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Abstract
The theory of optimal transport and the use of Wasserstein-type metrics are at-

tracting increasing attention in statistics and machine learning. At the same time,
the definition of measures of statistical association for multivariate responses is an
open research topic, especially for feature selection in computer experiments. This
work examines the construction of probabilistic sensitivity measures using the the-
ory of optimal transport. We obtain a new family of indicators that are global,
well posed in the presence of correlations and possess the zero-independence prop-
erty. Closed form expressions are derived for the family of elliptical distributions.
We study the connection between measures based on the Wasserstein-Bures ap-
proximation and previously introduced generalized variance-based indicators. For
estimation, we employ a one-sample strategy that keeps computational burden un-
der control. We prove the asymptotic consistency of the estimators. We compare
estimators based on alternative algorithmic approaches developed in the machine
learning literature for the solution of optimal transport problems. Findings show
that consistent estimates are obtained at reasonable sample sizes and fast execution
times.

1 Introduction
The pervasive use of scientific simulators requires approaches to transparently account
for uncertainty in assumptions and inputs [Cockayne et al., 2019, Owhadi et al., 2013].
As part of uncertainty quantification, probabilistic sensitivity methods assist scientists in
determining the key-drivers of output variability [Saltelli and Tarantola, 2002, Oakley and
O’Hagan, 2004]. Although a rich set of tools and a consolidated theory are available for
univariate responses, the analysis becomes challenging when the output is a multivariate
random vector (see Marrel et al. [2017]). This problem is related to the definition of
measures of statistical dependence in a multivariate or functional response context. Recent
works such as Pan et al. [2020] and Chatterjee [2020] show a renewed interest in this topic.
We investigate the use of optimal transport (OT) theory [Figalli and Glaudo, 2021] for
defining probabilistic sensitivity measures for multivariate outputs. We discuss theoret-
ical aspects first, with particular focus on positivity and the zero-independence prop-
erty. We then address the analytical representation of the sensitivity measures via the
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Wasserstein-Bures metric, showing that it is exact if the input and output distributions
are elliptical. The resulting dependence measures can be decomposed into an advec-
tive and a diffusive contribution, with the advective part proportional to the generalized
variance-based sensitivity indices of Gamboa et al. [2014]. We then address computation,
defining given-data estimators that rely on Pearson [1905] partition-based design. From
an algorithmic viewpoint, the design implies the solution of one OT-problem for each
partition. This aspect, together with the related problem sizes make the estimation pro-
cess a challenge for OT-solving algorithms, whose development is a hot topic in machine
learning [Altschuler et al., 2019, Janati et al., 2020]. We test OT-solvers representatives
of different families, namely, Puccetti [2017]’s proposal based on a partial orderings, two
versions of Cuturi [2013]’s Sinkhorn-based entropic solver, and a direct implementation
through the Wasserstein-Bures approximation. We prove asymptotic consistency of the
estimators. We report results for several experiments on analytical test cases as well as
on a well-known realistic simulator. Findings indicate that all the employed algorithms
yield consistent estimates at reasonable sample sizes. Implementations are time-wise fast,
with one exception for the Sinkhorn algorithm with numerical stabilization.
The remainder of the manuscript is organized as follows. Section 2 reviews related works
on optimal transport theory and probabilistic sensitivity measures. Section 3 introduces
the new family of OT-based dependence measures. Section 4 presents given-data estima-
tors. Section 5 presents numerical experiments for univariate and multivariate analytical
test cases. Section 6 presents results for a realistic application, the Bliznyuk et al. [2008]
environmental model. Section 7 concludes the work. Appendix A reports all proofs.

2 Related Literature and Theoretical Foundations
The literature on optimal transport and probabilistic sensitivity analysis is broad and a
review of both fields is outside our reach. In this section, we offer a concise overview due
to space limitations, starting with optimal transport in Section 2.1.

