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Abstract

The use of sensitivity indicators is explicitly recommendend by authorities like the EC, the US EPA and others in
model valuation and audit. In this note, we want to draw the attention to a numerical efficient algorithm that computes
first order global sensitivity effects from given data using a discrete cosine transformation.
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1. Introduction

The use of sensitivity analysis for the output of simu-
lation models is propagated in the books by Saltelli et
al. [10, 13, 11]. Unfortunately, computationally effective
methods working on given data (i.e. estimators) are not
in the main scope of the aforementioned books. These
seem, however, to be a valuable tool in the hands of prac-
titioners. The paper [7] argues against the usage of one-
at-a-time sampling strategies which are computationally
cheap. Alternatively, let us take a look at variance-based
sensitivity indicators. We present a method which works
on given data instead of a special design, hence allow-
ing the sample strategies to range from simple random
sampling over Latin hypercube sampling to quasi Monte
Carlo sampling. A sensitivity analysis might then be per-
formed on data acquired for an uncertainty analysis or
even on measured values. For such a sensitivity analysis,
we introduce a simple method of estimating the first order
effect (also called main effect, Sobol’ index or correlation
ratio, among others) from given data. This algorithm may
even be implemented in a spreadsheet software program.
Hence for small analytical simulation models (“one line
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of code”) the steps of creating a random input sample,
simulating a model and analysing its model output can all
be handled within the speadsheet software.

2. Setup

Given two random variables X and Y we want to deter-
mine

η2 =
Var[E[Y |X]]

Var[Y]
, (1)

the ratio between the variance of the conditional expec-
tation of Y given X and the unconditional variance of
Y . This quotient ranges between 0 and 1 and shows the
degree of functional dependence of Y on X (or the de-
gree of functional influence of X on Y). In a way, it
takes over the role of the squared correlation coefficient
%2(Y, X) for a non-linear regression model. And indeed,
η2 = %2(Y,E[Y |X]) [2]. The term E[Y |X] is called the
nonparametric regression curve. There are many ways of
determing a suitable estimate [15].
Thinking in realisations of (X,Y), an estimate of this
nonparametric regression curve might be adequately de-
scribed by the backbone of the scatterplot of xs vs. ys.
Hence (1) computes the gain in the variance when each
point in the scatterplot is replaced by a local mean value.
With that in mind, η2 will be close to one, if E[Y |X] is a
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good approximation of the data, i.e. there are only sub-
tle differences between the regression curve and the data.
The less structure there is in the scatterplot, the more η2

tends to zero.
For an analysis of model output, one considers a set of
random variables Xi, i = 1, . . . , k, of known probability
distributions, named input parameters, and a random vari-
able Y , the output, which is the result from a complex sim-
ulation model Y = f (X1, . . . , Xk). Most of the available
algorithms use a designed sample of (X1, . . . , Xk) com-
bined with a model evaluation in the loop to estimate η2

for each of the parameters, see [16, 14, 8] for recent re-
sults. We are interested in the influence or sensitivity of
the single input parameters on the output. As we use
a post-processing method we neither need assumptions
about the distributions of the input parameters nor access
to the simulation model. We only assume that the input
data is a representative sample of the underlying distribu-
tion and therefore, together with the corresponding output
data, they may be used for estimating (1).

3. Implementation

The algorithm to estimate (1) from given pairs of data
{(xi, yi), i = 1, . . . , n} consists of the following three steps.

1. Sort the output data (yi) using the input data (xi) as a
key.

2. Compute the first few coefficients (frequencies, if
you like) of the just rearranged output using a suit-
able orthogonal transformation.

3. Form the quotient between the sum of squares of
these coefficients and the variance of Y .

The dependency of the output Y on the input X only en-
ters the estimation procedure through reordering the out-
put realisations. This idea of rearranging the output data
with respect to sorting the input data was first used in the
RBD method [16] and later in the EASI method [5].
For the second step, the key issue hides in the use of a
suitable transformation. Methods like (E)FAST [9] and
RBD [16] use the Discrete Fourier Transformation (DFT),
those based on RS-HDMR [6, 18] use orthogonal polyno-
mials. For our purposes we borrow one from digital image
processing [3], the discrete cosine transformation (DCT)
also used in the JPEG image standard. This transforma-
tion has good energy concentration/compaction properties

which means that the first few coefficients provide a fair
reconstruction of the original signal.
The weights for the jth coefficient of the DCT are given
by

wi, j =

√
2
n

cos
(
π(2i − 1) j

2n

)
, i = 1, . . . , n, j = 1, . . . , n−1,

(2)
and the coefficient itself is then c j =

∑n
i=1 wi, jyψ(i) where

(yψ(i)) is the rearranged output sample. Here the permuta-
tion ψ is used to sort x increasingly. Note that the DCT
can be thought of a special form of a DFT for which the
input signal is made symmetrical by adding a mirrored
version of the original data. In [5] this data mirroring pro-
cess is implemented within the sorting precess while here
it is already part of the orthogonal transformation.
In the third step we compute the conditional expectation.
As we have reordered the data, the input is now increas-
ingly ordered. If there is a functional dependency between
input and output, the (rearranged) output signal can be
approximated by half a cosine wave (i.e., approximately
linear) and its higher harmanics. Hence, the functional
dependency is expressed by replacing the coefficients of
the higher frequencies by 0, c = (c0, c1, . . . , cM , 0, . . . , 0)
thus keeping only those which are in resonance with the
input signal. If one wants to gain access to the underlying
harmonic regression meta-model then inverse DCT has to
be applied to theses filtered coefficients c j, j = 1, . . . ,M.
Also, a visual inpection of the DCT power spectrum

