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ABSTRACT: We show that variance-based, density-based, expected-value of information based sensitivity
measures rest on the same rationale, namely, information updating. We prove general results concerning their
properties. We then show that they can all be estimated by the same design. The design is suitable in the presence
of correlated inputs and makes the estimation cost independent of the number of model inputs and depending
solely on the sample size. Results of numerical experiments are proposed.

1 INTRODUCTION

Reliability analysts use complex models implemented
in computer programs frequently to support relia-
bility assessment problems. Due to their complex-
ity, the models run the risk of becoming black
boxes to decision-makers. This is why a process
starts of finding out what it was about the inputs
that made the outputs come out as they did (Lit-
tle 1970, p. B469). Sensitivity analysis methods al-
low us to carry out this process. Under uncertainty,
global methods are the appropriate sensitivity tech-
niques to be used. However, computational bur-
den might hinder a fully-fledged global sensitivity
analysis. The designs proposed by (Plischke, Bor-
gonovo, & Smith 2013) and (Strong & Oakley 2012)
obtain expected-value-of-information-based (hence-
forth, EVPI-based), variance- and density-based sen-
sitivity measures at an estimation cost equal to the
Monte Carlo sample size.

In this work, we argue that a common rationale
binds global sensitivity measures. It is shown that they
can be seen as operators between the conditional and
unconditional model output distributions. We analyze
the properties that make theses shift measures dis-
tances or divergences between distributions. In par-
ticular, EVPI-based measures share the properties of
distances between distributions.

We then prove a general consistency result for es-
timating global measures by a single loop design,
which holds also in the presence of correlated model
inputs.

We perform numerical test cases focusing on the
case of correlated factors. New analytical results
for variance-based, EVPI-based, density-based and
distribution-based sensitivity measures are proposed.

The remainder of the paper is largely taken from
(Borgonovo, Hazen, & Plischke 2013).

2 PROBABILISTIC SENSITIVITY ANALYSIS:
REVIEW AND FRAMEWORK

The family of probabilistic sensitivity methods anal-
ysed in this work comprises variance-based (Wag-
ner 1995), distribution-based (Baucells & Borgonovo
2013) and expected value of information (EVI)-based
(Felli & Hazen 1998) sensitivity measures.

The computer code quantifies A decision-support
variables Ya, a = 1,2, . . . ,A:

g : x 7→ y = g(x), X → RA (1)

X ⊂ Rn is the model input space.
EVPI-based sensitivity measures are defined as fol-

lows:

εi = E
[

max
a=1,2,...,A

{E[Ya|Xi]}
]
− max

a=1,2,...,A
{E[Ya]} (2)



E[maxa=1,2,...,A{E[Ya|Xi]}] is called prior expected
value of action posterior to perfect information (Pratt,
Raiffa, & Schlaifer 1995, p. 252) .

The model input associated with the highest value
of εi is the one on which it is worth more to spend
when gathering new information on the model inputs.
(Pörn 1997) proposes EVPI as a probabilistic sensitiv-
ity measure in reliability analysis. See (Oakley 2009)
and (Oakley, Brennan, Tappenden, & Chilcott 2010)
for recent reviews.

Variance-based measures are defined indepen-
dently in (Iman & Hora 1990), (Sobol´ 1993) and
(Wagner 1995). Following (Wagner 1995), we write

νi = V[Y ]−E{V[Y |Xi]} = V{E[Y |Xi]} (3)

and

τi = E{V[Y |X∼i]} (4)

where Y is the (unique) output of interest, X∼i de-
notes that all factors are fixed but Xi. Their normal-
ized versions,

η2
i =

νi
V[Y ]

(5)

and

ηTi =
τi

V[Y ]
(6)

have been the subject of numerous studies and they
have replaced the un-normalized version in the prac-
tice. η2

i is (Pearson 1905)’s correlation ratio. To over-
come limitations in variance-based sensitivity indica-
tors the δ importance indicator measures a distance
between unconditional and conditional output densi-
ties and is defined as (Borgonovo 2007):

δi =
1

2
E
[∫

ΩY

|fY (y)− fY |Xi
(y)|dy

]

=
1

2

∫∫
ΩXi
×ΩY

|fY (y)fXi
(xi)− fY,Xi

(y,xi)|dydxi.

(7)

By (7), δi = 0 if and only if Y is independent of
Xi(Plischke & Borgonovo 2013). That is, δi = 0 en-
sures that Y is independent of Xi. The βKS impor-
tance measure is based on the Kolmogorov-Smirnov
distance and is defined as:

βKSi = E
[
sup
y
{
∣∣FY (y)− FY |Xi

(y)
∣∣}] . (8)

δi and βKSi possess the monotonic invariance prop-
erty, i.e., their value stays invariant under monotonic
transformations of inputs and outputs.

3 A COMMON RATIONALE

The common rationale rests on considering the inner
statistic as an operator between the unconditional and
any conditional model output distribution:

γi(xi) = ζ(PY ,PY |Xi=xi) (9)

γi(xi) : Xi → R depends on the realized value of Xi.
(Borgonovo, Hazen, & Plischke 2013) propose the
following definitions:

Definition 1 We call

ξi = E[γi(Xi)] = E[ζ(PY ,PY |Xi
)] (10)

the global sensitivity measure of Xi based on opera-
tor ζ(·, ·).