2.1 Optimal Transport and Wasserstein Distances
Optimal transport (OT, henceforth) is a topical research subject intensively investigated
in mathematics, statistics and machine learning. We refer to the monographs of Villani
[2009], Panaretos and Zemel [2020], Peyré and Cuturi [2019], Figalli and Glaudo [2021] and
the survey of Chen et al. [2021] for a detailed treatment of the theory and computational
aspects, while we present a concise overview of the main principles.
Let Y be a Polish space (i.e., a separable topological space whose topology is induced
by a complete metric), and denote by P(Y) the space of Borel probability measures on
Y. If (Ω,F,P) is a standard Borel space and Y : Ω → Y is a (Borel) random variable,
we will denote by Y]P = PY ∈ P(Y) the law or push-forward of Y in Y, defined by
PY (A) = Y]P(A) = P[Y ∈ A] for every Borel set A ∈ B(Y). If Z is another Polish space,
ν ∈P(Y) and ν ′ ∈P(Z), we denote by Π(ν, ν ′) the set of plans or couplings π ∈P(Y×Z)
whose marginals are ν and ν ′ respectively, i.e. ν = pY

]π, ν
′ = pZ

] π, where pY(y, z) = y
and pZ(y, z) = z. Given a (lower semicontinuous) cost function c : Y× Z→ [0,+∞], the
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Kantorovich formulation of the optimal transport problem

K(ν, ν ′) = inf
π∈Π(ν,ν′)

C(π) (1)

consists of finding a transfer plan π ∈ Π(ν, ν ′) minimizing the integrated cost C(π) =∫
c(y, z) dπ(y, z). Whenever a transfer plan π ∈ Π(ν, ν ′) with finite cost C(π) < ∞

exists, it can be shown that the Kantorovich problem has (at least) a solution attaining
the minimum of C in Π(ν, ν ′). If ν = ∑I

i=1 miδyi , ν ′ = ∑J
j=1 njδzj are discrete measures

(where mi, nj ≥ 0, ∑I
i=1mi = ∑J

j=1 nj = 1) then

Π(ν, ν ′) =

π =
∑
i,j

pijδ(yi,zj) : pij ≥ 0,
∑
j

pij = mi,
∑
i

pij = nj

 (2)

is isomorphic to a bounded, closed, and convex polytope in RI×J and the Kantorovich
problem amounts to solve the linear program

K(ν, ν ′) = min

∑
ij

c(yi, zj)pij : pij ≥ 0,
∑
j

pij = mi,
∑
i

pij = nj

 . (3)

A particular case occurs when I = J = N and mi = nj = 1
N

: an application of Birkhoff’s
theorem yields

K(ν, ν ′) = min
{

1
N

N∑
i=1

c(yi, zσ(i)) : σ ∈ Sym(N)
}
, (4)

where Sym(N) is the symmetric group of all the permutations of the first N integers. From
(4), the solution of the linear program (3) is therefore a vertex of a high-dimensional
polytope, i.e. it is always possible to find a permutation that solves the minimization
problem.
When Y = Z and c(y, z) = dp(y, z) for a suitable continuous distance d : Y×Y→ [0,+∞),
the p-th root of the optimal Kantorovich cost

Wp(ν, ν ′) = p

√
inf

π∈Π(ν,ν′)

∫
dp(y, z) dπ(y, z) (5)

defines the so-called p-Wasserstein distance, which satisfies the axioms of a metric in the
subset Pp(Y) whose measures have finite p-th moment

∫
Y

dp(y, y0) dν(y) < ∞ for some
(and thus any) y0 ∈ Y. Particularly important is the case Y = RnY , nY ∈ N, endowed
with the Euclidean distance (or, more generally, the distance induced by a norm ‖ · ‖ in
RnY ).
Whenever ν = PY and ν ′ = PZ then π = P(Y,Z) = (Y, Z)]P is a coupling between ν and ν ′
so that

W p
p (ν, ν ′) ≤ E

[
dp(Y, Z)

]
, (6)
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and using the dual formulation we also get

W p
p (ν, ν ′) = sup

f,g

{
E [f(Y )] + E [g(Z)] : f, g ∈ Cb(Y), (7)

f(y) + g(z) ≤ dp(y, z) for all y, z ∈ Y

}
, (8)

where the expressions E[f(Y )] e E[g(Z)] do not depend on Y and Z but only on ν,ν ′. On
the other hand, if P has no atoms then it can be shown that

W p
p (ν, ν ′) = inf

X,Y

{
E [dp(Y, Z)] : Y]P = ν, Z]P = ν ′

}
. (9)

