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1.1 Description of the problem

By definition, a system of the form

ẋ(t) = Ax(t), t ≥ 0 (1.1)

(A ∈ Kn×n, K = R,C) is exponentially stable if and only if there are constants M ≥ 1, β < 0 such
that

‖eAt‖ ≤Meβt , t ≥ 0. (1.2)

The respective roles of the two constants in this estimate are quite different. The exponent β < 0
determines the long term behavior of the system, whereas the factor M ≥ 1 bounds its short term
or transient behavior. In applications large transients may be unacceptable. This leads us to the
following stricter stability concept.

Definition 1 Let M ≥ 1, β < 0. A matrix A ∈ Kn×n is called (M,β)-stable if (1.2) holds. �
Here β < 0 and M ≥ 1 can be chosen in such a way that (M,β)-stability guarantees both an

acceptable decay rate and an acceptable transient behavior.
For any A ∈ Kn×n let γ(A) denote the spectral abscissa of A, i.e. the maximum of the real

parts of the eigenvalues of A. It is well known that γ(A) < 0 implies exponentially stability. More
precisely, for every β > γ(A) there exists a constant M ≥ 1 such that (1.2) is satisfied. However it is
unknown how to determine the minimal value of M such that (1.2) holds for a given β ∈ (γ(A), 0).

Problem 1:

a) Given A ∈ Kn×n and β ∈ (γ(A), 0), determine the minimal value Mβ(A) of M ≥ 1 for which
A is (M,β)-stable.

b) Find easily computable upper and lower bounds for Mβ(A) and analyze their conservatism.

Associated to this problem is the design problem for linear control systems of the form

ẋ = Ax+Bu, (1.3)

where (A,B) ∈ Kn×n×Kn×m. Assume that a desired transient and stability behavior for the closed
loop is prescribed by given constants M ≥ 1, β < 0, then the pair (A,B) is called (M,β)-stabilizable
(by state feedback), if there exists an F ∈ Km×n such that A−BF is (M,β)-stable.
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Problem 2:

a) Given constants M ≥ 1, β < 0, characterize the set of (M,β)-stabilizable pairs (A,B) ∈
K
n×n ×Kn×m.

b) Provide a method for the computation of (M,β)-stabilizing feedbacks F for (M,β)-stabilizable
pairs (A,B).

In order to account for uncertainties in the model we consider systems described by

ẋ = A∆x = (A+D∆E)x,

where A ∈ Kn×n is the nominal system matrix, D ∈ Kn×` and E ∈ Kq×n are given structure
matrices, and ∆ ∈ K`×q is an unknown perturbation matrix for which only a bound of the form
‖∆‖ ≤ δ is assumed to be known.

Problem 3:

a) Given A ∈ Kn×n, D ∈ Kn×` and E ∈ Kq×n, determine analytically the (M,β)−stability
radius defined by

r(M,β)(A;D,E) = inf
{
‖∆‖ ∈ K`×q, ∃τ > 0 : ‖e(A+D∆E)τ‖ ≥Meβτ

}
. (1.4)

b) Provide an algorithm for the calculation of this quantity.

c) Determine easily computable upper and lower bounds for r(M,β)(A;D,E).

The two previous problems can be thought of as steps towards the following final problem.
Problem 4: Given a system (A,B) ∈ Kn×n × Kn×m, a desired transient behavior described

by M ≥ 1, β < 0, and matrices D ∈ Kn×`, E ∈ Kq×n describing the perturbation structure,

a) characterize the constants γ > 0 for which there exists a state feedback matrix such that

r(M,β)(A−BF ;D,E) ≥ γ . (1.5)

b) Provide a method for the computation of feedback matrices F such that (1.5) is satisfied.

1.2 Motivation and history of the problem

Stability and stabilization are fundamental concepts in linear systems theory and in most design
problems exponential stability is the minimal requirement that has to be met. From a practical
point of view, however, the transient behavior of a system may be of equal importance and is often
one of the criteria which decide on the quality of a controller in applications. As such, the notion
of (M,β)− stability is related to such classical design criteria as “overshoot” of system responses.

In particular, if linear design is performed as a local design for a nonlinear system large tran-
sients may result in a small domain of attraction. The relation between domains of attraction
and transient behavior of linearizations at fixed points is an active field motivated by problems
in mathematical physics, in particular, fluid dynamics, see [1, 10] and references therein. Related
problems occur in the study of iterative methods in numerical analysis, see e.g. [3].

We would like to point out that the problems discussed in this note give pointwise conditions
in time for the bounds and are therefore different from criteria that can be formulated via integral
constraints on the positive time axis. In the literature such integral criteria are sometimes also
called bounds on the transient behavior, see e.g. [9] where interesting results are obtained for this
case.

Stability radii with respect to asymptotic stability of linear systems were introduced in [5] and
there is a considerable body of literature investigating this problem. The questions posed in this
note are an extension of the available theory insofar as the transient behavior is neglected in most
of the available results on stability radii.
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1.3 Available results

For Problem 1 a number of results are available. Estimates of the transient behavior involving either
quadratic Lyapunov functions or resolvent inequalities are known but can be quite conservative or
intractable. Moreover, for many of the available estimates little is known on their conservatism.

