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Abstract

We consider correlation ratios as estimators for first order sensitivity indices
from given data. The computation is simplified by the introduction of the
cumulative sum of the normalised reordered output. Ideas for the estimation
using interpolation are also discussed.
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1. Introduction

In 1905 Karl Pearson [10] introduced the correlation ratio η̂2 (CR) as a mea-
sure for the non-linear influence of a random vector X on a random variable Y
especially for cases where linear regression produces only small R2 values. Kol-
mogorov [5] later identified the CR as an estimator of η2 = V[Y ]−1

V[E[Y |X]].
In recent years, this quotient has received lots of attention in sensitivity analysis
and keeps reappearing under many different names, e.g, first order sensitivity in-
dex, main effect, Sobol’ index [15]. With this growing interest in variance-based
sensitivity indicators we re-investigate the correlation ratio measure.

In the sensitivity analysis for model outputs, it is assumed that the out-
put Y is given by a computationally demanding numerical simulation model
Y = f(X), depending only on the input vector X which has a known (multi-
dimensional) probability distribution. For this paper, let us assume that the
given data includes both the information about the input uncertainties and
the input/output mapping so that we have no direct access to the simulation
model or the sampling procedure. Therefore, the proposed algorithm is a post-
processing method.

We develop a graphical representation of the data which is closely related
to the contribution to the sample mean (CSM) plot [1] and derive methods of
estimating the main effect η2 from that graphical representation. This answers
also the question of the relation between CSM and CR raised in [1].
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2. Setup

Let Y be a random variable and X be a random vector of dimension ℓ. The
sensitivity of Y on X can be expressed in the following index

η2 =
V[E[Y |X]]

V[Y ]
(1)

where V[Y ] denotes the variance of Y and E[Y |X] is the conditional expectation
of Y given X. The term V[E[Y |X]] = E[(E[Y ]−E[Y |X])2] is the variance of the
conditional expectation of Y given X.

The main effect η2 is the fraction of the variance of the output Y attributed
to a functional dependency on the input X . In this note we study the one-
dimensional case ℓ = 1.

In order to compute η2 we need to estimate E[Y |X], the nonparametric
regression curve for which there are many techniques available [22]. In sensitiv-
ity analysis, approaches that are discussed include piecewise constant functions
(Correlation Ratios), piecewise linear functions or splines, regression models
with orthogonal function spaces, e.g., harmonic functions (Effective Algorithm
for Sensitivity Indices, [11]), polynomials (High Dimensional Model Representa-
tion, [12]; Polynomial Chaos Expansion, [21]; [7]), and weighted moving averages
[4]. More regression-based techniques are studied in [19, 20].

Furthermore, many algorithms compute η2 directly, e.g., Fourier Amplitude
Sensitivity Test [3, 14], Sobol’s Method [16, 18], or Random Balance Design
[23], by using special sampling schemes for X. Hence these methods cannot
be used directly as estimators working on given data. Instead, an intermedi-
ate meta-model is created from the data (Gaussian Emulator, [9]), and then
the (emulated) output with respect to a specially designed sample can be eval-
uated at virtually no additional costs using this meta-model. The resulting
input/output sample is then processed by the associated sensitivity algorithm.

In this paper we investigate the estimation of η2 from given data without
a meta-model layer. For this approach, a sample of n realisations of X, x =
(xi)i=1,...,n is given. The corresponding realisations of Y , the output sample,
are given by y = (yi)i=1,...,n. For the CR method with piecewise constant
approximations we partition the input sample x into q disjoint subsample sets
Xr, r = 1, . . . , q. The term E[Y |X = x] used for evaluating (1) is then replaced
by E[Y |X ∈ Xr]. An estimate of the first order effect is obtained from

ȳ =
1

n

n
∑

j=1

yj, ȳr =
1

nr

∑

xj∈Xr

yj , nr =
∑

xj∈Xr

1,

η̂2 =

∑q
r=1 nr(ȳr − ȳ)2
∑n

j=1(yj − ȳ)2
.

