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Abstract

In this note we use Liapunov and Riccati equations to derive
bounds for the transient behaviour of a time-invariant linear
system. A concept of ”acceptable stability behaviour” is in-
troduced and a sufficient condition for achieving it by time-
varying linear state feedback is derived. We also briefly discuss
the robustness of acceptable stability behaviour and formulate
a corresponding robust control problem.

1 Introduction

Trajectories of a stable linear system may temporarily move
a long way from the origin before approaching it ast → ∞.
Such a transient behaviour is often exhibited by highly non-
normal systems. From a practical point of view, if the “state
excursions” are very large the stable system actually behaves
like an unstable one. Moreover, if the system is obtained by
linearization of a nonlinear system around an equilibrium point
the large transients of the linear part may incite the nonlineari-
ties to drive the system permanently far away from the equilib-
rium. In such cases the practical instability of the equilibrium
point is reflected by an extreme thinness of its domain of at-
traction.
In fluid dynamics the interaction between large transient mo-
tions of the linear part and nonlinearities has recently been put
forward as an explanation for experimental results where there
are observed instabilities of flows at Reynolds numbers which
differ significantly from those obtained via spectral analysis,
see for example [8].
The union of all the spectraσ(A+∆) where‖∆‖ < δ is called
the spectral value set at levelδ. The relationship between these
sets and transient behaviour has been considered in [3] and
an excellent review including some historical remarks can be
found in [9].
We first introduce the notion of a transient bound for a given
exponential rate and the interplay between the bound and the
rate is discussed. Various estimates for the transient bound
are obtained via differential and algebraic Liapunov equations.
The relationship between the transient bound, stability radii,
spectral value sets and algebraic Riccati equations is explored
and the possibility of improving the bound by state feedback

is discussed. Finally perturbation bounds are derived from dif-
ferential Riccati equations which ensure acceptable transient
behaviour for both linear and nonlinear uncertain systems.

2 General definitions and problem motivation

Throughout this note it is assumed thatA ∈ Kn×n, K = R or
C, Kn is provided with the standard Euclidean norm‖ · ‖ and
K
n×n with the spectral norm which we also denote by‖ · ‖.

The spectrum ofA is denoted byσ(A) and the largest (resp.
smallest) singular value ofA by σ(A) (resp. σ(A)).
Let b(A) = max{Re λ; λ ∈ σ(A)} be the spectral bound of
A, then we know that for everyβ > b(A), there exists anM
(depending onβ), such that

‖eAt‖ ≤Meβt, t ≥ 0. (1)

As a consequence thegrowth rateof (eAt)t≥0 as t → ∞ is
given by the spectral bound

ω(A) := lim
t→∞

ln ‖eAt‖
t

= b(A).

The spectral boundb(A) governs the long term behaviour of
the systeṁx = Ax, whereas its transient behaviour is reflected
in the various values ofM which satisfy the inequality (1).

Definition 1. Given anyβ ≥ b(A) the transient boundof
(eAt)t≥0 for the exponential rateβ is defined to be

Mβ(A) = inf{M ∈ R; ∀t ≥ 0 : ‖eAt‖ ≤Meβt}. (2)

We setMβ(A) =∞ if there is noM such that (1) holds.

In the following we give an example of a stable linear system
with large transient motions and show that the inclusion of a
nonlinear term results in an equilibrium point at the origin with
a thin region of asymptotic stability.

Example 2. SupposeA is a stable, real, upper triangular matrix,

A =

[
−0.6 c

0 −1

]
, with c ∈ R. Then its matrix exponential is

given by

eAt =

[
e−.6t 2.5c(e−.6t − e−t)

0 e−t

]
.

Figure 1 shows(‖eAt‖)t≥0 for various values ofc using the spec-
tral norm. One sees that the transient boundM0(A) increases asc
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Figure 1: The function‖eA . ‖ for variousc

increases and the time at which the maximum is achieved is almost
constant. The trajectories in the phase plane from the initial point
(0, 1) are shown in the figures below forc = 8 and24, for which
M0(A) = 3.76 and11.2 respectively. The large transient motions are
clearly visible. The thin straight lines in the two pictures of Figure
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Figure 2: Trajectories forc = 8, 24

2 represent contracting eigenmotions of the system. Note that these
lines get closer together asc increases; i.e. the eigenvectors become
more aligned whilst the eigenvalues remain apart.
Now consider the nonlinear system

