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Abstract

_ , o _ 2 General definitions and problem motivation
In this note we use Liapunov and Riccati equations to derive

bounds for the transient behaviour of a time-invariant lined@hroughout this note it is assumed thate K"*", K = R or

system. A concept of "acceptable stability behaviour” is irc, K™ is provided with the standard Euclidean nojfm|| and

troduced and a sufficient condition for achieving it by timeK™*" with the spectral norm which we also denote |py||.

varying linear state feedback is derived. We also briefly discuBle spectrum ofA is denoted by (A) and the largest (resp.

the robustness of acceptable stability behaviour and formulateallest) singular value of by 5(A) (resp. a(A)).

a corresponding robust control problem. Letb(A) = max{Re \; A € o(A)} be the spectral bound of
A, then we know that for everg > b(A), there exists ai/

1 Introduction (depending orf), such that

At Bt
Trajectories of a stable linear system may temporarily move le™ll < Me™, 0. @)

a long way from the origin before approaching itias»> oo. As a consequence thgowth rateof (e),5o ast — oo is
Such a transient behaviour is often exhibited by highly nog; o, by the spectral bound =

normal systems. From a practical point of view, if the “stat

excursions” are very large the stable system actually behaves .
like an unstable one. Moreover, if the system is obtained by w(d) = tll)I&

linearization of a nonlinear system around an equilibrium poin}1 | boundl( A he | behavi ¢
the large transients of the linear part may incite the nonlinea-rri—e spectral bound(4) governs the long term behaviour o

ties to drive the system permanently far away from the equiliﬂlehsyStem: = Ai” ’ wh;;eai_|tshtran_3|enthbe.hawou|r. IS rfﬂected
rium. In such cases the practical instability of the equilibriurlrrl]t € various vaiues which satisfy the inequality (1).

point is reflected by an extreme thinness of its domain of abefinition 1. Given any3 > b(A) the transient boundof
traction. (eA*)>0 for the exponential ratg is defined to be

In fluid dynamics the interaction between large transient mo-

tions of the linear part and nonlinearities has recently been put Ma(A) = inf{M € R; V¢ > 0: |le*’|| < Me'}.  (2)
forward as an explanation for experimental results where th . .

are observed ins?abilities of flowz at Reynolds numbers Wh@fe setMp(4) = oo if there is noM such that (1) holds.
differ significantly from those obtained via spectral analysis, ) . .
see for example [8]. In' the following we give an example of a stable !lnear 'system
The union of all the spectia(A + A) where||A|| < 4 is called Wlth_large transient motions an_d_ show thgt the |nclu_5|_on qf a
the spectral value set at level The relationship between thesdonlinear term results in an equilibrium point at the origin with
sets and transient behaviour has been considered in [3] &¢I region of asymptotic stability.

an excellent review including some historical remarks can Bgample 2. Supposed is a stable, real, upper triangular matrix,
found in [9]. [ -06 ¢
We first introduce the notion of a transient bound for a given { |
exponential rate and the interplay between the bound and #in by

rate is discussed. Various estimates for the transient bound " e 25c(e” % — o)
are obtained via differential and algebraic Liapunov equations. e = [ 0 et

The relationship between the transient bound, stability radii,

spectral valug §<_ats an.d algepraic Riccati equations is explo,gq:é{"e 1 shows(||e”*||)¢=o for various values of: using the spec-
and the possibility of improving the bound by state feedbaglg| norm. One sees that the transient boudgl(A) increases as

In[|e]| _

b(A).

} , with ¢ € R. Then its matrix exponential is
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Figure 1: The functiorje®- || for variousc 1

Figure 3: Phase portrait of (3)

increases and the time at which the maximum is achieved is almost
constant. The trajectories in the phase plane from the initial poiBt Transient bounds
(0,1) are shown in the figures below fer = 8 and 24, for which
My (A) = 3.76 and11.2 respectively. The large transient motions arét is clear that
clearly visible. The thin straight lines in the two pictures of Figure
b(A)<B<p = Mg(A) = Mg(A).

2 ‘ ‘ ‘ ‘ jr— and if 3 > b(A), then necessarilyfz(A) < co. However it

1t \ — is possible thafl/g(A) — oo asg — b(A4). This will happen
Ty o=t if and only if M 4)(A) = oo or, equivalently, if and only if

ap e 1 the Jordan canonical form of contains blocks of order 2

- ‘ ‘ ‘ ‘ ‘ ‘ corresponding to eigenvaluasc o(A) with Re A = b(A).

oo n e Obviously 3 > b(A) if and only if b(Ag) < 0 for Az =

A — @I, and it follows from (2), that

2 T

e ] Mg(A) = Mo(Ag), B =b(A). 4)
g — &\ We now turn to the problem of determinidgz(A) for given

g e ] A € K™ andB > b(A). Sincelim; .., ||e*#t| = 0 there

- ‘ existstg > 0 (not necessarily unique) such that

-2 0 2 4 6 8 10 12

& et || = My(A)ePts.

