a corresponding positive system and this
correspondence allows to transfer some of the results to non-positive linear systems.
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1 Introduction

Stability and stabilization are fundamental concepts in linear systems theory and in most
design problems exponential stability is the minimal requirement that has to be met.
However, it is often not enough to achieve this property. Suppose that the stabilized
feedback system is described by a time-invariant linear model

ẋ(t) = Ax(t), t ∈ R (1)

where A ∈ Kn×n, K = R or K = C. This model will in general not yield an accurate
description of the behaviour of the regulated real plant. The system parameters may be
uncertain so that the real system is better described by a family of perturbed systems
ẋ(t) = A(∆)x(t) where the perturbation parameter ∆ is bounded by a given uncertainty
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level ‖∆‖ < δ. Or the model (1) is obtained by linearization of a nonlinear system around
a given operating point so that a more realistic model would be ẋ(t) = Ax(t) + N(x(t))
where N : Kn → Kn is a nonlinear perturbation. In both cases it will not be sufficient that
the nominal system (1) be exponentially stable but this property must be guaranteed for
the whole set of perturbed systems where the perturbations are bounded by some realistic
uncertainty level. In this case the system (1) is said to be robustly stable (for the given
perturbation class and perturbation bound).
There is another reason why exponential stability may not be sufficient. By definition
exponential stability requires that there exist two constants β < 0, γ ≥ 0 such that
‖x(t)‖ ≤ γeβt‖x(0)‖ for all solutions of (1). Thus exponential stability guarantees that
initial deviations from the equilibrium x = 0 die away exponentially in the long run. But
it does not guarantee a satisfactory transient behaviour (if γ is large). Trajectories of
an exponentially stable linear system may temporarily move a long way from the origin
before approaching it as t →∞. From a practical point of view, if the “state excursions”
are very large the stable system actually behaves like an unstable one. Moreover, if the
system is obtained by linearization of a nonlinear system around an equilibrium point
the large transients of the linear part may incite the nonlinearities to drive the system
permanently far away from the equilibrium. In such cases the practical instability of
the equilibrium point is reflected by an extreme thinness of its domain of attraction. The
interaction between large transient motions of the linearization and existing nonlinearities
in the system has been put forward as an explanation for the stark contrast between some
experimental results and theoretical predictions in fluid dynamics, see for example [21].
The aim of this paper is to study these two intimately related problems, robust stability
and transient behaviour, for positive exponentially stable systems of the form (1). By
definition a system (1) is called positive if it leaves the positive orthant Rn

+ invariant, i.e.,
eAt is a nonnegative matrix for all t ≥ 0.
Robust stability and robust stabilization have been dominant themes in systems and
control theory over the past three decades. Different approaches have been developed
and a large number of papers and books are available on this subject, we only mention
H∞-optimal control theory [22], the parametric approach based on Kharitonov’s result
on interval polynomials [3], the theory of stability radii and µ-analysis [7]. For positive
systems robustness issues have been discussed to a much lesser extent, but there are a
number of satisfactory results available on stability radii of positive systems with respect
to “full block” and “block-diagonal” perturbations, see [20], [9]. In this paper we con-
sider Gershgorin-Brualdi perturbations of positive systems where the matrix entries at
an arbitrarily prescribed set of positions are independently perturbed. Recent results in
[12] are extended from diagonal to general positive nominal systems. We also determine
stability radii with respect to time-varying parameter perturbations. This is in general a
difficult problem, but for positive systems computable formulae can be obtained. Up till
now similar results have only been obtained for diagonal systems, see [8].
The transient gain of linear systems has recently attracted some attention, mainly in the
stability analysis of fluid dynamics [21] and in numerical analysis [5]. In control theory
the transient behaviour should play an important role since it is related to such classical
criteria as “overshoot” of systems responses and to problems of state constraints and sat-
uration effects. Nevertheless the study of the transient behaviour of linear systems has
just only begun in the context of control theory [7] and we do not know of any paper on
the transient behaviour of positive linear systems. In this paper we present a number of
estimates for the transient gain of positive systems and show how upper bounds for the

2



transient behaviour of an arbitrary linear system can be obtained from bounds for the
corresponding Metzler system.
The paper is organized as follows. In the next section we present some auxiliary results on
the properties of Metzler matrices. Most of these results are well known and follow from
the Perron-Frobenius theory of nonnegative matrices, but some of them are not found in
the literature and those results will be proved. In Section 3 we briefly review available
results about stability radii for full block perturbations and point out the dramatic simpli-
fication of the results if positive systems are considered. In Sections 4 to 6 new results are
presented concerning the transient behaviour of positive systems and their stability radii
with respect to structured perturbations. In Section 4 the concepts of Lyapunov norm
and Lyapunov vector are introduced and it is shown how they can be used to derive upper
bounds for the transient gain of positive systems. The problem of minimizing these upper
bounds is discussed and two algorithms for optimizing the estimates are presented. In
Section 5 we determine stability radii and transient bounds for positive systems with re-
spect to Gershgorin-Brualdi perturbations. As a preparation for the study of time-varying
linear or nonlinear perturbations we derive necessary and sufficient criteria for the exis-
tence of joint linear Lyapunov functions for sets of positive linear systems. Finally we
study positive differential inclusions and determine the stability radius of positive systems
with respect to time-varying Gershgorin-Brualdi perturbations.

2 Preliminaries

A matrix P ∈ Rm×n is said to be nonnegative (P ≥ 0) if all its entries are nonnegative.
The set of all nonnegative m×n-matrices is denoted by Rm×n

+ . For A, B ∈ Rm×n we write
A ≥ B if A − B ≥ 0. Similar notations will be used for vectors in Rn. So inequalities
between real matrices (resp. vectors) will be understood componentwise. If x = (xi) ∈ Cn

and A = (aij) ∈ Cm×n then |x| ∈ Rn
+ and |A| ∈ Rm×n

+ are defined by |x| = (|xi|),
|A| = (|aij|). Clearly,

|A + B| ≤ |A|+ |B|, A, B ∈ Cm×n and |AB| ≤ |A||B|, A ∈ Cm×n, B ∈ Cn×p.

For any matrix A ∈ Cn×n the spectral radius (resp. spectral abscissa) of A are defined by

%(A) = max{|λ|; λ ∈ σ(A)}, (resp. α(A) = max{Re λ; λ ∈ σ(A)} )

where σ(A) ⊂ C is the spectrum of A. The spectral radius has the following monoticity
property [10, §8.1],

∀A ∈ Cn×n, B ∈ Rn×n
+ : |A| ≤ B ⇒ %(A) ≤ %(|A|) ≤ %(B). (2)

The linear system ẋ(t) = Ax(t), A ∈ Rn×n is said to be positive if the positive orthant Rn
+

is invariant for the corresponding flow, i.e., eAt ≥ 0 for all t ≥ 0. In this case the matrix A
is called a Metzler matrix. A ∈ Rn×n is a Metzler matrix if and only if all the off-diagonal
entries of A are nonnegative, i.e., tI + A ≥ 0 for some t ≥ 0. As a consequence, the
spectral abscissa of a Metzler matrix has analogous properties to the spectral radius of
a nonnegative matrix. The convex cone of n × n Metzler matrices is denoted by Rn×n

M .
The following results follow from the Perron-Frobenius theory of nonnegative matrices,
see [10, Ch. 8], [2], [20].

Theorem 1. Suppose that A ∈ Rn×n
M is a Metzler matrix. Then
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(i) α(A) is an eigenvalue of A and there exists a nonnegative eigenvector x ≥ 0, x 6= 0
(called Perron vector of A) such that Ax = α(A)x. If A ≥ 0 then α(A) = %(A) ≥ 0.
If A is irreducible then there exists x > 0 such that Ax = α(A)x.

(ii) If λ 6= α(A) is any other eigenvalue of A then Re λ < α(A).

(iii) Given β ∈ R, there exists a nonzero vector x ≥ 0 such that Ax ≥ βx if and only if
α(A) ≥ β.

(iv) (tI − A)−1 exists and is nonnegative if and only if t > α(A). Moreover,

α(A) < t1 ≤ t2 ⇒ 0 ≤ (t2I − A)−1 ≤ (t1I − A)−1.

If A is irreducible then (tI − A)−1 > 0 for all t > α(A).

With every matrix A = (aij) ∈ Cn×n we associate the Metzler matrix

M(A) = Re D(A) + |A−D(A)| (3)

called the Metzler part of A where D(A) = diag(a11, · · · , ann). An elementary proof shows
the following

Lemma 2. Let A ∈ Cn×n, then

(i) The function r 7→ %(A + rIn)− r is monotonically decreasing on R+ and

α(A) = lim
r→∞

(%(A + rIn)− r). (4)

(ii) The map r 7→ Mr(A) := |A + rIn| − rIn is componentwise decreasing on R+ and

M(A) = lim
r→∞

|A + rIn| − rIn. (5)

Proof. (i) For every λ ∈ C we have

0 ≤ r1 ≤ r2 ⇒ |λ + r2| − r2 = |λ + r1 + (r2 − r1)| − r2 ≤ |λ + r1| − r1, (6)

and since (1 + t)1/2 ≤ 1 + t/2 for t ∈ R, |t| < 1 we get for r > 0 sufficiently large

|λ + r| − r = r

(√
1 +

2 Re λ

r
+
|λ|2
r2

− 1

)
≤ r

(
Re λ

r
+
|λ|2

2r2

)
,

whence lim
r→∞

(|λ + r| − r) = Re λ, λ ∈ C. (7)

Now %(A + rIn) − r = max{|λ + r| − r; λ ∈ σ(A)} and so the monoticity property of
r 7→ %(A + rIn)− r follows directly from (6), whilst (4) follows from (7).
(ii) Applying (6) to the diagonal entries of Mr(A) we see that these entries decrease
monotonically with increasing r ≥ 0 towards the limits Re aii whereas the off-diagonal
entries |aij| of Mr(A) remain constant. This proves (ii) by definition of M(A) in (3).

As a consequence we obtain the following monoticity property which is a counterpart
to (2) for the spectral abscissa,

∀A ∈ Cn×n, B ∈ Rn×n
M : M(A) ≤ B ⇒ α(A) ≤ α(M(A)) ≤ α(B). (8)

In fact, we have by (2), Theorem 1(i), the previous lemma and the continuity of the
spectral abscissa that

α(A)= lim
r→∞

%(A + rIn)− r ≤ lim
r→∞

%(|A + rIn|)− r = lim
r→∞

α(|A + rIn| − rIn)=α(M(A))
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which proves the first inequality in the conclusion of (8). The second inequality follows
directly from (2) since by Theorem 1(i) we have for any Metzler matrix M ∈ Rn×n

M

α(M) = α(M + rIn)− r = %(M + rIn)− r, r ∈ {t ≥ 0; M + tIn ≥ 0}.

A norm ‖ · ‖ on Kn is said to be monotone if it satisfies

|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖, x, y ∈ Cn.

For instance, every p-norm ‖ · ‖p on Cn, 1 ≤ p ≤ ∞ is monotone. Unfortunately, the
operator norm ‖·‖ associated with a pair of monotone vector norms need not be monotone.
However, we have the following properties, see [20].