ẋ1 = x1(x1 − 0.6) + cx2, ẋ2 = −x2. (3)

This system has a stable equilibrium point at at(0, 0) and an unstable
one at(0.6, 0). The phase-portrait is shown in Figure 3 forc = 8.
Because of the large transient motions of the linearized system one
might expect a very thin region of asymptotic stability in the region
{(x1, x2);x1 ≤ 0.6, x2 ≥ 0}. This is clearly shown in Figure 3
where one should note that the scale in thex2 direction is five times
smaller than that in thex1 direction. 2
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Figure 3: Phase portrait of (3)

3 Transient bounds

It is clear that

b(A) ≤ β ≤ β′ ⇒ Mβ(A) ≥Mβ′(A).

and if β > b(A), then necessarilyMβ(A) < ∞. However it
is possible thatMβ(A) → ∞ asβ → b(A). This will happen
if and only if Mb(A)(A) = ∞ or, equivalently, if and only if
the Jordan canonical form ofA contains blocks of order≥ 2
corresponding to eigenvaluesλ ∈ σ(A) with Re λ = b(A).
Obviouslyβ ≥ b(A) if and only if b(Aβ) ≤ 0 for Aβ :=
A− βIn, and it follows from (2), that

Mβ(A) = M0(Aβ), β ≥ b(A). (4)

We now turn to the problem of determiningMβ(A) for given
A ∈ Kn×n andβ > b(A). Sincelimt→∞ ‖eAβt‖ = 0 there
existstβ ≥ 0 (not necessarily unique) such that

‖eAtβ‖ = Mβ(A)eβtβ .

It follows that ifA is stable andβ ∈ (b(A), 0), then

Mβ(A)eβtβ = ‖eAtβ‖ ≤M0(A) = ‖eAt0‖ ≤Mβ(A)eβt0

and hence

M0(A)e−βt0 ≤Mβ(A) ≤M0(A)e−βtβ . (5)

Estimates forMβ(A) can be obtained via the solution of dif-
ferential Liapunov inequalities.

Proposition 3. Supposeβ > b(A) andAβ = A− βIn. Given
an Hermitian matrixP o ∈ Hn, P o � 0 then ifPβ(·) is the
solution of the initial value problem

Ṗ −A∗βP − PAβ � 0, P (0) = P o, (6)

we have

sup
t≥0

σ(Pβ(t))/σ(P o) ≥Mβ(A)2.

For the special caseP o = In, the solution of the equation in
(6) satisfiessupt≥0 σ(Pβ(t)) = Mβ(A)2.



If for someQ ∈ Hn, Q � 0

Ṗ −A∗βP − PAβ −Q = 0, P (0) = P o,

then

Pβ(t) = eA
∗
βtP oeAβt +

∫ t

0

eA
∗
β(t−s)QeAβ(t−s)ds.

Soσ(Pβ(t)) will be uniformly bounded fort ≥ 0 if β > b(A)
and the smallest bound is obtained forQ = 0. This suggests
that we should have restricted our considerations to the equality
in (6). We have chosen not to do so because this precludes the
possibility of constant solutions. Indeed sinceσ(Aβ) ⊂ C−,
there exists aP o � 0, such that (6) has the constant solution
Pβ(t) = Pβ = P o. Then ifPβ � 0 we obtain the bound

σ(Pβ)/σ(Pβ) ≥Mβ(A)2. (7)

So an interesting question is: How should one chooseC ∈
K
p×n with (A,C) observable, such that for the unique solution

Pβ of the Liapunov equation

A∗βPβ + PβAβ + C∗C = 0 (8)

the expressionσ(Pβ)/σ(Pβ) is minimized. The ratio
σ(Pβ)/σ(Pβ) is thecondition numberof Pβ , κ(Pβ) and in [6]
the following result was proved.

Lemma 4. Let β > b(A). If Pβ � 0 andQ = C∗C � 0
satisfy(8), then

‖eAβt‖ ≤
√
κ(Pβ)e−t[2λmax (Pβ ,Q)]−1

, t ≥ 0.

where λmax (Pβ , Q) = maxx6=0 〈x, Pβx〉〈x,Qx〉−1 is the
maximal eigenvalue of the matrix pencilλQ− Pβ .