Definition 2 We call γi(xi) the inner statistic of ξi.

ξi takes the decision-maker’s degree of belief about
Xi = xi into account. As in (Borgonovo, Hazen, &
Plischke 2013), consider the following example:

Example 1 Setting ζ(PY,PY|Xi=xi) to either

max
a=1,2,...,A

{E[Ya|Xi]} − max
a=1,2,...,A

{EX[Ya]} (11)

or

E[(Y −E[Y ])2|Xi = xi]]−V[Y |Xi = xi] (12)

or

1

2

∫
Y
|fY (y)− fY |Xi=xi(y)|dy (13)

or

sup
y

∣∣F (y)− FY |Xi=xi(y)
∣∣ (14)

we obtain the inner statistics of εi, νi, δi, and βi re-
spectively.

The following two Lemmas are proven in (Bor-
gonovo, Hazen, & Plischke 2013).

Lemma 1 The conditions
a) γi(xi) ≥ 0 and
b) γi(xi) = 0 for all values of Xi if Y is stochastically
independent of Xi

are satisfied if ζ(·, ·) is a divergence between proba-
bility distributions.

Lemma 2 Under the hypotheses of Lemma 1, γi(xi)
is independent of the order with which PX and
PY |Xi=xi are considered if ζ(·, ·) is a distance between
probability distributions.



Then, it is possible to see that εi is then also a dis-
tance between distributions. However, the inner statis-
tic of variance-based sensitivity measures can be neg-
ative and therefore it is not a distance nor a divergence
between probability distributions. Some authors have
then modified the definition of the inner statistic of
variance-based sensitivity measures to make it posi-
tive (Ruan, Lu, & Tian 2012). However, the modifica-
tion removes the neat association between variance-
decomposition and input-output mapping and con-
flicts with the original intuition of variance-based sen-
sitivity measures.

Finally, it is possible to prove that a sensitivity mea-
sure is transformation invariant if and only if the inner
statistic is.

4 ESTIMATION: A UNIFIED FRAMEWORK

We can use the common rationale discussed in Sec-
tion 3 to come to a unified estimation design. The in-
tuition is scatterplot smoothing (Figure 1).

Formally, we define:

Definition 3 Given a global sensitivity measure
ξi based on inner statistic γi(xi), a sample
[X Y]N×(n+A), a partition of Xi into M classes and
the corresponding scatterplot partitioning, we call the
quantity

ξ̂i(M,N) =
M∑
m=1

γ̂i(Cmi )P̂Xi
(Cmi ) (15)

where

γ̂i(Cmi ) = γi(P̂Y, P̂Y|Cmi ) (16)

class-conditional estimator of ξi.

Example 2 Combining eqs. (11), (12), (14), (16),
and (15) we obtain, respectively:
1) (Strong & Oakley 2012)’s estimator of EVPI-based
sensitivity measures

ε̂i =
M∑
m=1

nm
N
· max
a=1,2,...,A

(µ̂am)− max
a=1,2,...,A

(µ̂a) (17)

where µ̂am =
1

nm

∑
x∈Cmi

ga(x) and µ̂a =
1

N

∑
x∈Ωi

ga(x);

2) Pearson’s estimator of η2
i (Pearson 1905, Plischke

2012) (A = 1)

η̂2
i =

(
1

N − 1

n∑
i=1

(g(xi)− µ̂)2

)−1 M∑
m=1

nm
N
· (µ̂m − µ̂)2

(18)

and
3) (Baucells & Borgonovo 2013)’s estimator of βKSi

(A = 1)

β̂KSi =
M∑
m=1

max
xi∈Cmi

∣∣∣F̂Y (g(xi))− F̂Y |Cmi (g(xi))
∣∣∣ · nm

N

(19)

Here F̂Y and F̂Y |Cmi are empirical cumulative distri-
bution functions.

where γ̂i(Cmi ) replaces the point condition Xi = xi
with the class condition Xi ∈ Cmi , where Cmi is an ele-
ment of the partition of the Xi-axis of the scatterplot.

(Borgonovo, Hazen, & Plischke 2013) introduce
the notion of partition refinement strategy as follows:

Definition 4 Let Pj(N) = {Cmj

i ; m = 1, . . . ,Mj(N)}
denote a sequence of partitions. A partition refine-
ment strategy is any sequence of partitions such that,
with increasing sample size N , for each xi from the
support ofXi there exists amj among theM(N) par-
titions such that xi ∈ C

mj

i and
⋂
N C

mj(N)

i = {xi}.

They prove that a partition refinement strategy ex-
ists, Xi being either discrete, continuous or mixed.
Then, they come to the following theorem.