Lemma 3. Suppose that Cm, Cn are provided with monotone norms and ‖ · ‖ denotes the
corresponding operator norm on Cm×n. Then

(i) For every P ∈ Rm×n
+ there exists u ∈ Rn

+, ‖u‖Cn = 1 such that ‖Pu‖Cm = ‖P‖.
(ii) If P ∈ Cm×n, Q ∈ Rm×n

+ and |P | ≤ Q, then ‖P‖ ≤ ‖ |P | ‖ ≤ ‖Q‖.
(iii) If P ∈ Cm×n is of rank one then ‖P‖ = ‖ |P | ‖.

3 Robust stability of positive systems

In this section we give a brief survey of available results concerning robust stability of
positive systems. The results illustrate the dramatic simplification of robustness analysis
obtained by positivity assumptions.
A linear system ẋ = Ax, A ∈ Cn×n is exponentially stable if and only if the system
matrix A is Hurwitz stable, i.e., σ(A) ⊂ C− = {s ∈ C; Re s < 0} or, equivalently,
α(A) < 0. There are various ways to verify this property of A in the general case. One
consists in computing the eigenvalues of A and checking whether they all belong to C−.
Another one is to solve the Lyapunov equation A∗X + XA = −In and to check that the
solution X is positive definite. Still another possibility is to determine the characteristic
polynomial of A and apply the classical algebraic stability criteria (Hermite, Routh or
Hurwitz tests) to this polynomial. All these methods are computationally demanding
and may pose serious numerical problems. Under the condition of positivity much simpler
stability criteria are available. The next theorem collects some well known stability criteria
for positive systems of the form (1). They follow easily from the results in the previous
section, see also [14].

Theorem 4. For a Metzler matrix A ∈ Rn×n
M the following conditions are equivalent:

(i) σ(A) ⊂ C−.
(ii) A is invertible and −A−1 ≥ 0.
(iii) For every b ∈ Rn

+ there exists x̃ ∈ Rn
+ such that Ax̃ + b = 0.

(iv) There exists a vector b ∈ Rn
+ with strictly positive coordinates and x̃ ∈ Rn

+ such that
Ax̃ + b = 0.

The last stability test is particularly simple. It shows that there exists a nonnegative
equilibrium point x̃(b) of the positive system ẋ = Ax + b for some (any) b > 0 if and only
if A is Hurwitz stable. So if the equilibrium point x̃(b) = −A−1b corresponding to b > 0
exists and is nonnegative then the system is automatically exponentially stable.
To state the next lemma for later use we employ the following notation. If A = (aij) ∈
Cn×n and I, J are two non-empty subsets of n := {1, . . . , n} we denote by A(I, J) the
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submatrix of A consisting of the entries aij with i ∈ I, j ∈ J , i.e., A(I, J) = (aij)i∈I,j∈J . If
J ⊂ n is any nonempty index set we write A(J) for the principal submatrix A(J, J) and
denote by |J | the number of elements of J , by J ′ the complementary index set J ′ = n\J .

Lemma 5. Suppose that the Metzler matrix A ∈ Rn×n
M is Hurwitz stable. Then its prin-

cipal submatrices A(J) where J ⊂ n, 0 < |J | < n, and their Schur complements in A,
A(J ′) − A(J ′, J)A(J)−1A(J, J ′), are Hurwitz stable Metzler matrices, too. The principal
submatrices of −A−1 ≥ 0 are in bijective correspondence with the negative inverses of
these Schur complements via the formula[

−A−1
]
(J ′) = −

[
A(J ′)− A(J ′, J)A(J)−1A(J, J ′)

]−1
, J ⊂ n, 0 < |J | < n. (9)

Proof. That the principal submatrices of A are Hurwitz stable Metzler matrices follows
from the corresponding result for M-matrices, see [11, §2.5]. To prove the second statement
we may assume without restriction of generality that the principal submatrix sits in the
upper left corner of A. Then A can be partitioned into A = [ A11 A12

A21 A22
] where A11 ∈ Rk×k

M

is the principal submatrix under consideration and both A11 and A22 ∈ R(n−k)×(n−k)
M are

Hurwitz stable and hence regular. An easy calculation shows that A can be factorized as
follows.

A =

[
A11 0
0 −I

] [
−I 0
A21 −I

] [
A−1

11 0
0 A22 − A21A

−1
11 A12

] [
−I A12

0 −I

] [
A11 0
0 −I

]
. (10)

Since A is invertible, so is the Schur complement Ã = A22−A21A
−1
11 A12 of A11 in A. Now

−A−1
11 ≥ 0 by Theorem 4, hence −A21A

−1
11 A12 ≥ 0 and so Ã ∈ R(n−k)×(n−k)

M . Let z̃ be a

Perron vector of the Metzler matrix Ã. Then we have z := [ −A−1
11 A12z̃

z̃
] ≥ 0, and by (10),

Az =

[
−A11 0
−A21 I

] [
A−1

11 0

0 Ã

] [
0
z̃

]
= α(Ã)

[
0
z̃

]
.

But this implies α(Ã) < 0 , since otherwise Az ≥ 0 and this would imply α(A) ≥ 0
by Theorem 1(iii). Therefore Ã is a Hurwitz stable Metzler matrix. Finally, −A−1 ≥ 0
follows by Theorem 4 and the formula (9) can be found in [10, §0.7.3].

We will now assume that the positive system ẋ = Ax is exponentially stable and investi-
gate the robustness of its stability with respect to perturbations of the output feedback
type

A ; A + B∆C, ∆ ∈ Kl×q. (11)

where B ∈ Rn×l
+ and C ∈ Rq×n

+ are arbitrary given nonnegative matrices and ∆ is an
unknown disturbance matrix in Kl×q, either real (K = R) or complex (K = C). This
is the so-called full block case where ∆ is varying in the whole matrix space Kl×q. In
Section 5 we will consider more structured perturbations where ∆ is constrained to some
linear subspace ∆ ⊂ Kl×q.
In the following we assume that the size of ∆ is measured by its operator norm ‖∆‖ with
respect to a given pair of monotone norms on Kq, Kl. According to whether complex
or real disturbances are considered, two distinct stability radii of (1) with respect to
perturbations of the form (11) are introduced:

rK = rK(A; B, C) = inf{‖∆‖; ∆ ∈ Kl×q, α(A + B∆C) ≥ 0}, K = R, C. (12)
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We call a perturbation ∆ destabilizing if α(A + B∆C) ≥ 0. In case there does not
exist a destabilizing (complex or real) disturbance, the corresponding stability radius is
defined to be ∞.1 Otherwise, by continuity of the spectrum, there exists a minimum
norm destabilizing disturbance in Cl×q or Rl×q, respectively. Clearly, we always have

0 < rC(A; B, C) ≤ rR(A; B, C).

In the general case where A ∈ Rn×n, σ(A) ⊂ C−, B ∈ Rn×l and C ∈ Rq×n, the quotient
rR/rC may be arbitrarily large. The complex stability radius can be expressed via the
transfer matrix G(s) associated with the triplet (A, B, C)

rC(A; B, C) =

[
max
ω∈R

‖G(ıω)‖
]−1

, G(s) = C(sIn − A)−1B. (13)

A formula for the real stability radius exists only for the special case where Rl and Rq

are provided with their Euclidean norms and accordingly ‖∆‖ is the spectral norm. The
formula for rR available in this case is considerably more complicated than (13) and
requires the solution of a maxmin problem with two parameters, see [7]. The situation
is completely different if the nominal system (1) and the structure matrices B, C are
nonnegative. In this case the real and the complex stability radii coincide and can be
expressed by a simple computable formula which does not require any optimization [20].

Theorem 6. Suppose that A ∈ Rn×n is a Hurwitz stable Metzler matrix, (B, C) ∈ Rn×l
+ ×

Rq×n
+ are given nonnegative structure matrices and Cl, Cq are provided with monotone

norms. Then, with respect to the induced operator norms ‖ · ‖ on Kl×q and Kq×l,

rC(A; B, C) = rR(A; B, C) = ‖CA−1B‖−1.

There is, in general, an important difference between the real and the complex stability
radius if time-varying and/or nonlinear perturbations are considered. We explain this for
the case where Kl, Kq are both provided with their Euclidean norms and ‖ · ‖ denotes the
corresponding operator norm on Kl×q. There are many examples where, e.g., time-varying
real perturbations ∆(t) of norm supt≥0 ‖∆(t)‖ < rR can destabilize a system whereas it is
known that exponential stability will be preserved for all time-varying complex perturba-
tions of norm supt≥0 ‖∆(t)‖ < rC. This latter result is based on the fact that in this case
rC can be characterized by a parameterized algebraic Riccati equation of the form

A∗P + PA− ρ2C∗C − PBB∗P = 0 (14)

where ρ > 0. It was shown in [6] that (14) admits a Hermitian solution Pρ satisfying
σ(A − BB∗Pρ) ⊂ C− if and only if ρ < rC. If additionally the pair (A, C) is observable,
V (x) = −〈x, Pρx〉 yields a joint Lyapunov function for all perturbed systems ẋ = (A +
B∆C)x where ∆ ∈ Cl×q, ‖∆‖ < ρ. This Lyapunov function works also for time-varying
and nonlinear perturbations bounded by ρ.
To make this more precise let (A, B, C) be as above and consider a perturbed system of
the form

ẋ(t) = Ax(t) + BN(Cx(t), t), t ≥ 0 (15)

where the perturbation N : Kq ×R+ → Kl is an unknown time-varying nonlinearity such
that N(y, t) is continuous on Kq × R+ and continuously differentiable in y. We assume
that N is of finite gain, i.e., there exists γ ≥ 0 such that

‖N(y, t)‖ ≤ γ‖y‖, y ∈ Kq, t ≥ 0.

1Throughout the paper we set inf ∅ = ∞.
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The size of such a nonlinear perturbation N(·, ·) is measured by the norm

‖N‖ = inf{γ ∈ R+;∀y ∈ Kq ∀t ∈ R+ : ‖N(y, t)‖ ≤ γ‖y‖}.

By xN(·; t0, x0) we denote the solution of (15) on [t0,∞) starting at x(t0) = x0 ∈ Cn.
Then the following result can be proved, see [20].

Corollary 7. Suppose that (A, B, C) is as in Theorem 6, Cl, Cq are provided with their
standard Euclidean norms and ‖·‖ denotes the induced operator norms. If ρ < ‖CA−1B‖−1

then there exists a joint quadratic Lyapunov function for all the systems (15) with ‖N‖ ≤ ρ
and the joint equilibrium x = 0 is globally exponentially stable for all these systems.

Another way of accounting for parameter uncertainties in systems of the form (1) is to
view the system matrix as member of a matrix interval. Given two arbitrary real matrices
A, B ∈ Rn×n such that A ≥ B, then the matrix interval

[[B, A]] := {X ∈ Rn×n; B ≤ X ≤ A}

is called Hurwitz stable if σ(X) ⊂ C− for each matrix X ∈ [[B, A]]. The problem then is
to find a small set of test matrices in [[B, A]] whose Hurwitz stability suffices to ensure
the Hurwitz stability of the whole given matrix interval. A famous theorem of Kharitonov
[13] says that the Hurwitz stability of an interval of monic polynomials can be verified by
examining only four of its vertex polynomials. It is well-known that there does not exist a
counterpart of this result for interval matrices. The stability of all corner matrices of the
polytope [[B, A]] do not imply stability of the whole interval. This changes dramatically
if the interval consists of Metzler matrices. Then it suffices to check just the upper corner
A of the interval. We conclude the section with this simple but illustrative result.