(2)

Here the value ȳ denotes the mean, and the values ȳr are the local means
estimating E[Y |X ∈ Xr]. An alternative formulation of (2) is available using
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the the empirical local variances s2r = (nr − 1)−1
∑

xj∈Xr
(yj − ȳr)

2 which then
reads

η̂2 = 1−
∑q

r=1(nr − 1)s2r
∑n

j=1(yj − ȳ)2
. (3)

This follows from applying the sampled version of the variance decomposition
formula V[Y ] = E[V[Y |X]] + V[E[Y |X]],

n
∑

i=1

(yi − ȳ)2 =

n
∑

i=1

(y2i − ȳ2) =

q
∑

r=1

nr(ȳr − ȳ)2 +

q
∑

r=1

(nr − 1)s2r, (4)

to (2). In particular, rewriting
∑n

j=1(yj− ȳ)2 as
(

∑n
j=1 y

2
j

)

−nȳ2,
∑

xj∈Xr
(yj−

ȳr)
2 as

(

∑

xj∈Xr
y2j

)

− nr ȳ
2
r , and

∑q
r=1 nr(ȳ − ȳr)

2 as
(
∑q

r=1 nrȳ
2
r

)

− nȳ2 and

combining these results gives (4).
Unfortunately, formulas (2) and (3) give no clue on how to partition the

data to produce optimal results. Some authors [6] suggest to use a partition
size of q = ⌊√n⌋, the integer part of the square root of n, so that each of the
q subsamples contains roughly q realisations. It is not clear if this choice is
optimal.

3. Visualisation

One approach of visualising input/output data is to use a scatter-plot of
(X, Y ) data pairs and to draw the regression curve through the data. For
example, in Figure 1 we used 200 simulations partitioned into 15 subsamples
from the Ishigami test function [15]

Y = sinX1 + 7 sin2 X2 + 0.1X4
3 sinX1 (5)

where Xi ∼ U(−π, π) are uniformly distributed in [−π, π]. This function has
three input parameters, parameter 4 does not enter into the calculations and is
used here as a dummy parameter. The curve V[E[Y |X = x]] is approximated
by ȳr for x ∈ Xr and an estimate of η2 is then obtained by (2).

It is unclear if the chosen partition yields good results: The functional de-
pendence of y on x2 is resolved with the step-wise approximation of a period-two
function while the influence of x1 on y produces a not so impressive step-wise
approximation of a period-one function. Here, one might need finer intervals
to resolve fast changes in a better way. However, for this step more data are
needed. For properly identifying the zero influences of x3 and x4 we actually
should have used large intervals such that ȳr ≈ ȳ. While the influence on x4 is
by choice purely random, x3 gives a “structured zero” with large variation at
the boundaries. This is an example of a non-functional influence on the output.
A sensitivity measure which is able to detect such influences is discussed in
[2]. The next section also offers a visual method for the output variance being
influenced by input parameters.
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Figure 1: Visual inspection of the regression curves for the Ishigami function.

4. Cumulative sums of the normalised reordered output

Let us investigate a different method of presenting the data which more nat-
urally leads to a CR estimation and which also allows for an adaptive partition
layout. This method draws heavily from ideas of the contribution to the sample
mean (CSM) plot, however, circumvents some of the problems which CSM has
with non-positive data or with an output mean of zero.

Let π denote the permutation so that (xπ(i)) = (x(i)) is the order statistics
of the input of interest x, i.e., x(i) ≤ x(i+1) for all i = 1, 2, . . . , n−1. Now, using
the square root of the sum of squares syy =

∑n
i=1(yi − ȳ)2 as a scaling factor

we define (ỹi) = s
−1/2
yy (yπ(i) − ȳ) to be the normalised reordered output. Now

consider the scaled cumulative sums of ỹ

z(i) =
1√
n

i
∑

j=1

ỹj =
1

√
n · syy

i
∑

j=1

(

yπ(j) − ȳ
)

. (6)

The empirical cumulative distribution function of the input x, the ranks of the
input x, or the reordered input (x(i)) itself can now be plotted against the
cumulative sums z, see Figure 2. For a suitable abbreviation of this type of
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plot, we suggest the term CUSUNORO as a short-hand for “cumulative sums
of normalised reordered output”.

