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ABSTRACT: In global sensitivity analysis, the total effect provides necessary and sufficient information if a
model output Y depends on an input factor X . Hence this indicator is of importance if one is trying to identify
uninfluential factors in a factor fixing setting. This approach is often used to identify research needs and to focus
attention on influential factors.
We remind how suitable sensitivity indicators are obtained and investigate methods of global sensitivity analysis
for the factor fixing setting. For this we modify the factor fixing setting: An input parameter is uninfluential if
it does not significantly change the conditional output distribution given realisations of this input factors when
compared to the unconditional output distribution. Instead of considering the whole output distribution, we may
ask for influences in the series of moments. This allows for estimation from given observations.
We discuss the findings on the Level E geosphere transport model.

1 INTRODUCTION

Complex decision making relies upon numerical sim-
ulation models. The identification of uninfluential in-
put factors in these simulation models is the purpose
of the factor fixing setting in global sensitivity anal-
ysis. Here, it is well-known that the total effect pro-
vides necessary and sufficient information if a model
output Y depends on an input factor X . Hence this
indicator is of importance if one is trying to iden-
tify uninfluential factors. We remind how the total ef-
fect is derived from the functional analysis of vari-
ance decomposition. However, the computation of to-
tal effects involves the design of a special sample for
use with the Sobol’ method (Saltelli, Annoni, Azzini,
Campolongo, Ratto, and Tarantola 2010). Algorithms
for determining total effects directly from a given ran-
dom sample (i.e. without an intermediate metamodel
layer) are currently not available. We therefore have
to consider alternative approaches as we want to pro-
mote cheap sensitivity analysis methods by reusing
existing model input/output observations. The pre-
sented approach does not depend on the functional
ANOVA decomposition and may therefore be of use

in situations where one considers dependent input fac-
tors.

2 FUNCTIONAL ANOVA AND SENSITIVITY
EFFECTS

We consider a function

g :
X ⊂ Rk →Y ⊂ R,
(x1, . . . , , xk) 7→ y = g(x1, . . . , xk)

(1)

which might be the output of some computer code
simulating a complex physical model. In a global sen-
sitivity setting, the inputs become a random vector X
with support X of known probability law. Then the
output is a random variable Y = g(X) with support
Y .

Variance-based methods originate from the func-
tional ANOVA decomposition (Hoeffding 1948,
Efron and Stein 1981). Following the notation of
(Owen 2012), let α = {i1, i2, . . . , ir} ⊂ {1,2, . . . , k}
denote any subset of indices, where |α| = r is the
cardinality of α. The complementary set is ∼ α =
{1, . . . , k}\α. Let xα = (xi1 , xi2 , . . . , xir) be a generic



r-vector with components xs from Xs where s ∈ α.
Provided that g(·) is square integrable and that the
density of X can be written as product of marginal
densities fX(x) =

∏k
i=1 fi(xi) the uniqueness of the

following representation of g(·) is proven in (Sobol’
1969, Efron and Stein 1981)

g(x) =
k∑
r=0

∑
α:|α|=r

gα(xα) (2)

where
∑

α denotes the sum over all subsets of indices
of cardinality r and the functions gα(xα) are deter-
mined by

g0=

∫
X
g(x)fX(x)dx

gα(xα)=

∫
X∼α

(g(xα,x∼α)−
∑
β(α

gβ(xβ))f∼α(x∼α)dx∼α

(3)

where Xβ =
⊗

j∈β Xj and fβ(xβ) =
∏

j∈β fj(xj).
Note that g0 corresponds to the empty index set β = ∅
and is therefore part of the sum in (3). The gα(xα)
functions in (3) are orthogonal,∫
X
gα(xα)gβ(xβ)fX(x) dx = 0 for α 6= β. (4)

By orthogonality, the variance Var[Y ] of Y = g(X)
then becomes decomposed into

Var[Y ] =

∫
X

(g(x)− g0)2fX(x) dx

=

∫
X

 k∑
r=1

∑
|α|=r

gα(xα)

2

fX(x) dx (5)

=
k∑
r=1

∑
|α|=r

Var(α)

where

Var(α) =

∫
Xα

[gα(xα)]2 fα(xα) dxα. (6)

(5) and (6) show that the variance-decomposition of
g(·) is in one-to-one correspondence with the underly-
ing function decomposition. The sensitivity effect of
an index group α with respect to the interaction of or-
der |α| is then 1

Var[Y ]
Var(α). To consider all first and

higher-order interactions in the group, we can define a

main group effect Sα = 1
Var[Y ]

∑
β⊂αVar(β) and a to-

tal group effect Tα = 1
Var[Y ]

∑
β⊃αVar(β). In (Liu and

Owen 2006) these indicators are called subset and su-
perset importance. By (2), 1 = Sα + T∼α for all index
groups α. Comparing with the variance decomposi-
tion formula, we have Sα = 1

Var[Y ]
Var[E[Y |Xα]] and

Tα = 1
Var[Y ]

E[Var[Y |X∼α]].
Together with the variance decomposition formula,

the following result allows for the computation of
these sensitivity indicators.