Theorem 8. If A is a Hurwitz stable Metzler matrix then every matrix in the set

A = {X ∈ Rn×n; M(X) ≤ A}
is Hurwitz stable. In particular if A, B ∈ Rn×n

M are arbitrary Metzler matrices and A ≥ B,
then [[B, A]] is Hurwitz stable if and only if A is Hurwitz stable.

Proof. By (8) we have α(M(X)) ≤ α(A) < 0 for all X ∈ A if A is Hurwitz stable.

4 Transient behaviour of positive systems

As mentioned in the introduction an exponentially stable linear system may temporarily
exhibit an unstable behaviour. In this section we will derive upper bounds to the transient
behaviour of positive systems and we will see that positivity not only greatly simplifies
the analysis of robust stability (as shown in the previous section) but also the analysis of
transient behaviour. Lyapunov functions and, in particular, Lyapunov norms provide a
key tool for bounding the transient behaviour of a system, see [7], [16], [17]. For positive
systems simple transient bounds can be obtained by means of linear Lyapunov functions.

4.1 (γ, β)-Stability and contractions

We begin by introducing a stability concept which imposes not only conditions on the
long-term behaviour, but also on the transient behaviour of the system. Throughout this
section we suppose that Cn is endowed with an arbitrary vector norm ‖ · ‖ and the matrix
space Cn×n is provided with the associated operator norm which is also denoted by ‖ · ‖.

8



Definition 9. Let β < 0 and γ ≥ 1 be given. A linear system ẋ = Ax is said to be
(γ, β)-stable with respect to the norm ‖ · ‖ if∥∥eAt

∥∥ ≤ γeβt, t ≥ 0. (16)

In contrast to exponential stability where only the existence of some constants β < 0,
γ ≥ 1 satisfying (16) is required, the a priori prescription of both γ and β imposes not
only conditions on the long-term behaviour, but also on the transient behaviour of the
system.
A lower bound for the exponent β is given by α(A) and therefore the possible values of β
merely depend on the spectrum of A while, for a given value of β, the values of γ depend
heavily on the used norm. As a result the concept of (γ, β)-stability – unlike the concept
of exponential stability – is norm-dependent. If A is stable then the minimum value of γ
such that A is (γ, 0)-stable is called the transient gain of A,

γ(A) = max
t≥0

∥∥eAt
∥∥ . (17)

The optimally achievable transient gain γ = 1 is obtained if the system matrix A of (1)
generates a contraction semigroup, i.e., ‖eAt‖ ≤ 1 holds for all t ≥ 0.

Definition 10. The initial growth rate2 of A∈Cn×n with respect to ‖·‖ is defined by

µ(A) = µ‖·‖(A) = min
{
µ ∈ R; ∀t ≥ 0 :

∥∥eAt
∥∥ ≤ eµt

}
. (18)

The name “initial growth rate” is due to the following characterization which shows that
µ(A) only depends upon eAt for t ∈ [0, ε], ε > 0 arbitrarily small, see [7, Prop.5.5.8].

µ(A) = d+

dt

∥∥eAt
∥∥ ∣∣

t=0
= lim

t↘0

1
t
log
∥∥eAt

∥∥ = lim
h↘0

h−1 (‖I + hA‖ − 1) = lim
t→∞

‖A + tI‖ − t.

The initial growth rate enjoys the following properties, see [7]. For all matrices A, B ∈
Cn×n and all α > 0, z ∈ C

|µ(A)| ≤ ‖A‖ , µ(αA) = αµ(A), µ(A + zI) = µ(A) + Re z, µ(A + B) ≤ µ(A) + µ(B).

Definition 11. A norm ‖·‖ on Cn is called a (strict) Lyapunov norm for the system (1) or
the matrix A ∈ Cn×n if the initial growth rate of A with respect to the norm ‖·‖ satisfies
µ(A) ≤ 0 (resp. µ(A) < 0).

The following characterization of the contraction property is easily proved.

Lemma 12. For every A ∈ Cn×n the following statements are equivalent.

(i) The matrix A generates a contraction semigroup with respect to ‖·‖.
(ii) For every x0 ∈ Cn and t ≥ 0 : ‖x(t; x0)‖ ≤ ‖x0‖ where x(t; x0) = eAtx0.

(iii) The unit ball B = {x ∈ Cn; ‖x‖ ≤ 1} is forward invariant under the flow of ẋ = Ax.

(iv) The norm ‖·‖ is a Lyapunov norm for ẋ = Ax.

2 µ(A) is also called logarithmic derivative, logarithmic norm or matrix measure in the literature.
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Computable formulae for the initial growth rates associated with some standard norms
are readily available. Given A = (aij) ∈ Cn×n the initial growth rates of A with respect
to the norms ‖·‖1, ‖·‖2, ‖·‖∞ are given by [7, Lemma 5.5.11]

µ1(A) = max
j

(
Re ajj +

∑
i6=j

|aij|
)
, µ∞(A) = max

i

(
Re aii +

∑
j 6=i

|aij|
)
,

µ2(A) = 1
2
max{λ; λ ∈ σ(A + A∗)} = 1

2
α(A + A∗).

We see that the initial growth rates with respect to the 1- or ∞-norms are determined
with particular ease, and for these norms the initial growth rates do not change if the
matrix A ∈ Cn×n is replaced by its Metzler part M(A) (see (3)):

µ1(A) = µ1(M(A)) = max
j

(1>n M(A))j, µ∞(A) = µ∞(M(A)) = max
i

(M(A)1n)i (19)

where 1n = (1, . . . , 1)> ∈ Rn
+. In particular, A ∈ Cn×n generates a contraction semigroup

with respect to ‖·‖1 or ‖·‖∞ if and only if M(A) generates a contraction semigroup with
respect to these norms, and this happens if and only if 1>nM(A) ≤ 0 or M(A)1n ≤ 0,
respectively. Stable Metzler matrices A with these properties are column or row diagonal
dominant, respectively. The 1-norm (resp. ∞-norm) is a joint Lyapunov function for all
the systems (1) with a column (resp. row) diagonally dominant system matrix A.
We will now relate the transient gain of a matrix to the transient gain of its Metzler part.
Note that if A is a Metzler matrix then eAt ≥ 0 for all t ≥ 0 and so the operator norm of
eAt with respect to the 1- or ∞-norms are given by (see [10, 5.6.4, 5.6.5])∥∥eAt

∥∥
1

= max
j

(1>n eAt)j and
∥∥eAt

∥∥
∞ = max

i
(eAt1n)i.

Thus, in order to determine a transient bound for a Metzler matrix A with respect to the
1- or ∞-norms, it suffices to determine the solution of ẋ = A>x (resp. ẋ = Ax) starting
at x0 = 1n.

Theorem 13. (i) If A, B ∈ Rn×n
M and A ≤ B then eA ≤ eB (componentwise).

(ii) For every A ∈ Cn×n the following inequalities hold (componentwise),∣∣eAt
∣∣ ≤ eM(A)t = lim

r→∞
e(|A+rI|−rI)t ≤ e(|A+rI|−rI)t, t ≥ 0, r ≥ 0. (20)

Proof. (i) Choose r > 0 such that 0 ≤ A + rI ≤ B + rI. Then (i) follows from

ereA = e(A+rI) =
∞∑

k=0

(A + rI)k

k!
≤

∞∑
k=0

(B + rI)k

k!
= ereB.

(ii) For all t ≥ 0 and r ∈ R we obtain

ert
∣∣eAt

∣∣ =
∣∣e(A+rI)t

∣∣ ≤ ∞∑
k=0

|(A + rI)t|k

k!
= e|A+rI|t.

The continuity of the matrix exponential and Lemma 2 yield∣∣eAt
∣∣ ≤ lim

r→∞
e(|A+rI|−rI)t = eM(A)t, t ≥ 0.

Moreover, as the map r 7→ Mr(A) := |A + rIn| − rIn is componentwise decreasing on R+

by Lemma 2, it follows from (i) that eM(A)t = limr→∞ e(|A+rI|−rI)t ≤ e(|A+rI|−rI)t for every
r ≥ 0.
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We conclude this subsection relating the (γ, β)-stability of an arbitrary complex matrix A
with that of M(A).

Corollary 14. Suppose ‖·‖ is a monotone vector norm on Cn, A ∈ Cn×n and M(A) is
(γ, β)-stable with respect to ‖·‖, γ ≥ 1, β ≤ 0. Then A ∈ Cn×n is (γ, β)-stable and the
associated initial growth rates and transient gains (with respect to the norm ‖·‖) satisfy

µ(A) ≤ µ(M(A)) and γ(A) ≤ γ(M(A)). (21)

Proof. Applying the corresponding operator norm ‖·‖ to the results of Theorem 13 and
using Lemma 3 we get∥∥eAt

∥∥ ≤ ∥∥∣∣eAt
∣∣∥∥ ≤ ∥∥eM(A)t

∥∥ ≤ γeβt, t ≥ 0, (22)

which shows that A is also (γ, β)-stable and γ(A) ≤ γ(M(A)). To prove the first inequality
in (21) note that, by definition,

∥∥eM(A) t
∥∥ ≤ eµ(M(A)) t for all t ≥ 0. Hence (22) implies∥∥eAt

∥∥ ≤ eµ(M(A)) t, t ≥ 0, and so µ(A) ≤ µ(M(A)) by (18).

4.2 Weighted norms and eccentricity

If the system ẋ = Ax does not generate a contraction semigroup with respect to the given
norm ‖·‖ then we may possibly introduce a suitable weighted norm ‖x‖W = ‖Wx‖ which
provides a Lyapunov norm for the system under investigation. By the equivalence of
norms on Cn there exist constants which relate the weighted norm to the original norm.
Making use of these constants one can derive estimates for the transient gain (17) of the
system with respect to the original norm.

Definition 15. Suppose ν(·) and ‖·‖ are norms on Cn. Then the eccentricity of ν(·) with
respect to ‖·‖ is defined by

ecc(ν) = ecc(ν, ‖·‖) =
max‖x‖=1 ν(x)

min‖x‖=1 ν(x)
.

Knowing the eccentricity of ν(·) with respect to ‖·‖ and the initial growth rate of a
matrix A with respect to the norm ν(·) one obtains an exponential estimate for

∥∥eAt
∥∥,

t ≥ 0 by the following result.

Theorem 16. If ν(·) is any norm on Cn, A ∈ Cn×n, and µν(A) denotes the initial growth
rate of A with respect to the norm ν(·), then∥∥eAt

∥∥ ≤ ecc(ν) eµν(A)t, t ≥ 0.

In particular, if µν(A) ≤ 0 then (1) is (ecc(ν), µν(A))-stable.