∣∣∣c j

∣∣∣2
might show if M is chosen in the right way. Under dis-
cussion are also methods for an adaptive selection of the
maximum harmonic M, see [17]. For continuous model
dependencies, we expect a quadratic decay so that the
choice M = 5 to 8 is sufficient in most cases.
In the fourth step we compute the variances using Par-
seval’s Theorem. Due to the orthogonality of the trans-
formation we can read it directly off the coefficients as
the sum of squares. Hence there is no need for a back-
transformation. With some renormalisation we then have
η̂2 = 1

(n−1)V̂ar[Y]

∑M
j=1 c2

j where M is the maximum number
of coefficients to consider . Again, instead of computing
the variance of Y directly we may use the sum of squared
coefficients for it and obtain

η̂2 =

∑M
j=1 c2

j∑n−1
j=1 c2

j

. (3)
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Here the missing coefficient c0 corresponds to the mean
of Y . This formula is only effective when used with a fast
DCT implementation [1], not when using (2) directly.

4. Examples

In this section we discuss some tests. We start with a sim-
ple and well-discussed example and then consider a more
realistic setting of a contaminant transport model.

4.1. The Ishigami test function

Figure 3: Computation of the first order effects as sum of squares

The Ishigami function is given by

Y = sin X1 + 7 sin2 X2 + 0.1X4
3 sin X1

where Xi ∼ U(−π, π) are uniformly distributed in [−π, π].
This function is a three-parameter model. We add a fourth
dummy input parameter which is not used during the test
function evaluation. This function is in so far interesting
as the second and third input factors have a Pearson Cor-
relation Coefficient of zero. A variance-based sensitivity
analysis retrieves a 44% first order effect for the second
input factor, but the third and fourth input factors show no
first order effect. While the effect of the third parameter
is non-functional, the influence of the fourth parameter is
purely random. The values of R2 ≈ R2∗ ≈ 20% imply
that the results from a standard or rank-transformed linear
regression are not very powerful in this case.
Figures 1-3 show details on how to perform the calcu-
lation from within a spreadsheet. For a sample size of

250, we obtain the estimates η̂2
1 = 0.29 (expected 0.31),

η̂2
2 = 0.48 (expected 0.44), η̂2

3 = 0.00 (expected 0.00) and
η̂2

4 = 0.03 (expected 0.00). For the second parameter, the
major contribution can be found in the 3rd and 4th fre-
quencies, see Figure 3, which suggests that the functional
dependency is highly non-linear. Note that all of the re-
sults are in the range given by the Monte-Carlo sampling
error 1

√
n ≈ 0.06.

4.2. The Level-E geosphere transport model

In various publications (see [12] for a review), the
PSACOIN Level E code [4] is used both as a benchmark
of Monte Carlo simulations and as a benchmark for sen-
sitivity analysis methods. This computational model pre-
dicts the radiological dose to humans over geological time
scales due to the underground migration of radionuclides
from a hypothetical nuclear waste disposal site through a
system of idealised natural and engineered barriers. The
model has a total of 33 parameters, 12 of which are taken
as independent uncertain parameters. The uncertainties
are either uniformly or log-uniformly distributed. The pa-
rameters of the distributions have been selected on the ba-
sis of expert judgement.
Luckily, as our proposed method of computation is able to
act as a post-precessor, we can dust off a dataset from the
electronic shelf and analyse it. An Excel 2007 add-in writ-
ten in C++ was used that offers the same functionality, but
is a more comfortable and compact form of executing the
algorithm. The results obtained from a quasi-Monte Carlo
sample of size 4096 are shown in Figure 4. This analysis
shows that parameters v1, the velocity in geosphere layer
1, and W, the biosphere stream flow rate, have dominant
first order effects on the total dose rate. However, the sum
of all first order sensitivity indices is well below 1, indi-
cating that there are interactions in effect. These results
are in agreement with [16, Figure 7] and [5, Figure 6].

5. Conclusions

The use of the Discrete Cosine Transform for estimating
first order effects offers a refreshing look on variance-
based sensitivity indicators. For example, first order ef-
fects can be routinely computed accompanying a linear
regression. Estimating higher order effects and, in partic-
ular, total effects from given data still remains a challenge.
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Figure 1: Computation of the DCT weights by cosine evaluation

Figure 2: Computation of the DCT coefficients as inner product of reordered outputs and weights
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Figure 4: Time-dependent first order effects for the Level E transport model
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