Proposition 1 ((Sobol’ 1993)). Given an index group
α, its group effect satisfies

Sα ·Var[Y ] = E[g(Xα,X∼α)g(Xα,Z∼α)]−E[Y ]2 (7)

where Z∼α is an independent copy of X∼α.

For index groups with only one element, we define
the first order effect by Sj = S{j} and the total effect
by Tj =

∑
α3j Sα.

2.1 The Sobol’ method

The computation of one total effect from the func-
tional ANOVA decomposition derived above involves
2k−1 out of 2k functions, hence it is not effective.
A different approach is the Sobol’ method (Homma
and Saltelli 1996, Saltelli, Annoni, Azzini, Cam-
polongo, Ratto, and Tarantola 2010). It computes
first and total effects of factor j by constructing
three input samples of realizations x = (x1 . . . xk),
x′j = (x′1 . . . x

′
k) and x∗j = (x∗1 . . . x

∗
k). If ∗ denotes

a wild-card then the input realizations associated
with x∗j satisfy the following pattern matching rule
(x1, . . . , xj−1,∗, xj+1 . . . , xk) compared to the inputs
associated with x while those input realizations asso-
ciated with x′ satisfy the rule (∗, . . . ,∗, xj,∗, . . . ,∗).
Hence samples for X and X∗j are drawn from the
same distribution conditional to X∼j while those for
X and X ′j are drawn from the same distribution con-
ditional to Xj .

Theorem 2 (Sobol’ duality, (Saltelli, Annoni, Azzini,
Campolongo, Ratto, and Tarantola 2010)). Let X , X ′j
andX∗j be samples of size n× k constructed as above
and set Y = g(X), Y ′j = g(X ′j) and Y ∗j = g(X∗j ).
Then the Sobol’ estimators for first and total effects
are given by the following inner products

ŜSj =

〈
Y ′j , Y − Y ∗j

〉〈
Y − Ȳ , Y − Ȳ

〉 , (8)

T̂ Sj = 1−
〈
Y ∗j , Y − Y ′j

〉〈
Y − Ȳ , Y − Ȳ

〉 . (9)



Alternatively, the Jansen estimators are given by

ŜJj = 1− 1

2

〈
Y − Y ′j , Y − Y ′j

〉〈
Y − Ȳ , Y − Ȳ

〉 , (10)

T̂ Jj =
1

2

〈
Y − Y ∗j , Y − Y ∗j

〉〈
Y − Ȳ , Y − Ȳ

〉 . (11)

Here Ȳ = 1
n

∑n
i=1 yi is the output sample mean.

The Jansen estimator for total effets requires only
the X and X∗j samples. Unfortunately, in quasi
Monte-Carlo design this “all-fixed-but-one” condition
is to be avoided (Sobol’ 1979). Hence weakening
the condition of exact matches for an estimator from
given samples is likely to fail for a quasi Monte-Carlo
input design.

Surrogate modelling approaches include the fol-
lowing two ideas: One can construct a k-dimensional
metamodel and create Sobol’ samples with respect to
this meta-model. Alternatively, one may compute the
goodness-of-fit for an k− 1 dimensional model.

3 FACTOR FIXING

We have seen that the computation of total effects is
not straight-forward. We therefore have to review the
foundations. Hence let us formulate the underlying
assumption of the factor fixing model: An input pa-
rameter is deemed to be uninfluential if its direct in-
fluence on the output (measured by the first order ef-
fect) and its indirect influence via interactions on the
output (measured by higher order effects) are negligi-
ble. The sum of first and higher order effects is col-
lected in the total effect which is therefore the indica-
tor of choice in a factor fixing scenario. Hence if Y is
not influenced by Xj for all index sets β in the func-
tional ANOVA decompositions the variance contribu-
tions containing factor j vanish Var({j} ∪ β) = 0.
The unconditional random variable Y = Y |(Xj,X∼j)
(i.e. Y is a function of Xj and X∼j) is the same as
the conditional random variable Y |X∼j . But this also
implies that conditioning on Xj does not change the
distribution of Y . Hence, we want to use the following
description as the basis of our factor fixing considera-
tions: An input parameter is deemed to be uninfluen-
tial if it does not significantly change the conditional
output distribution given realisations of this input fac-
tors when compared to the unconditional output dis-
tribution. A measure which is able to capture this ef-
fect is Borgonovo δ (Borgonovo 2007),