Proof. From (18) we obtain the exponential estimate ν(eAt) ≤ eµν(A)t where ν(eAt) denotes
the operator norm of eAt with respect to the auxiliary norm ν(·). Moreover,

min
‖z‖=1

ν(z) ≤ ν

(
y

‖y‖

)
≤ max

‖z‖=1
ν(z), y ∈ Cn, y 6= 0.

This implies ‖y‖min‖z‖=1 ν(z) ≤ ν(y) ≤ ‖y‖max‖z‖=1 ν(z) for all y ∈ Cn, y 6= 0 and hence
for the associated operator norms of any T ∈ Cn×n

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

≤ sup
x 6=0

(
ν(Tx)

min‖z‖=1 ν(z)

)(
ν(x)

max‖z‖=1 ν(z)

)−1

= ecc ν · ν(T ).

Setting T = eAt gives the desired result.
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In the following we consider the case that ν is a weighted version of ‖·‖. For any invertible
matrix W ∈ Cn×n the weighted vector norm ‖x‖W = ‖Wx‖ on Cn induces the operator
norm ‖A‖W = ‖WAW−1‖ on Cn×n. From this fact and the definitions we obtain

Lemma 17. Given W ∈ Gln(C), the eccentricity of the weighted norm ν(x) = ‖Wx‖ on
Cn with respect to the norm ‖·‖ equals the condition number of W with respect to ‖·‖,

ecc(ν, ‖·‖) = κ(W ) = ‖W‖
∥∥W−1

∥∥ .

The initial growth rate of A ∈ Cn×n with respect to the weighted norm ν is given by

µ‖·‖,W (A) := µν(A) = µ‖·‖(WAW−1).

In particular, if w ∈ Rn
+, w > 0 and W = diag(wi) is the corresponding scaling matrix, the

eccentricity of the scaled norm ‖·‖w := ‖·‖W with respect to ‖·‖ is given by κ(W ) = maxi wi

mini wi
.

Note that the scaled norm ‖·‖w on Cn is monotone if ‖·‖ is monotone.
In the following theorem we apply the above technique to positive systems by introducing
a scaled norm ‖·‖W where the diagonal of W = diag(wi) is a positive Perron vector of A.
For any w > 0 we call κ(w) = (maxi wi)/(mini wi) the condition number of w.

Theorem 18. Suppose A ∈ Rn×n is a Metzler matrix.

(i) If A has a strictly positive left Perron vector w > 0 then∥∥eAt
∥∥

1
≤ κ(w) eα(A)t, t ≥ 0.

(ii) If A has a strictly positive right Perron vector v > 0 then∥∥eAt
∥∥
∞ ≤ κ(v) eα(A)t, t ≥ 0.

(iii) If A has strictly positive left and right Perron vectors w > 0 and v > 0 then∥∥eAt
∥∥

2
≤
(
κ((wi

vi
)i)
)1/2

eα(A)t, t ≥ 0.

Proof. (i) Suppose that w > 0 is a left Perron vector of A, i.e., w>A = α(A)w>.
Setting W = diag(wi) gives 1>n WAW−1 = w>AW−1 = α(A)w> diag(w−1

i ) = α(A)1>n ,
hence the initial growth rate of A with respect to the scaled norm ‖x‖1,W = ‖Wx‖1 is
µ1,W (A) = µ1(WAW−1) = α(A) (by Lemma 17 and (19)). Since the condition number of
W is given by κ(w), (i) follows from Theorem 16.
(ii) Analogously, if v > 0 is a right Perron vector of A then W = diag(v−1

i ) gives
µ∞,W (A) = µ∞(WAW−1) = α(A) with condition number κ((v−1

i )i) = κ(v).
(iii) For the spectral norm, suppose that w > 0 (resp. v > 0) are left (resp. right) Perron
vectors of A and set D = diag(wi

vi
). Then DA + A>D − 2α(A)D is a singular Hermitian

Metzler matrix with eigenvector v > 0

(DA + A>D − 2α(A)D)v = (α(A)I + A> − 2α(A)I)Dv = (A> − α(A)I)w = 0.

It follows from [2, Cor. 2.1.12] that v is a Perron vector of DA + A>D − 2α(A)D corre-
sponding to the eigenvalue α(DA + A>D − 2α(A)D) = 0. Hence

DA + A>D − 2α(A)D � 0

where � denotes the order relation between Hermitian matrices (B � A if A − B is
symmetric and positive semidefinite). Applying [7, Prop. 5.5.33] we obtain (iii).
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Remark 19. The Metzler matrix A may have neither left nor right Perron vectors which
are strictly positive. However, if A is irreducible then A has strictly positive left and right
Perron vectors and these are uniquely determined modulo multiplication by a positive
number, see [2].

The choice of Perron vectors as weights provides exponential estimates with optimal decay
rate α(A) but the estimates for the transient gain obtained in this way may be far from
optimal. Fortunately, the weights can be chosen from a much larger set.

Definition 20. For a given Metzler matrix A ∈ Rn×n
M a strictly positive vector w ∈ Rn

+ is
called a left (or right) Lyapunov vector of A if w>A ≤ 0 or Aw ≤ 0, respectively. If strict
inequalities hold, w>A < 0 or Aw < 0, then the Lyapunov vector w is called strict.

We have the following geometric interpretation. The vector w > 0 is a left Lyapunov
vector for ẋ = Ax if and only if the unit ball of ‖·‖1,w restricted to the positive orthant,

B+
w = {z ∈ Rn

+ ; w>z ≤ 1}, is invariant under the flow of ẋ = Ax. The vector w > 0
is a strict left Lyapunov vector, if for all x ∈ ∂B+

w := {z ∈ Rn
+ ; w>z = 1} the direction

ẋ = Ax at x points into the interior of B+
w (relative to Rn

+).
The next theorem shows that every left (resp. right) Lyapunov vector for A defines a
weighted Lyapunov norm for ẋ = Ax.

Theorem 21. Let A ∈ Rn×n
M be an arbitrary Metzler matrix. Then

(i) If A is exponentially stable then for every vector b ∈ Rn
+ (b > 0) there exists a vector

w ∈ Rn
+ (resp. w > 0) such that Aw = −b.

(ii) If there exists a (strict) Lyapunov vector w > 0 of A then A is (exponentially) stable.

(iii) If w > 0 is a left Lyapunov vector of A then the scaled 1-norm ‖x‖1,w =
∑

i wi|xi|
is a Lyapunov norm for ẋ = Ax. Its eccentricity with respect to the 1-norm is given

by κ(w), the corresponding initial growth rate is µ1,w(A) = maxj
(w>A)j

wj
and we have

the exponential estimate∥∥eAt
∥∥

1
≤ κ(w) e

maxj
(w>A)j

wj
t
, t ≥ 0.

(iv) If w > 0 is a right Lyapunov vector of A and w−1 = (w−1
i ), then the scaled ∞-

norm ‖x‖∞,w−1 = maxi
xi

wi
is a Lyapunov norm for ẋ = Ax. Its eccentricity with

respect to the ∞-norm is given by κ(w), the corresponding initial growth rate is

µ∞,w−1(A) = maxj
(Aw)j

wj
and we have the exponential estimate∥∥eAt
∥∥
∞ ≤ κ(w) e

maxj
(Aw)j

wj
t
, t ≥ 0.

Proof. (i) Suppose that A is exponentially stable. Then −A−1 ∈ Rn×n
+ by Theorem 4(ii).

Hence w = −A−1b ∈ Rn×n
+ and w = −A−1b > 0 if b > 0.

(iv) Suppose that w > 0 and b = −Aw ≥ 0. Setting W = diag(w−1
i ) we obtain

WAW−11n = WAw = −Wb ≤ 0. Hence the initial growth rate of A with respect to
the weighted norm ‖x‖∞,w−1 = maxj |xj|/wj is by Lemma 17 and (19)

µ∞,w−1(A) = µ∞,W (A) = µ∞(WAW−1) = max
j

(WAW−11n)j = max
j
{− bj

wj
} ≤ 0.

This concludes the proof of (iv) by Theorem 16.
Now, (iii) is obtained by applying (iv) to A>, and (ii) follows directly from (iii),(iv).
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Remark 22. Note that ‖x‖1,w (x) = w>x for x ∈ Rn
+ and so x 7→ w>x can be viewed as

a linear Lyapunov function for the positive system ẋ = Ax on the positive orthant.

4.3 Optimizing transient bounds

In the previous subsection we have seen that there is a broad range of Lyapunov norms
available for positive systems. Theorem 21(iii)-(iv) shows how to obtain a transient
estimate for a given Lyapunov vector w. In order to obtain an optimal estimate of
the transient gain we minimize the condition number κ(w) on the convex cone of right
Lyapunov vectors, W = {w ∈ Rn

+ ; w > 0, Aw ≤ 0}. Throughout this subsection we
assume that A ∈ Rn×n

M is a given exponentially stable Metzler matrix. Consider the
following minimax problem

Minimize κ(w) =
maxi wi

mini wi

subject to w > 0, Aw ≤ 0. (23)

As κ(w) is invariant under multiplication with positive scalars, the optimization problem
may be restricted to a basis of the convex cone W. For this we choose

W1 = {w ∈ Rn
+ ; min

i
wi = 1, Aw ≤ 0}.

For any two vectors x, y ∈ Rn, define z = min{x, y} by zi = min{xi, yi}, i ∈ n.

Lemma 23. The basis W1 is closed under the operation min,

v, w ∈ W1 ⇒ min{v, w} ∈ W1.

Proof. Suppose v, w ∈ W1 and u = min{v, w}. Then mini ui = 1. Since A = (aij) is
a Hurwitz stable Metzler matrix, the diagonal entries aii are strictly negative and the
off-diagonal entries aij (i 6= j) are nonnegative. By assumption we have∑

j 6=i

aijvj ≤ −aiivi and
∑
j 6=i

aijwj ≤ −aiiwi, i ∈ n.

Given any i ∈ n suppose that, for instance, ui = wi then∑
j 6=i

aijuj =
∑
j 6=i

aij min{vj, wj} ≤
∑
j 6=i

aijwj ≤ −aiiwi = −aiiui.

Similarly,
∑

j 6=i aijuj ≤ −aiiui if ui = vi, and so we conclude that
∑

j 6=i aijuj ≤ −aiiui for
all i = 1, . . . , n, i.e., Au ≤ 0. This proves u ∈ W1.

Now consider the following linear program

Minimize 1>n w =
n∑

i=1

wi subject to wi ≥ 1, (Aw)i ≤ 0, i = 1, . . . , n. (24)

Theorem 24. Suppose that A ∈ Rn×n
M is a Hurwitz stable Metzler matrix.

(i) The linear program (24) has a unique optimal solution ŵ and this optimal solution of
(24) is an optimal solution of (23) satisfying ŵ ∈ W1 and κ(ŵ) = minw∈W1 κ(w).