If Aβ +A∗β = A+A∗− 2βIn � 0, then we may choosePβ =
In and hence obtain the optimal estimateκ(Pβ) = κ(In) =
Mβ(A) = 1. In fact ν(A) = 1

2λmax (A + A∗) is called the
log-normof A [7], and if ν(A) ≤ 0, we have

‖eAt‖ ≤ eν(A)t ≤ 1, t ≥ 0.

If ν(A) > 0 we will see that one can improve (i.e. decrease) the
condition number by changingQ to be singular and for suchQ
the estimate of‖eAβt‖ in the lemma is

√
κ(Pβ) which is the

same as that in (7). Since there is no loss of generality in taking
β = 0, we only consider the Liapunov equation

A∗P + PA+Q = 0. (9)

We will use the following lemma.

Lemma 5. SupposeP1 � 0, P2 � 0. Then

κ(P2) < κ(P1) =⇒ κ(P2 + P1) < κ(P1). (10)

As κ(αP ) = κ(P ) for α > 0, equation (10) also holds for all
positive linear combinationsα1P1 + α2P2, α1 > 0, α2 > 0.
Suppose that we have obtained an estimate forM0(A) based on
an Hermitian pair(P1, Q1) satisfying (9), the following propo-
sition uses the lemma to suggest a possible way of improving
the estimate.

Proposition 6. SupposeA is stable and the Hermitian pairs
(P1, Q1), (P2, Q2) satisfy(9) with P1 � 0, P2 � 0, κ(P2) <
κ(P1),Q1 � 0,Q1 +Q2 � 0. Then

M0(A) ≤
√
κ(P2 + P1) <

√
κ(P1).

In [4] it was noted that the choiceP2 = λIn (with an apropriate
scale factorλ) reduces the condition number,κ(P1 + λIn) <
κ(P1). Namely, suppose thatν(A) > 0 andQ1 � 0, then for
P2 = λIn, λ > 0, we haveQ1 +Q2 = Q1−λ(A+A∗). Then
sinceκ(P2) = 1 andκ(P1) > 1 if ν(A) > 0, (P1 = αIn is not
a feasable solution of (9)), the estimate forM0(A) is always
improved providedQ1 − λ(A + A∗) � 0. Hence one should
chooseλ to be the smallest positive eigenvalue of the matrix
pencilQ1−λ(A+A∗). This makesQ1−λ(A+A∗) singular.
The following proposition shows that an optimalQ always ex-
ists.

Proposition 7. LetA ∈ Cn×n be a stable matrix. Then there
exists a positive semi-definite Hermitian matrixQ = C∗C with
rankC ≤ n and(A,C) observable such that the solutionP of
(9) has a minimal condition numberκ(P ) amongst all Hermi-
tian P satisfyingA∗P + PA � 0.

Estimates for the transient bound can also be obtained from
Kreiss’s theorem [10]. Now it may be that we are only in-
terested in the transient behaviour in certain directions, e.g. if
a perturbation is known to affect only certain coordinates of
the state vector. We take this into account by introducing
structure matrices(B1, C1) ∈ K

n×` × Kq×n and consider
M0(A;B1, C1) = supt≥0 ‖C1e

AtB1‖. For this extension
Kreiss’s theorem takes the form

Theorem 8. SupposeA ∈ K
n×n is a stable matrix and

(B1, C1) ∈ Kn×`×Kq×n are given structure matrices. Define
R(A;B1, C1) := supRe s>0(Re s) ‖C1(sI −A)−1B1‖. Then

R(A;B1, C1) ≤M0(A;B1, C1) ≤ (e n)R(A;B1, C1) (11)

wheree = exp(1) = 2.718 . . .

The bounds can be expressed in terms of the stability radius,

r−(A;B1, C1) =
(

sup
ω∈R
‖C1(ıωIn −A)−1B1‖

)−1

.

Supposes = α+ ıω with α, ω real, then

R(A;B1, C1) = sup
α>0

α sup
ω∈R
‖C1(ıωIn − (A− αIn))−1B1‖

= sup
α>0

α r−(Aα;B1, C1)−1,

whereAα = A − αIn. Now the stability radius itself can be
characterized via parameterized Riccati equations [2]. Let

A∗αX +XAα − ρ2C∗1C1 −XB1B
∗
1X = 0.