Figure 2: Trajectories for = 8,24 It follows that if A is stable and € (b(A), 0), then

t At At t
2 represent contracting eigenmotions of the system. Note that thes]gB(A)eB 7= lleell < Mo(A4) = [le™] < Mﬂ(A)eg ’
lines get closer together asincreases; i.e. the eigenvectors becomand hence
more aligned whilst the eigenvalues remain apart. Bt _pt
Now consider the nonlinear system Mo(A)e™"" < Mp(A) < Mo(A)e™ 7. ®)
Estimates forM/3(A) can be obtained via the solution of dif-
3) ferential Liapunov inequalities.

Proposition 3. Supposed > b(A) andAg = A — §I,,. Given

This system has a stable equilibrium point a@t) and an unstable an H_erm|t|an mgt_nxPo € Hy, P? = 0 then 'fpﬁ(') is the
one at(0.6,0). The phase-portrait is shown in Figure 3 for= 8. Solution of the initial value problem

Bgcause of the large t_ransie_nt motions of the Iineg_rizc_ed system one P_ A};P — PAs =0, P(0)=P°, (6)
might expect a very thin region of asymptotic stability in the region
{(z1,z2);21 < 0.6, z2 > 0}. This is clearly shown in Figure 3 we have
where one should note that the scale in thedirection is five times

smaller than that in the; direction. o

1 = z1(z1 — 0.6) + cx2, To = —To.

sup a(Ps(t))/a(P°) > Mg(A)>.
For the special casé& ® = I,,, the solution of the equation in
(6) satisfiessup, -, 7(Ps(t)) = Ma(A)>.



If for some@ € H,,, @ = 0 Proposition 6. SupposeA is stable and the Hermitian pairs
. . . _ bo (Pl,Ql), (PQ,QQ) Satlsfy(9) with P, = 0, P, = 0, H(PQ) <
P-AsP—PAs=Q=0, PO)=F #(PL), Q1 = 0, Q1 + Q2 = 0. Then

then

¢ Mo(A)S\/K(P2+P1)<\/KJ(P1)
Py(t) = eA;‘,tPoeAﬁt+/ AR (E=9) QeAa(t=9) 4.
0 In [4] it was noted that the choidB, = \I,, (with an apropriate
Soa(Ps(t)) will be uniformly bounded fot > 0if 5 > b(A) scale factor\) reduces the condition number P, + \I,,) <
and the smallest bound is obtained €@r= 0. This suggests x(P;). Namely, suppose that A) > 0 and@; > 0, then for
that we should have restricted our considerations to the equafity= AI,,, A > 0, we haveQ; + Q2 = Q1 — A(A+ A*). Then
in (6). We have chosen not to do so because this precludessimeex(P;) = 1 andx(Py) > 1if v(A) > 0, (P1 = «ol, is not
possibility of constant solutions. Indeed sineedz) € C_, a feasable solution of (9)), the estimate fl (A) is always
there exists & ° = 0, such that (6) has the constant solutioimproved provided); — A(A + A*) > 0. Hence one should
Pg(t) = P3 = P°. Thenif Pg > 0 we obtain the bound choose) to be the smallest positive eigenvalue of the matrix
_ pencil@: — A(A+ A*). This make%); — A\(A + A*) singular.
7(Ps)/a(Ps) > Mp(A)®. ™ The following( propos)ition shows that an éptin’@lazlways ex-

So an interesting question is: How should one choBse ists.
Xn i i i
K#=™ with (4, C) observable, such that for the unique SOIUtIOBroposition 7. Let A € C™*™ be a stable matrix. Then there

Ppg of the Liapunov equation exists a positive semi-definite Hermitian matgix= C*C with
A4Ps + P3Ag +C*C' =0 (8) rankC < nand(A,C) observable such that the solutiéghof
_ _ o ~(9) has a minimal condition numbes( ) amongst all Hermi-
the expressiong(Ps)/c(Ps) is minimized.  The ratio tjan p satisfyingA*P + PA < 0.
7 (Pg)/a(Pg) is thecondition numbeof Pg, x(Ps) and in [6] -

the following result was proved. Estimates for the transient bound can also be obtained from