(ii) ŵ ∈ W1 is an optimal solution of (24) if and only if H(ŵ) ∪ J(ŵ) = n where

H(w) = {h ∈ n ; (Aw)h = 0} , J(w) = {i ∈ n ; wi = 1} , w ∈ W1. (25)
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Proof. (i) By Theorem 21(i) the set of admissible solutions of the linear program (24) is
non-empty, and the objective functional 1>n w is bounded below on this set. Hence there
exists an optimal solution of (24). Its uniqueness follows from Lemma 23.
Now let ŵ be the optimal solution of (24). By optimality mini ŵi = 1 whence ŵ ∈ W1.
Suppose that there is a vector w ∈ W1 such that κ(w) = maxi wi < maxi ŵi = κ(ŵ).
Then u = min{w, ŵ} ∈ W1 by Lemma 23 and so u is an admissible solution of the linear
program (24) satisfying u ≤ ŵ and u 6= ŵ. But this implies 1>n u < 1>n ŵ which is a
contradiction. Hence κ(w) ≥ κ(ŵ) for all w ∈ W1, i.e., ŵ is optimal for problem (23).
(ii) Suppose that w ∈ W1, H(w) ∪ J(w) 6= n and let i ∈ n \ (H(w) ∪ J(w)). Then
wi > 1 and

∑
j 6=i aijwj < −aiiwi. Since A is a Hurwitz stable Metzler matrix we have

aij ≥ 0 for j 6= i and −aii > 0. Define w′ ∈ Rn
+ by w′

j = wj for j 6= i and w′
i =

max{1, (−aii)
−1
∑

j 6=i aijwj} < wi. Then mink w′
k = 1, Aw′ ≤ 0, i.e., w′ ∈ W1, and

1>n w′ < 1>n w. Therefore w is not an optimal solution of (24).
Conversely, let ŵ ∈ W1 and H(ŵ) ∪ J(ŵ) = n. Suppose that w ∈ W1 is the optimal
solution of (24). Then 1>n w ≤ 1>n ŵ and it follows from Lemma 23 that w ≤ ŵ and
therefore J(w) ⊃ J(ŵ). Permuting the coordinates of w, ŵ and the rows and columns of A
accordingly we may assume that H(ŵ) = {1, . . . , k}, J(ŵ) ⊃ {k + 1, . . . , n}. Partitioning
A, w, ŵ we have

A =

[
A11 A12

A21 A22

]
, A11 ∈ Rk×k

M , ŵ =

[
ŵ1

1n−k

]
, ŵ1 ∈ Rk

+, w =

[
w1

1n−k

]
, w1 ∈ Rk

+.

Since A11ŵ
1 + A121n−k = 0 and A11w

1 + A121n−k ≤ 0, it follows that A11(ŵ
1 − w1) ≥ 0.

The principal submatrix A11 is a Hurwitz stable Metzler matrix by Lemma 5 and so
−A−1

11 ≥ 0. Thus A11(ŵ
1 − w1) ≥ 0 implies ŵ1 − w1 ≤ 0. On the other hand we have

w ≤ ŵ and so w1 ≤ ŵ1. Therefore w = ŵ and hence ŵ is the optimal solution of (24).

Remark 25. (i) Note that the converse of (i) in Theorem 24 is not true. There are, in
general, optimal solutions of the minimax problem (23) in W1 which do not solve the
linear program (24). In particular, (23) may have more than one optimal solution in W1.
(ii) If H(ŵ) is non-empty – and this is always the case if A is not row diagonally dominant –

then µ∞,ŵ−1(A) = maxj
(Aŵ)j

ŵj
= 0 and the exponential estimate provided by Theorem 21

reduces to
∥∥eAt

∥∥
∞ ≤ κ(ŵ) for t ≥ 0.

It follows from Theorem 24(i) that the simplex method can be used to compute a right
Lyapunov vector ŵ with a minimal condition number κ(ŵ). The following algorithm
presents a different procedure towards solving the minimax problem (23) and is based on
Theorem 24(ii). We make use of the function findweight(·) which is defined recursively
and given by the following pseudo-Matlab code.

Algorithm 26. Let S ∈ Rm×m
+ be an invertible matrix such that M := −S−1 is a Hurwitz

stable Metzler matrix.

function y=findweight(S)
m = number_of_rows(S); # m,k,x,y,z,J,S_J are local variables
x = solve(S,ones(m,1)); # Solve S x=one_m
J = find(x>0); # get indices of positive entries
k = length(J); # number of positive entries
if(k < m) # there are nonpositive entries in x
S_J = S(J,J); # pass to principal submatrix
z = findweight(S_J); # recursive call
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y = zeros(m,1);
y(J) = z; # fill entries indexed by J
else
y = x; # use positive solution
end
return y; # y is nonnegative, at most k positive entries
end

We employ this recursive formulation in order to reduce the index bookkeeping operations
to a minimum. Usage and properties of this algorithm are discussed in the following
corollary.

Corollary 27. Let A ∈ Rn×n
M be a Hurwitz stable Metzler matrix and set R = −A−1.

Then ŵ = Ry is an optimal solution for problems (23) and (24) where y = findweight(R)
is computed by Algorithm 26.

Proof. In order to guarantee that each step of Algorithm 26 works correctly, we show that
if the argument S ∈ Rm×m

+ of findweight(S) is a regular nonnegative matrix such that
M := −S−1 ∈ Rm×m

M is a Hurwitz stable Metzler matrix, the index set J is nonempty, and
the submatrix S(J) of S is also a regular nonnegative matrix such that MJ = (−S(J))−1 ∈
Rk×k

M is Hurwitz stable. By assumption S is regular, hence Sx = 1m has a unique solution
x. This vector x contains at least one positive entry as S ≥ 0,1m > 0 and therefore J 6= ∅.
In the case that this index set has a size k = |J | less than m we have to examine the
submatrix S(J) ∈ Rk×k

+ of S. By construction, it is a principal submatrix of S = −M−1,
hence given by the negative inverse of a Schur complement M̃ in M , see Lemma 5. Also by
Lemma 5, M̃ ∈ Rk×k

M is a Hurwitz stable Metzler matrix. As we start the algorithm with
S = R = −A−1, each recursive call of findweight(·) has an argument S which is regular,
nonnegative, and has the property that −S−1 is a Hurwitz stable Metzler matrix.
Clearly, the size of S strictly decreases as the recursion proceeds. The recursion is termi-
nated when the linear system Sx = 1m has a positive solution x > 0. This is always so if
m = 1 as then S ∈ R+ is some diagonal entry of R which is invertible by Lemma 5 and
therefore positive, i.e., x = S−1 > 0. The algorithm therefore terminates the recursion
after at most n steps.
If we encounter a positive solution x at the end of the recursion then this vector is on
return augmented with zeros to give a final return value y ∈ Rn

+. By construction this
y satifies (Ry)i = 1 for all i ∈ n such that yi 6= 0. Hence, when setting ŵ = Ry we
have J ∪ H = n where J = {i ∈ n ; ŵi = 1} = {i ∈ n ; (Ry)i = 1} and H = {i ∈
n ; (Aŵ)i = 0} = {i ∈ n ; yi = 0}. To prove that ŵ = Ry is an optimal solution of
(24) it remains to show that ŵ ∈ W1, see Theorem 24(ii). By construction, we have
Aŵ = −y ≤ 0. To prove ŵ = Ry ≥ 1n, let us consider z = −A1n which solves Rz = 1n.
Note that J = {i ∈ n ; zi > 0} is the set of positive indices computed in the first step of
the algorithm, whence {i ∈ n ; yi > 0} ⊂ J . We assume that after a suitable permutation
J = {i ∈ n ; zi > 0} = {1, . . . ,m}, and that R, z, y are partitioned accordingly into

R =

[
R11 R12

R21 R22

]
, z =

[
z1

z2

]
, y =

[
y1

0

]
.

Then we have z1 > 0, z2 ≤ 0, y1 ≥ 0, R11z
1 + R12z

2 = 1m = R11y
1, and R21z

1 + R22z
2 =

1n−m. The principal submatrices R11 and R22 of R are regular by Lemma 5, moreover
R̃ = R22−R21R

−1
11 R12 is a Schur complement in R and therefore the inverse of a principal
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submatrix of R−1 = −A by [10, §0.7.3]. Hence R̃ ≥ 0 by Lemma 5 and Theorem 4(ii).
We conclude that R22 ≥ R21R

−1
11 R12 and

w2 := R21y
1 = R21

(
z1 + R−1

11 R12z
2
)
≥ R21z

1 + R22z
2 = 1n−m

(because of z2 ≤ 0). This shows that ŵ = [ 1m

w2 ] = Ry ≥ 1n and therefore ŵ ∈ W1.
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��	

Figure 1: Linear Lyapunov function

Example 28. Let

A =

[
−5 36
2 −20

]
, R = −A−> =

1

28

[
20 2
36 5

]
.

Figure 1 shows some trajectories of the system ẋ = Ax and the lines {x ∈ R2
+; ‖x‖1 = 1},

{x ∈ R2
+; ‖x‖1 = γ}, {x ∈ R2

+; ‖x‖1,ŵ = 1}, where ŵ = (1, 1.8)> is a left Lyapunov vector
of A with minimal condition number κ(ŵ). To calculate this optimal left Lyapunov vector
we start Algorithm 26 with R = −A−> and proceed as follows: For S = R, the equation
Sx = 12 has the solution x = −A>12 = (3,−16)> which is not positive. Hence we consider
the submatrix of S = R which matches positive entries of x, i.e., S(J) = [r11] = [5

7
]

corresponding to J = {1}. In the next step of this recursion where m = 1 and S = S(J),
the equation Sx = 11 is solved by x = 1/r11 = 7

5
= 1.4 which is positive. Hence the

recursion terminates and the algorithm returns y = (1.4, 0)>. Applying Corollary 27 we
obtain the optimal left Lyapunov vector ŵ = Ry = (1, 1.8)> of A. Since ŵ>A = (−1.4, 0)
we obtain from Theorem 21 the exponential estimate∥∥eAt

∥∥
1
≤ κ(ŵ) e

maxj=1,2
(ŵ>A)j

ŵj
t
= κ(ŵ) = 1.8, t ≥ 0.

(The actual transient gain of ẋ = Ax is γ(A) = supt≥0

∥∥eAt
∥∥

1
≈ 1.5). In comparison,

any left Perron vector w̃ of A has the condition number κ(w̃) = 9.41 and the estimate
provided by Theorem 18 is

∥∥eAt
∥∥

1
≤ 9.41e−1.18t.

Figure 1 shows that the line {x ∈ R2
+; ‖x‖1,ŵ = 1} is tangential to the trajectory of

ẋ = Ax starting at the second unit vector e2 = (0, 1)>, i.e., we have ŵ>Ae2 = 0. This
is due to the general fact that, if e1, . . . , en are the standard unit vectors in Rn and ŵ is
the optimal solution of (24) with A replaced by A>, then 〈ŵ, Aeh〉 = (ŵ>A)h = 0 for all
h ∈ H where H is defined by (25) (with A replaced by A>).