By convention, the empty sum yields 0 so that z(0) = 0 holds. Due to
the renormalisation process we also have z(n) = 0. Moreover, CUSUNORO is
shift- and scale-invariant. The factor n−1/2 adjusts the CUSUNORO curve for
different sample sizes. Although z is a vector, we prefer to write it as a function.
The rationale behind this choice will become clearer in Section 7.

Let us now study the relation between CSM [1] and the CUSUNORO z. For
this let us recall the definition of the contribution to the sample mean. Given
a set of paired data (xi, yi)i=1,...,n with yi ≥ 0 (replace yi with yi −mini yi, if
needed) and ȳ > 0 the CSM plot is the graph of

csm : {0, 1, . . . , n} → [0, 1], k 7→
∑

i≤k yπ(i)

nȳ
=

kȳk
nȳ

where ȳk = k−1
∑k

i=1 yπ(i) is the k-left mean and, again, π is the permuta-
tion associated with the order statistics of x. As y is non-negative, csm is
monotonously increasing, with csm(0) = 0 and csm(n) = 1. From

√

syy
n

z(k) =
1

n

∑

i≤k

(yπ(i) − ȳ) =
k

n
(ȳk − ȳ) = ȳ

(

csm(k)− k

n

)

(7)

it is clear to see that both CSM and CUSUNORO curves are different ways of
visualising the same information. The assumptions used for CSM are valid in
case of squared data, so let us consider the contribution to the sample variance
(CSV) [24],

csv : i 7→ v(i) = s−1
yy

i
∑

j=1

(

yπ(j) − ȳ
)2

(8)

which will allow us to estimate the conditional variances V[Y |Xr]. Figure 2
also shows the CSV for the Ishigami example. Note that parameter 3 heavily
influences the sample variance of the output, a fact which is not visible when
only considering first order effects.

5. Correlation ratio estimates

We will see that the CR is related to the gradients of the CUSUNORO
curves z (6). However, these curves are non-smooth and therefore estimates
of the gradients are hard to obtain which capture the “deterministic” trends
without over-emphasising the uncertainty in the data.

5.1. Partitions of size two

Given an index κ ∈ {1, . . . , n − 1} we consider a CR estimate based on a
two-interval partition q = 2 of (2) with n1 = κ and n2 = n− κ given by

η̂2κ =
1

syy

(

κ (ȳκ − ȳ)
2
+ (n− κ) (ȳ∼κ − ȳ)

2
)

(9)
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with the κ-left mean given by ȳκ = κ−1
∑

i≤κ yπ(i) and the κ-right mean given

by ȳ∼κ = (n − κ)−1
∑

i>κ yπ(i). Since (7) yields (nsyy)
1/2z(κ) = κ(ȳκ − ȳ) and

the definitions give κ(ȳκ − ȳ) = (n− κ)(ȳ − ȳ∼κ), (9) can be written using z,

η̂2κ=
1

syy

(

κ2(ȳκ − ȳ)2

κ
+
(n− κ)2(ȳ∼κ − ȳ)2

n− κ

)

= z(κ)2
(

n

κ
+

n

n− κ

)

. (10)

The estimate (10) will become large if |z| attains its global maximum in κ. But
if z(κ) = 0 then the associated estimate η̂2κ vanishes. Hence a CUSUNORO
curve with many (unstructured) zero-crossings is likely to be produced from a
non-influential input.