δj =
1

2

∫
fj(x)

∫ ∣∣fY (y)− fY |Xj=x(y)
∣∣dy dx. (12)

For δ there exist estimators (Plischke, Borgonovo, and
Smith 2013) which use available observations. One

may consider computationally less demanding vari-
ants which replace the L1 norm of the PDFs with
Kolmogorov-Smirnov or Kuiper distances of CDFs,

βj =

∫
fj(x) sup

y

∣∣FY (y)− FY |Xj=x(y)
∣∣dx, (13)

κj =

∫
fj(x)

(
sup
y

(FY (y)− FY |Xj=x(y))−

inf
y

(FY (y)− FY |X=x(y))
)
dx. (14)

Instead of considering the whole output distribu-
tion and its conditionals, we may ask for influences
in the series of moments. Such an approach has been
suggested by (Ratto, Pagano, and Young 2009) for ap-
proximating δ. Hence we can consider the first order
effects of higher moments of the output,

S
(`)
j =

Var
[
E
[
(Y −E[Y ])`

∣∣Xj

]]
Var [(Y −E[Y ])`]

, (15)

which can be estimated from given data using meth-
ods presented in (Plischke 2010, Plischke 2012b). For
first order effects there are graphical methods avail-
able (Plischke 2012a) which are used for the analysis
the following example.

4 EXAMPLES

Let us have a look at the cusunoro curves intro-
duced in (Plischke 2012a) to visually represent the
parameter sensitivities. These curves capture the devi-
ation of the output from the mean value by sampling
u 7→ Var[Y ]−

1
2 E
[
Y −E[Y ]

∣∣Xi ≤ F−1Xi
(u)
]
. For the

curves associated with second central moments, the
sample y is replaced by (y− ȳ)2. The cusunoro curves
of the Ishigami model (Saltelli, Chan, and Scott 2000)
are shown in Figure 1. Especially the third parameter
which has null first order effect (left graph) shows up
at the second central moment (right graph). The fourth
parameter which is a dummy stays close to zero hence
conditioning on it will neither change the output Y
nor of its squared centralized value (Y −E[Y ])2, i.e.,
there is no functional depencency of X4 for both the
mean and the variance of Y .

All computational methods for computing first or-
der effects can be augmented to take advantage of
these higher moment effects by not only consider-
ing the model output directly, but also transforma-
tions of the model output, i.e. computing S(`)

j (Y ) =

Sj((Y −E[Y ])`).
Let us remind how first order effects are ob-

tained from given observations. From the func-
tional ANOVA decomposition, we have g{j}(xj) =
E[Y |Xj = xj] − E[Y ], hence knowing the nonpara-
metric regression curve ϕj(xj) = E[Y |Xj = xj] for
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Figure 1: CUSUNORO curves for first and second centralized moments, quasi Monte Carlo sample of size 512.

given realizations leads to the estimator

Ŝϕj =

∑n
i=1 (ϕ(xij)− ȳ)2∑n
i=1 (yi − ȳ)2

(16)

which is a nonlinear goodness-of-fit or coef-
ficient of determination (Doksum and Samarov
1995). Given a (finite) orthonormal function sys-
tem with respect to the inner product 〈ϕ,ψ〉j =∫
Xj ϕ(xj)ψ(xj)fXj(xj) dxj for approximating g{j}(·)

the associated regression coefficients can be used
directly without considering the model prediction
(as Parseval’s Theorem holds for the variance de-
composition). This is the basic idea behind polyno-
mial chaos approaches to global sensitivity analysis
(Lewandowski, Cooke, and Duintjer Tebbens 2007,
Sudret 2008).

Let us consider the effective algorithm for sensi-
tivity indices, using the cosine transformation (COSI)
(Plischke 2012b) which works on given observations
and the random balance design (RBD) (Plischke,
Tarantola, and Mara 2013) which needs a specially
constructed sample, but allows for small sample sizes.
Furthermore, we consider a δ estimator (Plischke and
Borgonovo 2013) and total effects using the Sobol’
method utilizing Prop. 1. Table 1 shows some simula-
tion results which fully support our findings from the
graphical interpretation. The COSI method is applied
to a quasi Monte Carlo sample of size n = 511, the
RBD method uses also n= 511 realizations which are
quasi-randomly permuted. The Sobol’ method uses a
sample size of n = 511. The implementation needs
two basic samples A and B so that A∗j = B′j hence
(k + 2) · n model evaluations are needed (k = 4).
Choosing a sample size where a Monte Carlo error of
1% can be expected, the δ estimation uses n= 214− 1

with M = 63 partition classes and an empirical cdf-
based approach. From this partition, Sj has also been
estimated using a correlation ratio estimator (Pearson
1905, Plischke 2012a).