17



5 Stability radii and transient behaviour of positive

systems with structured uncertainty

In Section 3 we have determined stability radii and joint quadratic Lyapunov functions of
positive systems with full block uncertainty, i.e., subject to perturbations of the form (11).
In this section we will consider highly structured perturbations. Without the assumption
of positivity this is a difficult topic as can be seen from the problems of determining
structured singular values in µ-analysis, see [7, § 4.4].
We will first analyze the effect of entrywise perturbations of the nominal system matrix
A at an arbitrary but fixed set of positions. Such perturbations have been analyzed in
the context of Linear Algebra by Brualdi [10] in order to obtain spectral inclusion theo-
rems which yields sharper estimates than Gershgorin’s classical theorem. More precisely,
Brualdi considered an arbitrary n × n matrix A as an off-diagonal perturbation of the
diagonal matrix with the same diagonal as A and used the zero pattern of the matrix
A to obtain tighter inclusion regions for its spectrum. In the next subsection we will
analyze the stability radius and the transient behaviour of positive systems perturbed by
such Gershgorin-Brualdi perturbations. In Subsection 5.2 we will study the problem of
constructing joint linear or quadratic Lyapunov functions for more general sets of time-
invariant linear systems and use the results to obtain stability results and estimates of the
transient behaviour for various types of uncertain positive systems. Finally, in Subsec-
tion 5.3 we will study differential inclusions and determine the stability radius of positive
systems with respect to time-varying structured perturbations.

5.1 Gershgorin-type perturbation classes

Throughout this subsection we suppose that P ∈ Rn×n
+ is a given nonnegative matrix.

We consider the following set of complex perturbation matrices which preserve the zero
positions in P ,

∆ = ∆P =
{
∆ ∈ Cn×n ; ∆ij = 0 if pij = 0

}
, (26)

and endow the vector space ∆P with the weighted ∞-norm

‖∆‖P := max
(i,j)∈I(P )

p−1
ij |∆ij| , ∆ ∈ ∆P where I(P ) =

{
(i, j) ∈ n2 ; pij > 0

}
(27)

which is a monotone norm on ∆P . Such Gershgorin-Brualdi perturbations have been
studied before in [12] and [8]. Note that

∆ ∈ ∆P ⇒ M(∆) ∈ ∆P .

The norm ‖·‖P has the following properties

‖M(∆)‖P ≤ ‖∆‖P = ‖|∆|‖P , ∆ ∈ ∆P ,

‖M(∆)‖P = ‖∆‖P if the diagonal of ∆ ∈ ∆P is real,

‖ρP‖P = ρ, ρ > 0, and ∀∆ ∈ ∆P : ‖∆‖P ≤ ρ ⇐⇒ |∆| ≤ ρP.

(28)

We consider additive perturbations of the form

A ; A + ∆, ∆ ∈ ∆.
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The stability radius of a matrix A ∈ Cn×n with respect to the perturbation structure
(∆P , ‖·‖P ) is defined by

r∆P
(A) = inf{‖∆‖P ; ∆ ∈ ∆P , α(A + ∆) ≥ 0} (29)

(compare (12)). If there exists a destabilizing perturbation ∆ ∈ ∆P such that α(A+∆) ≥
0 then the inf in (29) may be replaced by a min, i.e., there exists a minimum norm
destabilizing perturbation ∆0 ∈ ∆P satisfying ‖∆0‖P = r∆P

(A) and α(A + ∆0) = 0. In
[12, Corollary 4.4] spectral value sets and stability radii with respect to the perturbation
structure (∆P , ‖·‖P ) have been determined for diagonal matrices A. In [8] the problem
of constructing joint quadratic Lyapunov functions for systems of the form ẋ = (A +
∆)x, ∆ ∈ ∆P , ‖∆‖ ≤ ρ (where ‖ · ‖ is a different norm) has been studied, again for
diagonal nominal matrices A. For general matrices A no precise formulae are available,
only upper or lower bounds. In the following we will see that for Metzler matrices A
explicit formulae can be derived.

Theorem 29. The stability radius of a Hurwitz stable Metzler matrix A ∈ Rn×n
M with

respect to the perturbation structure (∆P , ‖·‖P ) is given by

r∆P
(A) = 1/%(−PA−1). (30)

Proof. Suppose that r∆P
(A) < ∞ and let ∆ ∈ ∆P , δ = ‖∆‖P be any destabilizing

perturbation such that α(A + ∆) ≥ 0 (whence δ > 0). As M(A + ∆) ≤ A + |∆| we have
by (8) and (28)

0 ≤ α(A + ∆) ≤ α(M(A + ∆)) ≤ α(A + |∆|) ≤ α(A + δP ).

Since A + δP is a Metzler matrix, there exists a nonzero vector v ≥ 0 such that (A +
δP )v = αv ≥ 0 where α := α(A + δP ). Multiplying by −A−1 ≥ 0 we obtain −(In +
δA−1P )v ≥ 0 and therefore δ−1v ≤ −A−1Pv. Since −A−1P is a nonnegative matrix,
Theorem 1(iii) implies that δ−1 ≤ α(−A−1P ) = %(−A−1P ), i.e., %(−A−1P ) > 0 and
δ ≥ %(−A−1P )−1. By definition of r∆P

(A) we conclude that r∆P
(A) ≥ %(−A−1P )−1 =

%(−PA−1)−1. Moreover, the above argument shows that there does not exist a ∆ ∈ ∆P

such that α(A + ∆) ≥ 0 if %(−A−1P ) = 0. Hence r∆P
(A) = ∞ and (30) holds if

%(−A−1P ) = 0.
It remains to prove r∆P

(A) ≤ %(−A−1P )−1 if %(−A−1P ) > 0. Let δ0 = %(−PA−1)−1,
∆0 = δ0P ∈ ∆P and let w be a Perron vector of the nonnegative matrix −PA−1. Then
z = −A−1w ≥ 0 satisfies

(A + ∆0)z = −(A + δ0P )A−1w = −(w − δ0%(−PA−1)w = 0.

Hence α(A + ∆0) ≥ 0 and so %(−PA−1)−1 = ‖∆0‖P ≥ r∆P
(A).

Corollary 30. Suppose A, B ∈ Rn×n
M are Metzler matrices, A ≤ B, and B is Hurwitz

stable. Then A is Hurwitz stable and

r∆P
(B) ≤ r∆P

(A) ≤ r∆P
(D(A)) where D(A) = diag(a11, . . . , ann). (31)

Proof. Since D(A) ≤ A ≤ B we have α(D(A)) ≤ α(A) ≤ α(B) by (8) and it suffices to
prove the first inequality in (31). From the previous proof we know that α(A+r∆P

(A)P )=
0, hence α(B + r∆P

(A)P ) ≥ 0. Therefore r∆P
(A) = ‖r∆P

(A)P‖ ≥ r∆P
(B) by (28).
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Example 31. Let A and P be given by

A =

−1 4 2
0 −2 1
0 0 −3

 , P =

0 1 1
1 0 0
0 1 0

 .

Applying (30) to compute the stability radii of A and D(A) with respect to the pertur-
bation structure (∆P , ‖·‖P ) we obtain

r∆P
(A) = 0.396 and r∆P

(D(A)) = 1.195.

The next theorem shows that all perturbed matrices A + ∆, ∆ ∈ ∆P , ‖∆‖P ≤ r∆P (A)

satisfy a common transient bound.

Theorem 32. Suppose that A ∈ Rn×n
M is a Hurwitz stable Metzler matrix, 0 < δ ≤ r∆P

(A)
and w > 0 is a left Lyapunov vector of A + δP . Then

∥∥e(A+∆)t
∥∥

1
≤ κ(w)e

maxj
(w>A)j

wj
t
, t ≥ 0, ∆ ∈ ∆P , ‖∆‖P ≤ δ.

Proof. Let ∆ ∈ ∆P , ‖∆‖P ≤ δ. Then |∆| ≤ δP and we obtain from Theorem 13∣∣e(A+∆)t
∣∣ ≤ eM(A+∆)t ≤ e(A+|∆|)t ≤ e(A+δP )t.

Now the operator norm ‖·‖1 is monotone on Rn×n, hence Theorem 21 implies that

∥∥e(A+∆)t
∥∥

1
≤
∥∥e(A+δP )t

∥∥
1
≤ κ(w)e

maxj
(w>A)j

wj
t
, t ≥ 0.

This proves the theorem.

The previous proof is based on the fact that any (left or right) Lyapunov vector of A+δP
is a joint Lyapunov vector for all perturbed Metzler matrices M(A + ∆) where ∆ ∈ ∆P

and ‖∆‖P ≤ δ. In the next subsection we will study the problem under which conditions
there exist joint Lyapunov vectors for a given set of Metzler matrices.

5.2 Joint Lyapunov vectors for polytopes of positive systems

In this subsection we introduce the concept of linear stability and derive necessary and
sufficient linear stability criteria for polytopes of positive systems.
Over the last two decades the concept of quadratic stability has attracted some interest
in the literature because it provides a useful tool for dealing with time-varying and/or
nonlinear perturbations of uncertain systems. A set of matrices A ⊂ Cn×n is said to be
quadratically stable if there exists a positive definite Hermitian matrix P ∈ Cn×n such
that PA + A∗P is negative definite for all A ∈ A. In this case P provides a joint strict
quadratic Lyapunov function for all the systems ẋ = Ax, A ∈ A. For sets of positive
systems quadratic Lyapunov functions may be replaced by linear ones. This leads to the
following definition of linear stability.

Definition 33. A set A ⊂ Rn×n
M of Metzler matrices is said to be linearly stable if there

exists a joint strict left Lyapunov vector w for A, i.e., a strictly positive vector w satisfying
w>A < 0 for all A ∈ A.
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Remark 34. Every joint (strict) Lyapunov vector for A is automatically a joint (strict)
Lyapunov vector for the convex hull of A, denoted by conv(A). Hence by Theorem 21
a necessary condition for the linear stability of A is that every matrix A ∈ conv(A) is
Hurwitz stable.
Since every strict left Lyapunov vector of a Metzler matrix A is a strict left Lyapunov
vector of every Metzler matrix B ≤ A, linear stability extends automatically from any set
A ⊂ Rn×n

M to its lower hull A≤ = {M ∈ Rn×n
M ; ∃A ∈ A : M ≤ A}.

We conclude from Remark 34 that for sets of Metzler matrices linear stability is a stronger
property than exponential stability. A single Metzler matrix is exponentially stable if and
only if it has a strict Lyapunov vector. However, this is no longer true for sets of Metzler
matrices, as is illustrated by the next example.

Example 35. Consider the Metzler matrices

A1 =

[
−1 10
0 −1

]
, A2 =

[
−1 0
10 −1

]
.

They are both Hurwitz stable but the Metzler matrix (A1 + A2)/2 ∈ conv{A1, A2} is
unstable. Hence the set A = {A1, A2} is not linearly stable.

It is well-known that even if conv(A) consists only of Hurwitz stable matrices, A need
not be quadratically stable. The following example shows that an analogous statement
holds true for linear stability. Moreover it illustrates that the quadratic stability of a set
A of positive systems does not imply the linear stability of A.

Example 36. There are pairs of Metzler matrices which do not have a common linear
Lyapunov function, but a quadratic one. Consider the Metzler matrices

A1 =

[
−10 5
5 −3

]
and A2 =

[
−10 2
8 −3

]
.

By an easy calculation one verifies that P = diag(5, 3) is a positive definite matrix with
PAi + A>

i P ≺ 0 for i = 1, 2. Hence the segment of matrices

A = [A1, A2] = {τA1 + (1− τ)A2 ; τ ∈ [0, 1]}

is quadratically stable. On the other hand we will see later in Example 39 that there does
not exist a joint strict Lyapunov vector for the two matrices A1, A2, and consequently the
segment [A1, A2] is not linearly stable.