5.2. Arbitrary partitions

Consider the index list J = {j0 = 0, . . . , jr, . . . jq = n} and let the partiton
of X be given by the half-open intervals X1 = (−∞, x(jr)] Xr = (x(jr−1), x(jr)],
r = 2, . . . , q − 1, Xq = (x(jq−1),∞). Then, using (6) and (8) the terms in (2)
can be rewritten as

nr = jr − jr−1, ȳr − ȳ =

√
nsyy

nr
(z(jr)− z(jr−1)) ,

s2r =
syy

nr − 1

(

v(jr)− v(jr−1)− n
nr

(z(jr)− z(jr−1))
2
)

.

We obtain an estimate of the first order effect by forming a weighted sum of
squares of difference quotients of z,

η̂2J = s−1
yy

q
∑

r=1

nr(ȳr − ȳ)2 =

q
∑

r=1

n

nr
(z(jr)− z(jr−1))

2

=

q
∑

r=1

(z(jr)− z(jr−1))
2

jr/n− jr−1/n
=

q
∑

r=1

(jr/n− jr−1/n)

(

z(jr)− z(jr−1)
jr/n− jr−1/n

)2

. (11)

Hence, the curve z(·) of (6) is replaced with an interpolating polygonal line
and then the sum of the squared gradients weighted by the line segment length is
computed. Here j/n is the empirical cumulative distribution function F̂X(x(j)).

To see that (9) and (11) yield the same result, consider J = {0, j, n}. Then
by (11),

η̂2J =
j

n

(

z(j)− 0
j/n− 0

)2

+
n− j

n

(

0− z(j)
n/n− j/n

)2

= z(j)2
(

n

j
+

n

n− j

)

which gives (9).

5.3. An adaptive partition layout

When optimising the partition layout, the indices corresponding to minima
and maxima of z are promising candidates as then the difference quotients in
(11) are enlargened. As there is no need to fully reconstruct the CUSUNORO
curve, we suggest the following algorithm which selects the locations of local
extrema as suitable indices.
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Figure 2: Compactly visualising the sensitivity of the data.

1. Create a working copy w of the CUSUNORO z (6).

2. Find the global extrema of w. Add the indices j1 < j2 where these extrema
are attained to the list of indices J for the partition layout.

3. Subtract the piecewise linear trend obtained from the four points (j0, w0) =
(0, 0), (j1, wj1 ), (j2, wj2), (j3, wn) = (n, 0) from the (j, w) data, i.e., re-
place the vector (wj)j=1,...,n with

wj ← wj −











j
j1
wj1 , if j ≤ j1,

j−j1
j2−j1

(wj2 − wj1 ) + wj1 , if j1 < j ≤ j2,
n−j
n−j2

wj2 , if j2 < j.

(12)

4. Repeat from Step 2 on until a prescribed number of indices are obtained.

The estimate of η2 is computed by (11), after adding 0 and n to the list of indices
J for the partition layout. In Figure 2 the points obtained by this process are
marked. Clearly, more sophisticated exit-criteria may be developed by taking
the change of the η2 estimate into account when the partition list is updated.
A minimum-distance criterion between selected indices might also be of use.

6. Non-significant parameters

Let us discuss the detection of un-influential inputs. Using CSM curves,
random permutations of the output sample are suggested to derive suitable
confidence bands [1]. For polynomial fits, the Wilcoxon rank sum test for pre-
venting overfitting is suggested by [7] and in [25] an optimisation method for
selecting the optimal polynomial degrees is presented.

For correlation ratios we expect that all the conditional means ȳr are near
the global mean ȳ if the functional influence of X on Y is non-significant. In this
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situation, a test for the null hypothesis H0 : ȳr ≡ ȳ is known from ANOVA [8].
Its test statistics for comparing the conditional means against the global mean
is given by

F =
n− q

q − 1
·
∑q

r=1 nr(ȳr − ȳ)2
∑q

r=1(nr − 1)s2r
which is tested against an F-distribution with q−1 numerator degrees of freedom
and n− q denominator degrees of freedom. This F-test is asymptotically robust
so that it may also be used for non-normal distributions of Y . With (2) and (3)
the test statistics may be expressed in terms of η̂2,

F =
n− q

q − 1
· η̂2

1− η̂2
.