Supposeρ(α) is the supremal value ofρ such that the
Riccati equation has Hermitian solutions, thenρ(α) =



r−(Aα;B1, C1). ThusR(A;B1, C1) = supα>0 α/ρ(α).
We can also interpretR(A;B1, C1) in terms of the associated
spectral value sets:

σC(A;B1, C1; δ) =
⋃

∆∈C`×q, ‖∆‖<δ

σ(A+B1∆C1), δ > 0.

σC(A;B1, C1; δ) is the set of allλ ∈ C to which at least one
eigenvalue ofA + B1∆C1 can be moved by a perturbation
∆ ∈ C`×q of norm ‖∆‖ < δ. In [1] the following fact was
proved

σC(A;B1, C1; δ) =
{
s ∈ C ; ‖C1(sI −A)−1B1‖ > δ−1

}
where‖C1(sI −A)−1B1‖ :=∞ for s ∈ σ(A). Now let

bδ(A;B1, C1) = sup{Re s ; s ∈ σC(A;B1, C1; δ)}.

be thepseudospectral abscissaat levelδ > 0. Then

R(A;B1, C1) = sup
δ>0

bδ(A;B1, C1)/δ.

So if A is stable and for smallδ the spectral value sets
σC(A;B1, C1; δ) move deep into the right half plane, then
some trajectories of the systeṁx = Ax will make large tran-
sient excursions.

Example 9. We will computeR(A; In, In) for the matrices

A =


−0.8 −2 −8 0

4 −0.8 8 0
0 0 −3.2 2
0 0 0 −0.8

 , B1 = C1 = In.

In Figure 4 we have plotted the spectral contours‖(sI−A)−1‖ = δ−1

for values ofδ equal to .2, .33, .66 and from then in steps of .5 from 1
to 3.

Figure 4: Spectral contours and front locus

Denote bys(δ) the rightmost point(s) of the contours and let us call
the setF = { s(δ) ; δ > 0} ∩ C+ the front locus of A. This set is
also plotted in the figure as thick lines. We see for smallδ thats(δ) is
single valued and real. There is then a discontinuity whens(δ) takes

on two values. From this value ofδ it follows a parabolic-like path
until it becomes single valued again. The× marks are those points
s(δ̂) wherebδ̂(A; In, In)/δ̂ = R(A; In, In) = 1.43. Note that only
the real part ofs(δ̂) is used in the computation ofR(A; In, In). This
value is to be compared withM0(A) = supt≥0 ‖ exp(At)‖ = 2.51.
2

4 Achieving acceptable stability behaviour by
state feedback

We have seen in the introduction that, from a practical point of
view, an asymptotically stable linear system may behave like
an unstable one because its dynamics allow for large transient
deviations from the origin. Such practical instability cannot
be prevented by imposing spectral constraints alone. Instead
we will impose the followingpractical stabilityrequirement in
time domain:

‖eAt‖ ≤Meβt, t ≥ 0 (12)

whereβ < 0 is given. We then have the following:

Stabilization problem. Given a control system

ẋ = Ax+B2u, (A,B2) ∈ Kn×n ×Kn×m (13)

which does not satisfy the stability requirement(12), under
which conditions is there a feedback lawu = Fx, F ∈ Km×n
such that the closed loop system with matrixAF = A + B2F
satisfies the condition(12).

In fact we will study the time-varying version of this problem.
Suppose we have a piecewise continuous time-varying feed-
back matrixF : R → K

m×n then the corresponding closed
loop system is described by

ẋ = (A+B2F (t))x, x(0) = x0 ∈ Kn. (14)

If ϕF (·, ·) is the evolution operator generated byA + B2F (t)
the time-varying version of the practical stability requirement
(12) has the form

‖ϕF (t, 0)‖ ≤Meβt, t ≥ 0. (15)

We assume, in the following, that the system has already been
stabilized by constant state feedback, so thatb(A) < β < 0,
and we now seek to ensure (15).