All of the indicators S(2)
j , Tj and δj show that factor

j = 3 has a non-null effect on the output, however this
is not visible by first order effects where all estimates
yield comparable results. The computational cost for
arriving at this conclusion varies greatly.

These methods are less suited for producing a rank-
ing list of influential factors, note that total effects
ranks factors 1–2–3–4 while δ ranks 2–1–3–4 and
considering max`S

(`)
j as an indicator, the list reads 2–

3–1–4. But they all succeed in identifying the dummy
parameter j = 4.

One major advantage which has not been men-
tioned is that for the computation of total effects, in-
dependence of the marginal distributions of the in-
put is required. Although there are many efforts to
weaken this assumption (Xu and Gertner 2007, Li,
Rabitz, Yelvington, Oluwole, Bacon, and Kolb 2010,
Mara and Tarantola 2012) there has been no consen-
sus reached about what to do in dependent input sce-
narios. On the other hand, first order effects of higher
moments require just the marginal probability.

4.1 The Level E geosphere transport model

In many publications, the PSACOIN Level E code
(Nuclear Energy Agency 1989) is used both as a
benchmark of Monte Carlo simulations and as a
benchmark for sensitivity analysis methods. A review
is available in (Saltelli and Tarantola 2002).

Together with the COSI estimator the higher mo-
ments first order effects method is able to act as a post-
processor so that we can dust off a dataset, a quasi-



Table 1: Numerical experiments, Ishigami function
Factor COSI RBD Sobol’ Delta
j Sj S

(2)
j S

(3)
j S

(4)
j Sj S

(2)
j S

(3)
j Sj Tj Sj δj

1 0.3151 0.0647 0.1709 0.0484 0.3193 0.0644 0.1773 0.3167 0.5585 0.3111 0.2542
2 0.4434 0.0401 0.1186 0.0177 0.4521 0.0028 0.1474 0.4543 0.4577 0.4389 0.4311
3 0.0001 0.3180 0.0016 0.2342 0.0004 0.3005 0.0014 0.0094 0.2485 -0.0038 0.2092
4 0.0004 0.0172 0.0010 0.0229 0.0009 0.0198 0.0085 0 0 -0.0037 0.0147

Monte Carlo sample of size n = 8192 with k = 12
parameters and the associated output vector, from the
electronic shelf and analyse it.

Density-based sensitivity indicators as presented
in (12), (13) and (14) are invariant with respect to
monotonic transformation of the output. In order to
obtain similiar results using variance-based indica-
tors, we do not analyse the output Y directly, but
in form of the empirical CDF, U with ui:n(y) =
1
2n

(2#{yj < yi}+ #{yj = yi}+ 1).
Figure 2 shows the time dependent sensitivity re-

sults using the distribution based sensitivity indicators
and the first order effects of higher moments for the
empirical output CDF of the total dose. We see that
the Smirnov, Kuiper and Borgonovo sensitivity are of-
fering the same information content, however, present
a high level of numerical noise. In a factor fixing set-
ting this has to be avoided. Moreover, note that in the
lower graphics the third moment plot does not offer
additional information compared to the first moment
plot.

The parameter v1 (velocity in geosphere layer 1)
is rated important through all of the considered time
frame, while the importance of l1 (length of geospere
layer 1) has a local minimum at t = 105 (due to a
switch from the Iodine dominated regime to the Nep-
tunium decay chain). A closer look in the lower plots
of Figure 2 shows that the contributions from W (bio-
sphere steam flow rate) and v2 (velocity in geosphere
layer 2) are influencing the second moment, not the
first moment. The distribution based indicators may
be thought of as an overlay of these higher moment
plots. The second-moment importance ofW is in con-
trast to an analysis of the variance based sensitivity of
the raw data where it immediately shows up as impor-
tant in the first moment, however the overall expana-
tory power of the regression model on the raw data is
much smaller, see (Plischke 2010).

4.2 Conclusions

This note shows that in a factor fixing setting there are
other indicators than total effects available which have
a small computational fingerprint and offer additional
theoretical advantages.
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Figure 2: Time-dependent sensitivity indicators for the Level E model, 8192 QMC. Variance-based indicators are computed on ranks.
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