For a given test niveau α a critical value of η2 can be computed using the upper
α quantile of the F-distribution,

η2crit(α;n, q) =

(

n− q

q − 1
h(α) + 1

)−1

, h(α) = (F q−1
n−q (1− α))−1. (13)

Estimates below this threshold are non-significant. From the example discussed
above we take n = 200 and q = 15. Using α = 5% gives a critical value of
η2crit = 0.1167 which is not very convincing. However, reducing the number of
partitions lowers this threshold value.

From (13) with q = 2 intervals and (10) we obtain an elliptical bound for
unimportant factors given by

z(k)2 ≤ k(n− k)

n2
η2crit(α;n, 2) =

k(n− k)

n2((n− 2)h(α) + 1)
, k = 1, . . . , n. (14)

For q = 2 the upper α quantile satisfies F 1
n−2(1 − α) = t2n−2(1 − α/2), yielding

a Student t-distribution. If n is large then the quantile of the t-distribution is
approximated by the quantile of the normal distribution Φ. Using this approx-
imation, (14) then reads

|z(k)| ≤ 1

n

√

k(n− k)

(n− 2)Φ(1− α/2)−2 + 1
, k = 1, . . . , n,

which can be even further simplified when n≫ 1,

|z(k)| ≤ Φ(1− α/2)
1

n

√

k(n− k)

n
, k = 1, . . . , n. (15)

A niveau of α = 1
2n

−1/2 is suggested to compensate the error of the Monte-
Carlo sampling. Note that α has to be adapted if quasi-Monte-Carlo sampling
schemes like Sobol’s LPτ sequences [17] are used.

In Figure 2 the ellipsoidal bound given by (15) shows that parameters x3

and x4 are insignificant and that parameter x2 also hardly leaves this range.
However, it oscillates between the lower and the upper bound. Such an effect
cannot be dealt with when using a two-interval partition approach and therefore
cannot be detected by the suggested significance ellipsis.
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Figure 3: Parameter 1: Expected value is 0.3139
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Figure 4: Parameter 2: Expected value is 0.4424

7. Estimators based upon smooth interpolation curves

The summation in (11) can easily be identified as a Riemannian sum, hence

it may also be written formally as an integral, η̂2 =
∫ 1

0
(∇z(nt))2 dt. We can use

an interpolating function through the index points of a partition list like the
one derived in Subsection 5.3. If this function is a piecewise polynomial then
differentiation and integration can be performed analytically which may give
better results in case of a convex z function.

Fitting an interpolation curve through the CUSUNORO curve seems to be a
much simpler (and more robust) task than to create a regression curve through
the scatter-plot.

We study if the quality of the estimates improves with the following setups.
Estimators using

• a piecewise linear approximation (correlation ratios, CR),
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Figure 5: Parameter 3: Expected value is 0
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• a cubic spline approximation (SPLINE), and

• a piecewise cubic Hermitian polynomial (PCHIP)

are applied to an index set composed of

• equally spaced indices,

• scaled Chebychev points (-Cheb), and

• an optimised partition layout (-Opt).

Here, Chebychev interpolation points are used to keep the polynomial inter-
polation error at the boundaries small. The polynomial regression models are
computed by MatLab. As an example we again use the Ishigami function (5).

Thirty runs of sample size n = 5000 were simulated with simple random
sampling. For this ample size the Monte-Carlo integration error is of order
±2% so that the differences are mostly due to the suggested CR estimators.
The box-and-whiskers plots in Figures 3–5 show the extreme values and the
first and third quartiles of the estimates. Some plots have been truncated to
keep the same scale.