Lemma 10. Assumeβ > b(A), so b(Aβ) = b(A) − β < 0.
SupposeR ∈ Hn, R � 0 and consider the differential Lia-
punov equation

Ż −AβZ − ZA∗β +B2RB
∗
2 = 0, t ≥ 0. (16)

The unique solutionZβ of (16) on R+ with initial value
Zβ(0) = In is given by

Zβ(t) = eAβt
[
In −

∫ t

0

e−AβsB2RB
∗
2e
−A∗βsds

]
eA
∗
βt. (17)



Let I+ = [ 0, t+) = {t ≥ 0; Zβ(t) � 0}, then0 < t+ ≤ ∞
and the initial value problem

Ẋ +A∗βX +XAβ −XB2RB
∗
2X = 0, X(0) = In. (18)

has the solutionPβ(t) = Zβ(t)−1 on I+. Moreover
limt→t+ ‖Pβ(t)‖ =∞.
If F (t) = −RB∗2Pβ(t), t ∈ I+, then

ϕF (t, 0)ϕF (t, 0)∗ � Zβ(t), t ∈ I+. (19)

We see from (17) and (19) that

‖eAβt‖2 − ‖ϕF (t, 0)‖2 ≥ ‖eAβt‖2 − ‖Zβ(t)‖

≥ σ
(∫ t

0

eAβsB2RB
∗
2e
A∗βsds

)
, t ∈ I+.

This suggests a possible way of achieving (15).

Proposition 11. Suppose thatb(A) < β < 0 and there exists
a T ∈ (0, t+) such that

‖Zβ(T )‖ ≤M2/Mβ(A)2, ‖Zβ(t)‖ ≤M2, t ∈ [0, T ] (20)

whereZβ(·) is as in Lemma 10. Then, choosing as feedback
matrix

F (t) =
{
−RB∗2Pβ(t) if t ∈ [0, T ]

0 if t > T

wherePβ(·) is as in Lemma 10, ensures the closed loop system
(14)satisfies(15).

In order to check whether or not the conditions in the above
proposition hold, one needs to compute the solution of the dif-
ferential Liapunov equation (16) with initial valueZβ(0) = In
and monitor whether or not it is possible to findT such that
‖Zβ(T )‖ ≤ M2/Mβ(A)2 and on the interval[0, T ], Zβ(t)
does not transcend the valueM2 andσ(Zβ(t)) > 0.
We will now give an interpretation of the solutionPβ(t) of the
initial value problem (18) in terms of the following finite time
optimal control problem:

Minimize

J(x0, u) = 〈x(T ), Pβ(T )x(T )〉+
∫ T

0

〈u(t), R−1u(t)〉dt

subject to

ẋ = Aβx+B2u, x(0) = x0.

Let F (t) = −RB∗2Pβ(t), t ∈ [0, T ] then we have for every
controlu(·) ∈ L2(0, T ;Km) andt ∈ [0, T ],

d

dt
〈x(t), Pβ(t)x(t)〉

= 〈x(t), (Ṗβ(t) +A∗βPβ(t) + Pβ(t)Aβ)x(t)〉
+ 2 Re 〈x(t), Pβ(t)B2u(t)〉

= 〈u(t)−F (t)x(t), R−1(u(t)−F (t)x(t))〉− 〈u(t), R−1u(t)〉.

Hence integrating from0 to T , yields

J(x0, u) = 〈x0, Pβ(0)x0〉

+
∫ T

0

〈u(t)− F (t)x(t), R−1(u(t)− F (t)x(t))〉dt.

So the controlu(t) = −RB∗2Pβ(t)x(t) minimizes the cost
functionalJ(x0, u) and the optimal cost is‖x0‖2. Note that
this is a characterizationa posteriorisince the cost functional
J(x0, u) depends on the final valuePβ(T ).

5 Robustness of acceptable stability behaviour

Consider the uncertain system

ẋ = A∆x := (A+B1∆C1)x, ∆ ∈ K`×q, ‖∆‖ < δ

where(A,B1, C1) ∈ Kn×n×Kn×`×Kq×n, σ(A) ⊂ C− and
δ > 0. Assume that the nominal systeṁx = Ax has a practical
stability requirement in the sense that

‖eAt‖ ≤Meβt, t ≥ 0, (21)

whereM ≥ 1 andβ ≤ 0 are given. We now introduce a mea-
sure for the robustness of this condition under perturbations
A ; A∆.

Definition 12. GivenM ≥ 1 andβ ≤ 0, the acceptability
radius ofA under perturbations of the formA ; A+B1∆C1,
∆ ∈ K`×q is defined by

rK(A;B1, C1;M,β) = inf {‖∆‖; ∆ ∈ K`×q,∃ t ≥ 0 :

‖e(A+B1∆C1)t‖ > Meβt}.