The Hille-Yosida Theorem [8] provides an equivalent description of (M,β)−stability in terms
of the norm of powers of the resolvent of A. Namely, A is (M,β)-stable if and only if for all n ∈ N
and all α ∈ R with α > β it holds that

‖ (αI −A)−n ‖ ≤ M

(α− β)n
.

While this condition is hard to check there is a classical, easily verifiable, sufficient condition using
quadratic Lyapunov functions. Let β ∈ (γ(A), 0), if P > 0 satisfies the Lyapunov inequality

A∗P + PA ≤ 2βP ,

and has condition number κ(P ) := ‖P‖‖P−1‖ ≤ M2 then A is (M,β)-stable. The existence of
P > 0 satisfying these conditions may be posed as an LMI-problem [2]. However, it can be shown
that if β < 0 is given and the spectral bound of A is below β then this method is necessarily
conservative, in the sense that the best bound on M obtainable in this way is strictly larger than
the minimal bound. Furthermore, experiments show that the gap between these two bounds can
be quite large. In this context, note that the problem cannot be solved by LMI techniques since
the characterization of the optimal M for given β is not an algebraic problem.

There is a large number of further upper bounds available for ‖eAt‖. These are discussed and
compared in detail in [4, 11], see also the references therein. A number of these bounds is also
valid in the infinite-dimensional case.

For Problem 2, sufficient conditions are derived in [7] using quadratic Lyapunov functions and
LMI techniques. The existence of a feedback F such that

P (A−BF ) + (A−BF )∗P ≤ 2βP and κ(P ) = ‖P‖‖P−1‖ ≤M2 , (1.6)

or, equivalently, the solvability of the associated LMI problem, is characterized in geometric terms.
This, however, only provides a sufficient condition under which Problem 2 can be solved. But the
LMI problem (1.6) is far from being equivalent to Problem 2.

Concerning Problem 3 differential Riccati equations are used to derive bounds for the (M,β)−
stability radius in [6]. Suppose there exist positive definite Hermitian matrices P 0, Q,R of suitable
dimensions such that the differential Riccati equation

Ṗ − (A− βI)P − P (A− βI)∗ − E∗QE − PDRD∗P = 0 (1.7)

P (0) = P 0 (1.8)

has a solution on R+ which satisfies

σ̄(P (t))/σ(P 0) ≤M2, t ≥ 0.

Then the structured (M,β)−stability radius is at least

r(M,β)(A;D,E) ≥
√
σ(Q)σ(R) , (1.9)

where σ̄(X) and σ(X) denote the largest and smallest singular value of X. However, it is unknown
how to choose the parameters P 0, Q,R in an optimal way and it is unknown, whether equality can
be obtained in (1.9) by an optimal choice of P 0, Q,R.

To the best of our knowledge no results are available dealing with Problem 4.



4 CHAPTER 1. ROBUSTNESS OF TRANSIENT BEHAVIOR



Bibliography

[1] J.S. Baggett and L.N. Trefethen. Low-dimensional Models of Subcritical Transition to Turbu-
lence. Physics of Fluids 9:1043–1053, 1997.

[2] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in Systems
and Control Theory, volume 15 of Studies in Applied Mathematics. SIAM, Philadelphia, 1994.

[3] T. Braconnier and F. Chaitin-Chatelin. Roundoff induces a chaotic behavior for eigensolvers
applied on highly nonnormal matrices. Bristeau, M.-O. (ed.) et al., Computational science for
the 21st century. Symposium, Tours, France, May 5–7, 1997. Chichester: John Wiley & Sons.
43-52 (1997).

[4] M. I. Gil’. Stability of Finite and Infinite Dimensional Systems. Kluwer Academic Publishers,
Boston, 1998.

[5] D. Hinrichsen and A. J. Pritchard. Stability radius for structured perturbations and the alge-
braic Riccati equation. Systems & Control Letters, 8:105–113, 1986.

[6] D. Hinrichsen, E. Plischke, and A. J. Pritchard. Liapunov and Riccati equations for practical
stability. In Proc. European Control Conf. ECC-2001, Porto, Portugal, (CD-ROM), pp. 2883–
2888, 2001.

[7] D. Hinrichsen, E. Plischke, and F. Wirth. State Feedback Stabilization with Guaranteed Tran-
sient Bounds. To appear in Proceedings of MTNS-2002, Notre Dame, IN, USA, August 2002.

[8] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations.
Springer-Verlag, New York, 1983.

[9] A. Saberi, A.A. Stoorvogel, and P. Sannuti. Control of Linear Systems with Regulation and
Input Constraints. Springer-Verlag, London, 2000.

[10] L. N. Trefethen. Pseudospectra of linear operators. SIAM Review, 39(3):383–406, 1997.
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