For small partition sizes the use of Chebychev spacing or the optimised spac-
ing is advantageous to equidistant spacing, however spline interpolation is not
suited for the optimised spacing and introduces overshoots. Parameter 2 with
its four inner extrema (see Fig. 2) cannot be treated with very small partition
sizes, see Fig. 4. For parameter 3 with its zero expectation, the interpolation
curves only introduce unwanted effects. Moreover, a slight bias in the sizes of
the partition is visible. For a large partition size, nearly all suggested methods
produce comparable results, see the right plot of Fig. 3.

8. Comparison of methods

In this section we compare the proposed method with established ones. To
distinguish this new method derived from the CUSUNORO curve we will call
it CRA (correlation ratio using an adaptive partition layout). Again using the
Ishigami function (5) with a fourth dummy parameter, let us consider for the
same set of simple random samples

• CRA (using up to four pairs of inner points), with and without bias cor-
rection [7, 5.2.1: Adjusted R2],

• CRA with Hermitian piecewise cubic splines,

• CR with rule of thumb “partition size is the square root of sample size”,

• EASI (with maximum harmonic 8) [11], and

• RS-HDMR (with polynomial degree 6) [12, 25].
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Furthermore, we consider the following method using designed samples, but
with the same sample sizes

• RBD (with maximum harmonic 8) [23].

Figures 6 to 9 show box-and-whiskers plots of the results from 50 repetitions of
different sample sizes for parameters 1 to 4. The outlier detection uses 3 times
the interquartile range.

The correlation ratio for an adaptive partition layout estimates are biased
for small sample sizes, while the bias-adjusted version performs slightly better,
however still exposes a visible bias. We also see that the polyline approximation
using only a few inner interpolation points fails to capture details, while the
cubic approximation using the same set of points overestimates the first order
effect.

The bias can also be observed for the other methods of estimating first
order effects. Nearly all methods show a bias which is most prominent for the
zero value of parameters 3 and 4 which emphasises the need for detecting non-
influential inputs as presented in Section 6. Both EASI and RDB use harmonic
functions for a regression model so they are well suited for the Ishigami function.
Also, the rule-of-thumb CR has comparable properties to other methods. For the
polynomial regression with HDMR we used the analytical marginal cumulative
distribution functions to transform the inputs to [0, 1]k such that a basis of
shifted Legendre polynomials could be used.

9. Summary and Conclusions

We have developed a new graphical representation named CUSUNORO plot
to compactly visualise sensitivity properties. This curve leads naturally to an
adaptive partition layout for CR estimation by following the idea of “maximis-
ing the gradients.” Other methods of estimating the variance-based sensitivity
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Figure 7: Convergence of correlation ratio estimates for parameter 2
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Figure 9: Convergence of correlation ratio estimates for parameter 4
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index (1) which are based on interpolation of this plot rather than a non-linear
regression of a scatter-plot are also immediate consequences of the graphical rep-
resentation. CR methods are competitive with advanced methods of computing
variance-based first order sensitivity indices. Small partitions with cleverly cho-
sen subsamples are performing as good as equi-distant partition layouts with
many subsamples. There is still room for improvements of CR methods and
adaptive partition layout strategies. For example, alternatively an empirical
estimator of 1− V[Y ]−1

E[V[Y |X]] might be used,

η̂2ECV = 1− n− 1

syy

q
∑

r=1

nr

n
s2r

= 1−
q

∑

r=1

n− 1

nr − 1

(nr

n
(v(jr)− v(jr−1))− (z(jr)− z(jr−1))

2
)

.

A different layout strategy could combine the significance test with bisecting
partition intervals. Further work is also needed to jugde the quality of the
different available debiasing techniques which might also be of interest for non-
CR methods.

Instead of testing for the influence of a single input parameter, one may
also be interested in the combined effect of two or more parameters. For these
higher order effects, the idea of combining the CUSUNORO plot with space-
filling curves looks promising [13]. Here, more practical experience has to be
gathered.

Correlation ratios are a direct method of estimating first order effects. They
can be combined with a sampling plan, or a meta-model approach which may
increase the quality of the estimates.
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