We will now derive necessary and sufficient linear stability criteria for polytopes of positive
systems. We make use of the following lemma which is a consequence of [18, Thm 22.2].

Lemma 37. Suppose A ∈ Rn×N where n, N ≥ 1. Then one and only one of the following
alternatives holds:

(a) There exists a vector w ∈ Rn
+, w > 0 such that w>A < 0.

(b) There exists a vector x ∈ RN
+ , x 6= 0 such that Ax ≥ 0.

Theorem 38. If A1, . . . , Am ∈ Rn×n
M , the following conditions are equivalent.

(i) The polytope A = conv{A1, . . . , Am} is linearly stable.
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(ii) There exists w > 0 such that w>Aj < 0 for j = 1, . . . ,m.

(iii) A1 is Hurwitz stable and there exists y > 0 such that y>A−1
1 Aj > 0 for j = 2, . . . ,m.

(iv) There do not exist xj ∈ Rn
+, j ∈ m not all zero such that

∑
j Ajx

j ≥ 0.

Proof. (i) ⇔ (ii) follows directly from Definition 33 and Remark 34.
(ii) ⇔ (iii): If w > 0 is a joint strict left Lyapunov vector for {A1, . . . , Am} then A1 is
Hurwitz stable and

w>[A1 · · · Am] = w>A1[I A−1
1 A2 · · · A−1

1 Am] < 0.

Hence, setting y = −A>
1 w we obtain y > 0 and y>A−1

1 Aj > 0 for j = 2, . . . ,m. Conversely,
if A1 is Hurwitz stable and y > 0 satisfies y>A−1

1 Aj > 0 for j = 2, . . . ,m then w =
−(A−1

1 )>y defines a joint strict left Lyapunov vector for {A1, A2, . . . , Am}.
(ii)⇔ (iv): follows directly from Lemma 37 by setting A = [A1 A2 · · · Am] ∈ Rn×(mn).

It follows from this characterization that if A1 is either not Hurwitz stable or one of the
matrices A−1

1 Aj, j = 2, . . . ,m has a column consisting only of non-positive entries, then
the set {A1, . . . , Am} is not linearly stable.

Example 39. Consider again the two matrices A1, A2 defined in Example 36. Then A1

is Hurwitz stable and A−1
1 A2 = [ −2 1.8

−6 4 ] has a column of strictly negative entries. Thus
there does not exist a joint strict left Lyapunov vector for A1, A2 and so [A1, A2] is not
linearly stable although it is quadratically stable as was shown in Example 36.

The above results deal with joint left Lyapunov vectors. Analogous statements can be
derived for joint right Lyapunov vectors applying the previous results to sets of transposed
matrices. In this way it can be shown that there does not exist a joint strict right Lyapunov
vector for the two matrices A1, A2 in the previous example because A2A

−1
1 = [ 4 6

−1.8 −2 ] has
a strictly negative row.
The question arises whether or not – as in the single matrix case – a set of Metzler matrices
has a joint left Lyapunov vector if and only if it has a joint right Lyapunov vector. The
next example shows that this is not so.

Example 40. Consider the two Metzler matrices

A1 =

[
−5 39
0 −3

]
, A2 =

[
−1 7
3 −25

]
.

These two matrices have the joint right Lyapunov vector (8, 1)>, but no joint left Lyapunov
vector, as A−1

1 A2 has a column with strictly negative entries, see Theorem 38. Thus
we have here an example of a set of two matrices {A1, A2} which is not linearly stable
whereas the set of transposes {A>

1 , A>
2 } is linearly stable. A similar example cannot be

found for quadratic stability. If a matrix set A ⊂ Cn×n is quadratically stable then the
set A> = {A>; A ∈ A} is also quadratically stable: If there exists P � 0 such that
PA + A>P ≺ 0 for all A ∈ A, then P−1 � 0 and P−1A> + AP−1 ≺ 0 holds for all A ∈ A.

We have seen above that there exists a set of two matrices {A1, A2} which is quadratically
stable but both {A1, A2} and {A>

1 , A>
2 } are not linearly stable. The question arises if the

converse is also possible, i.e., that {A1, A2} and {A>
1 , A>

2 } are both linearly stable but
{A1, A2} is not quadratically stable. The answer is “no”, since one can construct joint
diagonal quadratic Lyapunov functions from a pair of joint strict left resp. right Lyapunov
vectors.
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Corollary 41. Suppose that A1, A2 ∈ Rn×n
M are Metzler matrices. If w > 0 (resp. v > 0)

are joint strict left (resp. right) Lyapunov vectors for A1, A2 then the diagonal matrix
P = diag(wi/vi) � 0 defines a joint quadratic Lyapunov function V (x) = 〈x, Px〉 for
{A1, A2}.

Proof. We show that Ri := PAi+A>
i P , i = 1, 2 are negative definite. By construction, we

have Aiv < 0 and A>
i w < 0 for i = 1, 2. Therefore Riv = PAiv+A>

i Pv = PAiv+A>
i w < 0

for i = 1, 2, i.e. v is a strict joint right Lyapunov vector for the Metzler matrices Ri,
i = 1, 2. From Theorem 21 we conclude that the Ri are Hurwitz stable, hence by symmetry
they are negative definite. Therefore V (x) = 〈x, Px〉 is a joint quadratic Lyapunov
function for {A1, A2}.

5.3 Differential inclusions of positive systems

A useful class of models for linear systems with time-varying parameter uncertainties is
given by linear differential inclusions (LDI) of the form

ẋ(t) ∈ Ax(t), t ≥ 0, A ⊂ Cn×n compact (32)

where Ax = {Ax; A ∈ A} for x ∈ Rn. An absolutely continuous function x(·) : R+ → Rn

is said to be a solution of (32) if ẋ(t) ∈ Ax(t) holds for almost all t ∈ R+. By a theorem
of Filippov x(·) : R+ → Rn is a solution of (32) if and only if there exists a measurable
selection A(·) : R+ → A such that x(·) is solution of the time-varying linear differential
equation ẋ(t) = A(t)x(t) on R+, see [19, Thm. 2.3].

Definition 42. The LDI (32) is said to be stable if, given any ε > 0 there exists δ > 0
such that for every x0 ∈ Rn, ‖x0‖2 < δ each solution x(·) of (32) with x(0) = x0 satisfies
‖x(t)‖2 < ε for all t ≥ 0. It is said to be asymptotically stable (in the large) if additionally
the origin is globally attractive, i.e., limt→∞ x(t) = 0 for all solutions x(·) of (32).

It can be shown [19, § 8.2] that (32) is asymptotically stable if and only if it is exponentially
stable in the following sense: There exist constants β < 0, γ ≥ 1 such that

‖x(t)‖2 ≤ γeβt‖x(0)‖2, t ≥ 0 (33)

for every solution x(·) of (32). By the following well known lemma a necessary condition
for the asymptotic stability of (32) is that the convex hull conv(A) consists of Hurwitz
stable matrices, see [15].

Lemma 43. The linear differential inclusion (32) is asymptotically stable if and only if
its convexification ẋ ∈ conv(A) is asymptotically stable.

The following theorem is apparently due to Molchanov and Pyatnitskij, see [15]. A de-
tailed proof can be found in [19]. The theorem exhibits the close relationship between the
asymptotic stability of linear differential inclusions and the existence of joint Lyapunov
functions.

Theorem 44. The linear differential inclusion (32) is asymptotically stable if and only
if there exists a number θ > 0 and a piecewise linear Lyapunov function of the form

V (x) = max{|〈li, x〉|, i ∈ m}, x ∈ Rn

where l1, . . . , lm ∈ Rn span Rn, such that

DV (x)(v) ≤ −θV (x), x ∈ Rn, v ∈ Ax. (34)
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Here DV (x)(v) denotes the directional derivative of V at x in the direction of v,

DV (x)(v) = lim
h→0+

h−1 [V (x + hv)− V (x)] .

The limit exists since V : Rn → R+ is convex. By (34), V is a joint strict Lyapunov norm
(in the sense of Definition 11) for all the systems ẋ = Ax, A ∈ A.
Theorem 44 shows a fundamental difference between robustness properties with respect
to time-varying and time-invariant perturbations. In general, the asymptotic stability of
a set of time-invariant systems ẋ = Ax, A ∈ A does not guarantee the existence of a joint
strict Lyapunov function for all these systems. In contrast, if all the time-varying systems
ẋ(t) = A(t)x(t), A(·) : R+ → A measurable, are uniformly asymptotically stable then, by
the above theorem, such a joint Lyapunov function always exists.
The above results only serve as a background for the following development. We will not
use them directly but give independent proofs. With every LDI (32) we associate the
positive LDI

ẋ(t) ∈ M(A)x(t) where M(A) = {M(A); A ∈ A} ⊂ Rn×n
M . (35)

Note that M(A) is compact since A 7→ M(A) defined by (3) is continuous and A is
compact.

Theorem 45. Suppose A ⊂ Cn×n is compact and w > 0 is a vector satisfying w>M(A) ≤
0 (resp. w>M(A) < 0) for all A ∈ A. Then (32) is stable (resp. asymptotically stable)
and every solution x(·) of (32) on R+ satisfies

‖x(t)‖1 ≤ κ(w)eβt ‖x(0)‖1, t ≥ 0 where β = max
A∈A

max
j

(w>M(A))j

wj

≤ 0. (36)

In particular, if the positive LDI (35) is linearly stable then the LDI (32) is asymptotically
stable.

Proof. Suppose that w > 0 and w>M(A) ≤ 0 for all A ∈ A. Let x(·) : R+ → Cn be
any solution of (32) and A(·) : R+ → A a measurable selection such that x(·) solves
ẋ = A(t)x. Let ν(·) be an arbitrary norm on Cn and µν(·) the corresponding initial
growth rate. Then Theorem II.8.27 of [4] shows that

ν (x(t)) ≤ e
R t
0 µν(A(τ)) dτν(x(0)) ≤ e

R t
0 µν(M(A(τ))) dτν(x(0))

(where the second inequality is obtained by (21)). Now we choose the norm ν(x) = ‖x‖1,w

which equals w>x on Rn
+. By Theorem 21 µν(M(A(τ))) = maxj

(w>M(A(τ)))j

wj
≤ β ≤ 0 for

all τ ≥ 0 and so all the solutions of (32) satisfy

(min
i

wi)‖x(t)‖1 ≤ ‖x(t)‖1,w ≤ e
R t
0 β dτ ‖x(0)‖1,w ≤ eβt(max

i
wi)‖x(0)‖1, t ≥ 0.

This proves (36) and that (32) is stable if w>M(A) ≤ 0 for all A ∈ A. Finally, compactness
arguments show that β < 0 if w>M(A) < 0 for all A ∈ A.

Corollary 46. Suppose that A, B ∈ Rn×n
M are Metzler matrices , B ≤ A and α(A) < 0.

Then the interval LDI ẋ(t) ∈ Ax(t) where A = [[B, A]] is asymptotically stable.
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Proof. By Theorem 21 there exists w > 0 such that w>A < 0. Since the interval [[B, A]] is
a compact set of Metzler matrices and w>C ≤ w>A < 0 for all C ∈ [[B, A]] the corollary
follows from Theorem 45.