It follows from this definition that every systeṁx = A∆x with
‖∆‖ ≤ rK has an acceptable stability behaviour.

Proposition 13. GivenM ≥ 1, β ≤ 0 suppose there exists
P o ∈ Hn, Q ∈ Hq, R ∈ H`, P o � 0, Q � 0, R � 0 such
that

Ṗ −A∗P − PA+ 2βP − C∗1QC1 − PB1RB
∗
1P = 0,

P (0) = P o (22)

has a solution onR+ which satisfies

σ(P (t))/σ(P o) ≤M2, t ≥ 0. (23)

ThenrK(A;B1, C1;M,β) ≥ (σ(Q)σ(R))1/2.

The condition given in the above proposition can be effectively
used even in the borderline case whereM = 1 (in which case
P o must necessarily be a multiple of the identity matrix by
(23)). This is illustrated in the following example.

Example 14. Suppose A is a normal matrix, A =
U∗ diag (λ1, λ2, . . . , λn)U , with U unitary, Re λi <
0, i ∈ n := {1, . . . , n} and B1 = C1 = In. Let



P o = In, Q = α2In, R = α2In, then if we set
P̂ (t) = UP (t)U∗ = diag (p1(t), p2(t), . . . , pn(t)), (22) is
equivalent to the following set ofn decoupled scalar differential
Riccati equations:

ṗi − (λi + λ∗i − 2β)pi − α2 − α2p2
i = 0, pi(0) = 1, i ∈ n.

Let γi = −(λi + λ∗i − 2β)/2, γ1 ≤ γ2 ≤ . . . ≤ γn and sup-
pose thatβ is such thatγ1 > 0. If α2 = γ1, thenp1(t) ≡ 1 and
pi(t) ≤ 1 for all t ≥ 0 andi ∈ n. So1 ≥ ‖P̂ (t)‖ = ‖P (t)‖, t ≥
0. Thus rK(A; I, I; 1, β) ≥ γ1. In particularrK(A; I, I; 1, 0) ≥
−1/2(λmax(A + A∗)). It can be shown that this inequality is in fact
an equality. 2

Associated with the above stability requirement (21) is the fol-
lowing:

Robust Control Problem: Suppose we are given a stabi-
lizable control system of the form (4.13), structure matrices
(B1, C1) ∈ Kn×` × Kq×n andM ≥ 1, β ≤ 0. For which
γ > 0 does there exist a state feedback matrixF such that

rK(A+B2F ;B1, C1;M,β) ≥ γ ?

Determine the supremum of these achievable robustness in-
dices.

Note that for a given pair(A,B2) the transient bound for any
feedback system cannot be less than the transient bound ofA∗

restricted to theA∗-invariant uncontrollable subspace.
Finally we analyze the effect of nonlinear perturbations on the
transient behaviour of a linear system. Consider the nonlinear
equation

ẋ = Ax+B1∆(C1x), x(0) = x0, (24)

where∆ : Kq 7→ K
` is locally Lipschitz and satisfies∆(0) =

0. The following proposition extends Proposition 13 to non-
linear perturbations of the formA ; A∆ whereA∆(x) =
Ax+B1∆(C1x).

Proposition 15. Under the assumptions of Proposition 13 sup-
pose that

‖∆(x)‖ ≤ (σ(Q)σ(R))1/2‖x‖, x ∈ Kq.

Then for everyx0 ∈ Kn, there exists a unique solutionx(·, x0)
of (24)onR+ and

‖x(t, x0)‖ ≤Meβt‖x0‖, for all t ≥ 0.

Example 16. Suppose thatA is normal,σ(A) ⊂ C−, β ≤ 0 and
∆ : Kn 7→ K

n is locally Lipschitz and satisfies∆(0) = 0. Then
by using the same Riccati equation as in Example 14, we have that if
λmax(A+A∗)− 2β < 0 and

ẋ = Ax+ ∆(x), x(0) = x0,

‖∆(x)‖ ≤ −(1/2)(λmax(A+A∗)− 2β)‖x‖,

the solutionsx(·, x0) satisfy‖x(t, x0)‖ ≤ eβt‖x0‖, t ≥ 0. 2
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