Theorem 1 Given the estimators in Definition 3, a
family of partitions and a refinement strategy as in
Definition 4, then

lim
N→∞

Mj(N)∑
m=1

ξ̂i(Mj(N),N) = Ei[γi(Xi)] = ξi. (20)

5 RESULTS FOR CORRELATED FACTORS

The presence of correlations among factors is, tradi-
tionally, a challenge in probabilistic sensitivity analy-
sis. We consider the following example (Borgonovo,
Hazen, & Plischke 2013).

Example 3 Let gi(Xi) = φiXi with φi ∈ R,
i = 1,2, . . . , n, X ∼ N (µ,Σ), normally dis-
tributed with expected values µ = (µ1, µ2, . . . , µn),
(µi = E[Xi]) and non-degenerate covariance matrix
Σ = [ σi,` i, ` = 1,2, . . . , n ] (det Σ 6= 0).Then,

η2
i = V−1[Y ]

n∑
`=1

φ`φiσi,`.

If the decision-problem is to select the maximum
between Y and 0 then

εi =
∞∫
x∗i

fXi
(s)

(
sφi +

n∑
`=1,`6=i

φ`

(
µ` +(s−µi)

σi,`
σi,i

))
ds

−E[Y ]
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Figure 1: Intuition concerning scatterplot smoothing.

where

x∗i =

(
n∑

`=1,` 6=i

µi
σi,`φ`
σi,iφi

−
n∑

`=1,` 6=i

µ`
φ`
φi

)
·

(
n∑
`=1

σi,`φ`
σi,iφi

)−1

and fXi
(s) is the normal density.

Analytical expressions for δi and βi can be found
in (Borgonovo, Hazen, & Plischke 2013). Analytical
expressions for δi and βi can be found in (Borgonovo,
Hazen, & Plischke 2013).

We now consider the model

Y = φ ·X X ∼ N (µ,Σ)

Σ =


1 .5 . . . .5

.5
. . . . . . ...

... . . . . . . .5
.5 . . . .5 1

 (21)

with n= 21, φ1 = · · ·= φ7 =−4, φ8 = · · ·= φ14 = 2,
φ15 = · · · = φ21 = 1, µ ≡ 0. The analytical values of
the sensitivity measures are given in Table 1.

Figure 2 confirms that the estimators of all sensi-
tivity measures approximate the respective analytical
values (dashed lines) as N increases [Theorem 1 ].

Table 1: Analytical values for the importance measures of exam-
ple (21).

Factor group 1–7 8–14 15–21
Exp. value of partial info. 0.265 0.002 0.001

Correlation ratio 0.309 0.064 0.092
Kolmogorov Smirnov 0.205 0.083 0.101
L1 density distance 0.212 0.084 0.102

6 BUILDING YOUR OWN IMPORTANCE
MEASURES

Nonparametric tests on independent samples in-
volve the Wilcoxon/Mann-Whitney, the Kolmogorov-
Smirnov and the Wald-Wolfowitz tests. Item 3 of Ex-
ample 2 shows the use of Kolmogorov-Smirnov as a
distance measure. To show the flexibility of our pro-
posed approach we propose an importance measure
which is not based on the notion of distance but de-
rived from the Wald-Wolfowitz test (Wald & Wol-
fowitz 1940). Clearly, as we deal with sub-sampling
the default setup of this test has to be modified. Un-
der the null hypothesis that the subset selection of
nm out of n samples is purely random (default setup:
nm out of the pooled sample of size n+ nm) we can
derive formulas for the expected number of runs in
the sample. The Wald-Wolfowitz test proceeds as fol-
lows: The sample consisting of pairs (x, y) is sorted
according to y. All nm realizations with x·,i ∈ Cm,i
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Figure 2: Convergence of different partition based sensitivity indicators.

are marked. Then the total number of runs Rm,i of
unmarked/marked realizations in the ordered sample
is determined.

The test statistics for a given interval Cm,i is com-
puted by

Wm,i =
Rm,i − µ√

(µ−1)(µ−2)
n−1

(22)

with µ = 2 (n−nm)nm

n
+ 1. It is asymptotically normal

under the null hypothesis.
We can use Wm,i as an inner statistic γ̂i(Cm,i) =

Wm,i for an importance measure based upon the
Wald-Wolfowitz runs test. A value deviating from 0
indicates an important contribution in the sense that
the number of runs in the subsamples differ from their
expected values. This usage is in compliance with
Definition 3.

7 CONCLUSIONS

This work has demonstrated that variance-based,
density-, distribution- and EVPI based global sensi-
tivity measures rest on a common rationale. The ra-
tionale, this, comprises the most important classes of
probabilistic sensitivity measures. The common ratio-
nale allows us to explore the properties of sensitivity
measures when regarded as operators among proba-
bility distributions. The fact that they are joined by a
common rationale also shows that they can all be esti-
mated through a common design. Traditionally a dou-
ble loop approach is assumed. However, it has been
discussed here a single loop approach based on class

conditioning if the random model input is continuous
and on the support of the model input itself, if the
model input is discrete. New analytical findings con-
cerning the value of all expected value of information-
based and distribution-based sensitivity measures in
the presence of correlations are obtained. We perform
numerical experiments in the presence of correlated
inputs, that demonstrate the consistency of the esti-
mators.
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