Lemma4. Let3 > b(A). If P; = 0 and@Q = C*C »= 0 Kreiss's theorem [10]. Now it may be that we are only in-

satisfy(8), then terested in the transient behaviour in certain directions, e.qg. if
» a perturbation is known to affect only certain coordinates of
|49t < y/K(Pg)etAmax (P, @I ¢ >, the state vector. We take this into account by introducing

_ structure matrice§B;,C;) € K™ x K7™ and consider
where Amax (P,Bv Q) = InaXgz+£0 <ZC, Pﬁx> <£U, Qx>_1 is the Mo(A; Bi, Cl) = SUD;>o ||01€AtBl || For this extension
maximal eigenvalue of the matrix pen&il) — Ps. Kreiss's theorem takes the form

If Ag+ A} = A+ A* — 201, < 0, then we may choosg; = Theorem 8. Supposed € K"*" is a stable matrix and
I,, and hence obtain the optimal estimateP;) = x(I,,) = (B1,C1) € K™ x K9*™ are given structure matrices. Define
Mg(A) = 1. Infactv(A) = Lhnax (A + A7) is called the R(A; By, C1) == supg, .~o(Re 5) [|C1(s] — A)~ By ]|. Then
log-normof A [7], and ifv(A) < 0, we have

g (7], andifv(4) < 0. we hav R(A; By, C1) < Mo(A; B, C1) < (en) R(A; By, C1) (1)

edt]] < ev™t <1, t>0.
wheree = exp(1) = 2.718....

If v(A) > 0 we will see that one can improve (i.e. decrease) the
condition number by changing to be singular and for sud@  The pounds can be expressed in terms of the stability radius,
the estimate ofle#¢|| in the lemma is,/x(Ps) which is the
same as thatin (7). Since there is no loss of generality in taking . -1
3 = 0, we only consider the Liapunov equation r (A By, G = = 11 (wln — A)™ B :

AP+ PA+Q=0. () Suppose = a + w with a, w real, then

We will use the following lemma. R(A; B1,C1) = sup asup ||C1(wl, — (A — al,)) Byl

Lemma 5. Suppose?;, > 0, P, > 0. Then a>0  weR
=sup ar (Aq; B1,C1)7,
K(Po) < K(P)) = K(P+P)<n(P). (10) sup ar” (4 B1, C1)

whereA, = A — al,. Now the stability radius itself can be

AS k(aP) = k(P) for a > 0, equation (10) also holds for all characterized via parameterized Riccati equations [2]. Let

positive linear combinations; P; + as P, a1 > 0, a5 > 0.
Suppose that we have obtained an estimatéfgfA) based on ALX + XA, — p?CiCy — XB1BI X = 0.

an Hermitian paif Py, Q1) satisfying (9), the following propo-

sition uses the lemma to suggest a possible way of improviSgpposep(«) is the supremal value op such that the
the estimate. Riccati equation has Hermitian solutions, thefie) =



r~(Aq; B1,Ch). ThusR(A; By, Ch) = sup,sq &/ p(). on two values. From this value &fit follows a parabolic-like path
We can also interpreR(A; By, C1) in terms of the associateduntil it becomes single valued again. Themarks are those points

spectral value sets: 5(5) whereb; (A; I, LL)/5 = R(A;I,,I,) = 1.43. Note that only
the real part of(4) is used in the computation ¢t(A; I,,, I,,). This
oc(A; By, Cy;6) = U o0(A+ BiACY), §>0. value is to be compared withfo (A) = sup,, || exp(At)| = 2.51.

O
Aectxa, [|Af <6

oc(4; By, C1;9) is the set of all\ € C to which at least one

eigenvalue ofA + B;AC; can be moved by a perturbation

A € € of norm [|A]| < 4. In [1] the following fact was 4 Achieving acceptable stability behaviour by
proved state feedback

. . _ . _ -1 —1
oc(4; B1,C130) = {s € C; |Ci(sT = A) 7 By > 67"} We have seen in the introduction that, from a practical point of

where||Cy (sI — A)~1By|| := o for s € o(A). Now let view, an asymptotically stgble Iinear system may behave Ii.ke
an unstable one because its dynamics allow for large transient
bs(A; By, C1) = sup{ Re s; s € oc(A4; By, C1;6)}. deviations from the origin. Such practical instability cannot
be prevented by imposing spectral constraints alone. Instead
be thepseudospectral abscissaleveld > 0. Then we will impose the followingoractical stabilityrequirement in
time domain:

R(A;Bl,Cl) :supb(;(A;Bl,Cl)/é. A
§>0 ledt|| < MePt, t>0 (12)