The following corollary is a direct consequence of Theorem 45 and Lemma 43.

Corollary 47. Suppose that A1, . . . , Am ∈ Rn×n
M are Metzler matrices , w > 0 satisfies

w>Aj < 0 (resp. w>Aj ≤ 0) for all j ∈ m. Then the LDI

ẋ(t) ∈ Ax(t) where A = conv{A1, . . . , Am} (37)

is asymptotically stable (resp. stable) and for every solution x(·) of (37),

‖x(t)‖1 ≤ κ(w)eβt ‖x(0)‖1, t ≥ 0 where β = max
i∈m

max
j

(w>Ai)j

wj

. (38)

The condition number κ(w) in (38) can be minimized in a similar manner as for a single
matrix, see §4.3. Let A = [A1 A2 · · · Am] and

W1 = {w ∈ Rn
+ ; min

i
wi = 1, w>A ≤ 0}.

As in the single matrix case one can prove

v, w ∈ W1 ⇒ min{v, w} ∈ W1.

Now consider the optimization problem

Minimize κ(w) =
maxi wi

mini wi

subject to w > 0, w>A ≤ 0. (39)

and the associated linear program

Minimize 1>n w =
n∑

i=1

wi subject to w ≥ 1n and w>A ≤ 0. (40)

Then the following result can be proved in a similar way as in the single matrix case,
compare the proof of Theorem 24.

Theorem 48. Suppose that A1, . . . , Am ∈ Rn×n
M are Metzler matrices and w > 0 satisfies

w>Aj ≤ 0 for j ∈ m. Then the linear program (40) has a unique optimal solution ŵ. ŵ
is an optimal solution of (39) and ŵ ∈ W1. Every solution x(·) of the LDI (37) satisfies

‖x(t)‖1 ≤ κ(ŵ) ‖x(0)‖1, t ≥ 0.

Proof. By assumption the set of admissible solution of the linear program (40) is non-
empty and the objective functional 1>w is bounded below on this set. Hence there exists
an optimal solution ŵ ∈ W1 of (40). As in the single matrix case one can show that
ŵ is uniquely determined and is an optimal solution of (39). The last statement of the
theorem follows from (38) and ŵ>Ai ≤ 0, i ∈ n.

As a consequence of Theorem 48 an optimal solution of (39) and thus a weight vector
w > 0 of minimal condition number κ(w) can be determined by applying the simplex
method to the linear program (40).
We conclude the paper by applying the previous results to time-varying linear and/or
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nonlinear parameter perturbations of Gershgorin-Brualdi type. Let A ∈ Rn×n
M be a Hur-

witz stable Metzler matrix and P = (pij) ∈ Rn×n
+ . We consider nonlinear time-varying

perturbations of ẋ = Ax of the form

ẋ = Ax + ∆(x, t)x where ∆(·, ·) ∈ ∆nt. (41)

Here ∆nt is the vector space of all bounded ∆(·, ·) : Cn×R+ → Cn×n of structure P , i.e.,

∆(x, t) = (δij(x, t)) ∈ Cn×n, δij(x, t) = 0 for all x ∈ Cn and t ≥ 0 if pij = 0,

such that ∆(x, ·) : R+ → Cn×n is measurable for each x ∈ Cn, ∆(·, t) : Cn → Cn×n is
continuous for each fixed t ∈ R+, and for each compact subset K × I ⊂ Cn × R+ there
exists an integrable k(·) : I → R+ such that

‖∆(x, t)x−∆(x̂, t)x̂‖2 ≤ k(t)‖x− x̂‖2, (x, t), (x̂, t) ∈ K × I.

The norm on ∆nt is taken to be

‖∆(·, ·)‖∆nt = sup
x∈Cn,t≥0

max
(i,j)∈I(P )

p−1
ij |δij(x, t)| , ∆ = (δij) ∈ ∆nt (42)

where I(P ) = {(i, j) ∈ {1, . . . , n}2 ; pij > 0}.
By Carathéodory’s Theorem there exists, for every (t0, x

0) ∈ R+ × Cn, a unique solution
x(t) = x(t; t0, x

0) of (41) on [t0,∞) with x(t0) = x0. We say that the nonlinear system
(41) is asymptotically stable if the origin is a globally asymptotically stable equilibrium
position of (41).
We also consider the following time-varying linear system

ẋ(t) = (A + ∆(t))x(t) where ∆(·) ∈ ∆tv . (43)

Here ∆tv is the vector space of all bounded measurable matrix functions ∆(·) :R+→Cn×n

of structure P , i.e.,

∆(t) = (δij(t)) ∈ Cn×n, δij(t) = 0 for all t ≥ 0 if pij = 0 .

∆tv is endowed with the norm

‖∆(·)‖∆tv = sup
t≥0

max
(i,j)∈I(P )

p−1
ij |δij(t)| , ∆(·) = (δij(·)) ∈ ∆tv. (44)

Note that with the obvious embeddings ∆P ⊂ ∆tv ⊂ ∆nt the norm ‖ · ‖∆tv is the
restriction of the norm ‖ · ‖∆nt to ∆tv and the norm ‖ · ‖∆ = ‖ · ‖P is the restriction
of the norm ‖ · ‖∆tv to ∆P . Here ∆P is defined by (26) and the norm ‖ · ‖P by (27).
For simplicity we say that the nonlinear system (41) is asymptotically stable if the origin
x̄ = 0 is a globally asymptotically stable equilibrium position of (41).

Definition 49. Given A ∈ Cn×n the stability radius of A with respect to complex time-
varying linear (respectively nonlinear) perturbations ∆(·) ∈ ∆tv (respectively ∆(·, ·) ∈
∆nt) are defined by

r∆tv(A) = inf{‖∆(·)‖∆tv ; ∆(·) ∈ ∆tv and (43) is not asymptotically stable},
r∆nt(A) = inf{‖∆(·, ·)‖∆nt ; ∆(·, ·) ∈ ∆nt and (41) is not asymptotically stable}.

As a consequence of the above results we obtain
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Corollary 50. Let A ∈ Rn×n
M be a Hurwitz stable Metzler matrix and P = (pij) ∈ Rn×n

+ .
Then

r∆nt(A) = r∆tv(A) = r∆P
(A) = %

(
−PA−1

)−1
. (45)

Moreover, if δ0 < r∆P
(A) and x(·) is any solution of the LDI

ẋ(t) ∈ Aδ0x(t) where Aδ0 = {A + ∆ ; ∆ ∈ ∆P , ‖∆‖P ≤ δ0} (46)

then
|x(t)| ≤ e(A+δ0P )t|x(0)|, t ≥ 0 (componentwise) (47)

and, if w > 0 is any left Lyapunov vector of the Hurwitz stable matrix A + δ0P ,

‖x(t)‖1 ≤ κ(w)eβt ‖x(0)‖1, t ≥ 0 where β = max
j

(w>(A + δ0P ))j

wj

≤ 0. (48)

Proof. We first prove (47). Let x(·) be a solution of the LDI (46). By Filippov’s Theorem
there exists a perturbation ∆(·) ∈ ∆tv, ‖∆(t)‖P ≤ δ0 for all t ≥ 0 such that x(·) is a
solution of ẋ(t) = (A + ∆(t))x(t). Then |∆(t)| ≤ δ0P for all t ≥ 0 (componentwise)
and hence by the variation-of-constants formula the function u(·) : R+ → Rn defined by
u(t) = |x(t)|, t ≥ 0 satisfies the integral inequality

u(t) =

∣∣∣∣eAtx(0) +

∫ t

0

eA(t−s)∆(s)x(s)ds

∣∣∣∣ ≤ eAt|x(0)|+
∫ t

0

eA(t−s)δ0Pu(s)ds, t ≥ 0.

On the other hand v(t) = e(A+δ0P )t|x(0)| satisfies the integral equation

v(t) = e(A+δ0P )t|x(0)|+
∫ t

0

eA(t−s)δ0Pv(s)ds, t ≥ 0.

Since the matrix eA(t−s)δ0P is nonnegative, we may apply Theorem 18.3 of [1] with
K(t, s, u) = eA(t−s)δ0Pu, 0 ≤ s ≤ t, u ∈ Rn, and obtain u(t) ≤ v(t) for all t ≥ 0,
i.e. (47) holds. (48) now follows from (47) and Theorem 21.
Finally, we prove (45). It follows from the definitions and the isometric embeddings
∆P ⊂ ∆tv ⊂ ∆nt that r∆nt(A) ≤ r∆tv(A) ≤ r∆P

(A). Suppose that ∆(·, ·) ∈ ∆nt and
δ0 := ‖∆(·, ·)‖∆nt < r∆P

(A). Let x(·) be any solution of the time-varying nonlinear
system (41). Since A + ∆(x(t), t) ∈ Aδ0 for all t ≥ 0, we conclude that x(·) is a solu-
tion of the LDI (46). Choosing for w > 0 a strict left Lyapunov vector of A + δ0P and
applying (48) we see that (41) is exponentially stable for every ∆(·, ·) ∈ ∆nt satisfying
‖∆(·, ·)‖∆nt < r∆P

(A). Hence r∆nt(A) ≥ r∆P
(A) and this proves the first two equalities

in (45). The last equality in (45) follows from (30).

We conclude the paper with an example illustrating the above results.

Example 51. Consider the matrices A and P of Example 31, fix the 1-norm on C3 and let
δ0 < r∆P

(A) = 0.396. By Corollary 50 the perturbed linear systems ẋ(t) = (A+∆(t))x(t)
are asymptotically stable if the time-varying perturbations ∆(·) : R+ → ∆P satisfy
‖∆(·)‖∆tv ≤ δ0. For any such system let Φ∆(t, s) denote the associated evolution operator.
To find an upper bound for the transient gains supt≥0 ‖Φ∆(t, 0)‖1 of all these perturbed
systems we apply Algorithm 26 to the matrix A+δ0P and obtain an optimal left Lyapunov
vector ŵ = (1, 2.52, 1.64)> of A + δ0P with minimal condition number κ(ŵ) = 2.52. By
Corollary 50 the condition number κ(ŵ) is an upper bound for the transient gains of all
the systems ẋ(t) = (A + ∆(t))x(t) where ∆(·) : R+ → ∆P satisfies ‖∆(·)‖∆tv ≤ δ0. This
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Figure 2: Norms of the evolution operator/matrix exponential and upper bound κ(ŵ)

is illustrated in Figure 2 for two perturbations of norm δ0 = 0.395, one time-invariant and
one time-varying,

∆1(t) = δ0P = 0.395

0 1 1
1 0 0
0 1 0

 and ∆2(t) = 0.395

0 cos(3t) sin(t)2

1 0 0
0 cos(2t)2 0


with associated evolution operators Φ1(t, s) = e(A+δ0P )(t−s) and Φ2(t, s) = Φ∆2(t, s). Since
|∆2(t)| ≤ δ0P (componentwise) for t ≥ 0 it follows from Corollary 50 that |Φ2(t, 0)| ≤
e(A+δ0P )t and hence ‖Φ2(t, 0)‖1 ≤ ‖e(A+δ0P )t‖1 for all t ≥ 0, see Figure 2.
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