So if Ais stable and for smalb the spectral value setsyneres < 0 is given. We then have the following:
oc(A; By, Cr;6) move deep into the right half plane, then o .
some trajectories of the systeim— Az will make large tran- >t@pilization problem. Given a control system

sient excursions. i = Az + Bu, (A, By) € K™ x K"*m (13)

Example 9. We will teR(A; I, I,) for th tri . . - .
P e will computeR(A; ) for the matrices which does not satisfy the stability requiremdm®), under

08 -2 -8 0 which conditions is there a feedback law= Fz, FF € K™*"
A 4 —0.8 8 0 B —Ci—1.. sugh _that the clos.e_d loop system with mattix = A 4+ By F
0 0o =32 2 | " satisfies the conditio(12).
0 0 0 —-0.8

In fact we will study the time-varying version of this problem.
In Figure 4 we have plotted the spectral contdj(ssf —A)~!|| = 5~ Suppose we have a piecewise continuous time-yarying feed-
for values ofé equal to .2, .33, .66 and from then in steps of .5 from back matrixF* : R — K™*™ then the corresponding closed
to 3. loop system is described by

i=(A+ByF(t))z, 2(0)=1z0€K". (14)

If pr(-,-) is the evolution operator generated Ry+ By F(t)
the time-varying version of the practical stability requirement
(12) has the form

ler(t,0)] < M, > 0. (15)

We assume, in the following, that the system has already been
stabilized by constant state feedback, so tat) < g < 0,
and we now seek to ensure (15).

Lemma 10. Assume3 > b(A), sob(Az) = b(A) — 8 < 0.
Supposel € H,, R = 0 and consider the differential Lia-
punov equation

i 7 _ * * > 0.
Figure 4: Spectral contours and front locus Z—ApZ = ZA5+ ByRB; = 0,120 (16)
The unique solutionZg of (16) on R, with initial value

Denote bys(¢) the rightmost point(s) of the contours and let us caI?ﬁ(O) = I is given by

the setF = {s(0); § > 0} N C thefront locus of A. This set is t
also plotted in the figure as thick lines. We see for sdidltiats(d) is ~ Z5(t) = e”#! []n - / e~ 495 ByRBie45%ds| e?5t. (17)
single valued and real. There is then a discontinuity wi@n takes 0



Let/™ = [0,t4) = {t > 0; Zg(t) > 0}, then0 < t; < co  Hence integrating from to T', yields
and the initial value problem
J(2% u) = (z°, P5(0)2?)

T
+/ (u(t) — F(t)z(t), R~ (u(t) — F(t)z(t)))dt.
has the solutionPs(t) = Zs(t)~! on IT. Moreover 0

limy Hpﬁ(t)! = 0. N So the controlu(t) = —RBjPs(t)xz(t) minimizes the cost
If F(t) = —RB; Py(t), t € I™, then functional J(z°,«) and the optimal cost i§2°||2. Note that

this is a characterizatioa posteriorisince the cost functional
J(x°,u) depends on the final value; (7).

X+ AX + XAg — XBRB3X =0, X(0) =I,. (18)

or(t,0)pr(t,0)* < Zs(t), tel™. (19)

We see from (17) and (19) that 5 Robustness of acceptable stability behaviour

e * = llr (8, 0)[1* > [le#*]1* — 1 Zs (1)l Consider the uncertain system
t
>a (/ eABsBzRBSeABSds> , tel’. i=Aaz:= (A+ BAC)z, AcK™|A| <6
0
where(A, By, C;) € K" x K" x K9*", ¢(A) ¢ C_ and
0 > 0. Assume that the nominal system= Ax has a practical

Proposition 11. Suppose thali(4) < 3 < 0 and there exists Stability requirement in the sense that
aT € (0,ty) such that

This suggests a possible way of achieving (15).

et < MePt,  t>0, (21)
2 2 2

1Z(T)Il < MZ/Mp(A)%, || Zs(t)]| < M7, ¢ € 0,71 0)  \ypereps > 1 andg < 0 are given. We now introduce a mea-

re for the robustness of this condition under perturbations

whereZ3(+) is as in Lemma 10. Then, choosing as feedbat A
[aSed A-

matrix
. . Definition 12. Given M > 1 andg < 0, the acceptability
F(t) = { 7RB(2)P5(t) :; i i [:% Tl radius ofA under perturbations of the forth~ A+ B, ACY,
A € K**4 is defined by
wherePg(-) is as in Lemma 10, ensures the closed loop system .
(14) satisfieg15). ri(A; By, Cy; M, 8) = inf {||A]; A e K™, 3¢ >0:
He(AJrBlACl)t” N Meﬁt}.

In order to check whether or not the conditions in the above

proposition hold, one needs to compute the solution of the diffollows from this definition that every systein= A x with
ferential Liapunov equation (16) with initial valué; (0) = I,  ||A|| < rx has an acceptable stability behaviour.

and monitor whether or not it is possible to fifidlsuch that N i ,
1Z5(T)|| < M2/Mg(A)? and on the interval0, T}, Zs(t) Proposition 13. GivenM > 1, 3 < 0 suppose there exists
does not transcend the vali? ando (Z3(t)) > 0. P e Hn, Q€ Hy ReHy, P2 0,Q -0, R~ 0such
We will now give an interpretation of the solutidpy(¢) of the that

initial value problem (18) in terms of the following finite time .

optimal control problem: P—A"P—PA+206P - C{QC, — PB1RB{P =0,

P(0)=P° (22)

Minimize
T
J(2°,u) = (z(T), Ps(T)x(T)) + / (u(t), R u(t))dt has a solution oiR ;. which satisfies
. 0
subject to 7(P(t))/a(P°) < M2, t>0. (23)

&= Az + Bou, x(0) = 2°.
Thenrg(4; By, C1; M, §) > (a(Q) a(R))/2.

Let F'(t) = —RB;Ps(t),t € [0,T] then we have for every
controlu(-) € L*(0, T; K™) andt € [0, 7], The condition given in the above proposition can be effectively
used even in the borderline case whéfe= 1 (in which case
%(I(t)vpﬁ(t)x(t» P° must necessarily be a multiple of the identity matrix by

. . (23)). This is illustrated in the following example.
= (@(t), (Ps(t) + A5P3(t) + P3(t) Ag)a(t)) | |
+2Re (z(t), Ps(t) Bau(t)) Example 14. Suppose A s a norma] matrix, A =

= 1 U* diag (A1, A2,...,Ax) U, with U unitary, Re \; <

= (u(t) = F(O)x(t), R~ (u(t) = FO)z(1)) — (u(®), R u(®). 0§ ¢ n := {1,...,n} and By = C1 = I.. Let



]?O = I,,Q = dI,,R = d’l,,
Py = UPMU™ = diag(pi(t),p2(t),....pn(1), (22) s )
equivalent to the following set ofi decoupled scalar differential (1]

Riccati equations:
Pi— N+ A —28)pi —a® —a’p; =0, pi(0) =1, i€n

Let’yi —()\i + X; — 2ﬂ)/27 Y1 < Y2 < ... < Yn and sup-
pose that3 is such thaty; > 0. If o® = 51, thenp;(t) = 1 and
pi(t) < 1forallt > 0andi € n. Sol > ||P(t)|| = |P(#)], t >
0. Thusrx(A4;I,1;1,8) > ~1. In particularrx(A; I,1;1,0) >
—1/2(Amax(A + A™)). It can be shown that this inequality is in fact
an equality. o

(2]

Associated with the above stability requirement (21) is the foI[3]
lowing:

Robust Control Problem: Suppose we are given a stabi-
lizable control system of the form (4.13), structure matriceT 4
(B1,C1) € K™ x K" and M > 1, 8 < 0. For which Y
~ > 0 does there exist a state feedback maftisuch that

k(A + BoF; By, C1; M, 8) > 7

Determine the supremum of these achievable robustness it
dices.

Note that for a given paifA, B>) the transient bound for any
feedback system cannot be less than the transient bouAt! of [6]
restricted to thed*-invariant uncontrollable subspace.

Finally we analyze the effect of nonlinear perturbations on the
transient behaviour of a linear system. Consider the nonlinear
equation [

&= Az + Bi1A(Cyz), x(0) = 22, (24) (8]
whereA : K9 — K¢ is locally Lipschitz and satisfied (0) =
0. The following proposition extends Proposition 13 to non-
linear perturbations of the forml ~» A where Aa(z) =

Proposition 15. Under the assumptions of Proposition 13 su
pose that

IA@)]] < (a(@)a(R) 2|l

Then for every:” € K", there exists a unique solutiarf-, z°)
of (24)onRR, and

Hio]

z € K9.

|z (t, z°)|| < MeP||2P|, forall t > 0.

Example 16. Suppose thal is normal,c(4) ¢ C_, 3 < 0 and

A : K" — K" is locally Lipschitz and satisfieA(0) = 0. Then

by using the same Riccati equation as in Example 14, we have that if
Amax(A+ A*) — 28 < 0 and

i = Ar+ A(z), x(0)=2°,
[A@)]] < =(1/2)(Amax(A + A7) — 28) ||z,

the solutionse(-, z°) satisfy||z(t, z°)|| < e®*||z°]|, t > 0. o

then if we set References
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