As a metric, the p-Wasserstein distance is actively studied and applied. We recall Wang
et al. [2020] for an application in genomics, Puccetti et al. [2020] for recent results of
Wasserstein baricenters, Deb and Sen [2021] for the use of the Wasserstein metric for sta-
tistical testing in high-dimensional settings. Panaretos and Zemel [2020] presents exten-
sive details on the properties and applications of the Wasserstein metric in mathematics,
statistics and artificial intelligence. We also recall the work of Berthet et al. [2020], that
recently derive central limit theorems for univariate p-Wasserstein distances. For nY = 1,
we have explicit formulations of Wp in terms of the cumulative distribution functions
Fν , Fν′ induced by ν, ν ′ ∈ P(R) and their (pseudo-) inverses, the quantile functions. In
fact, the cumulative distribution function provides the optimal transport map (also called
the Monge map) to the standard uniform distribution, i.e., the Lebesgue measure λ on
[0, 1], and conversely, the quantile function is the optimal transport map from the stan-
dard uniform distribution. It is a remarkable fact that they also provide the solution to
the Kantorovich problems for a pair of measures.

Theorem 1 (Bobkov and Ledoux [2016]). Let ν, ν ′ ∈ P1(R), let λ be the uniform
Lebesgue measure on [0, 1], and let us set Fν(y) = ν

(
(−∞, y]

)
, y ∈ R, and Qν(u) =

inf
{
y ∈ R : Fν(y) ≥ u

}
, u ∈ [0, 1] (using the same notation with ν ′). Then the cou-

pling (Qν , Qν′)]λ belongs to Π(ν, ν ′) and it is optimal for all the Wasserstein distances Wp

(provided ν, ν ′ have finite p-moments). Hence, for all p ≥ 1

W p
p (ν, ν ′) =

∫ 1

0
|Qν(u)−Qν′(u)|p du. (10)

In turn, this result yields a computational shortcut that makes the numerical calculation
of p-Wasserstein distances straightforward: Given a sample of realizations of univariate
random variables Y ∼ ν, Y ′ ∼ ν ′, an estimate of their p-Wasserstein distance is found
from ordering their realizations, taking the p-norm of their differences and averaging.
The multivariate case (nY ≥ 2) is, instead, more difficult to handle from a computational
as well as a theoretical viewpoint. Regarding theoretical aspects, we refer to Panaretos and
Zemel [2019] for greater details and recall the distributional results for the 2-Wasserstein
distance between discrete random vectors obtained in Sommerfeld and Munk [2018], as
well as convergence results in Weed and Bach [2017]. Also, it is usually impossible to
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obtain a closed form expression for the solution of Problem (1). A notable exception occurs
when the involved distributions are elliptical. Let P and Q be two elliptical distributions
and let µP, µQ and ΣP, ΣQ denote, respectively, their mean values and variance-covariance
matrix, respectively. Then, Givens and Shortt [1984] and Gelbrich [1990] prove that

W2(P,Q) =
√
‖µP − µQ‖2

2 + Tr
(
ΣP + ΣQ − 2 ((ΣP)1/2ΣQ(ΣP)1/2)1/2), (11)

where Tr(·) denotes the trace of a matrix and Σ1/2 is the symmetric matrix square root
operator. Note that, because variance-covariance matrices are positive definite for ellipti-
cal random variables, the matrix root square operation is well posed and results a unique
real-valued positive definite matrix.
The metric in the right-hand side of (11) is the Wasserstein-Bures semimetric [Janati
et al., 2020], which we denote by WB(·, ·). More in detail, let ν1, ν2, ν3 ∈ P(Y). Then,
WB : P(Y) ×P(Y) → R is such that WB(ν1, ν2) ≥ 0, WB(ν1, ν2) = 0 if ν1 = ν2, and
WB(ν1, ν3) ≤WB(ν1, ν2) + WB(ν2, ν3). Now, let Y and Z be two random variables on Y.
Then, WB(PY ,PZ) = 0 does not imply Y = Z, because for WB(PY ,PZ) = 0 it is sufficient
that µY = µZ and ΣY = ΣZ , although Y 6= Z. However, on Gaussian distributions, WB
is a metric and coincides with the 2-Wasserstein distance.
Regarding computation, in an influential work Cuturi [2013] proposes to regularize the
Kantorovich problems through a penalty term based upon the Kullback-Leibler entropy
of π w.r.t. a suitable reference probability measure ϑ

KL(π|ϑ) =
∫

log
(

dπ
dϑ

)
dπ, if π � ϑ, (12)

(KL(π|ϑ) = +∞ if π is not absolutely continuous w.r.t. ϑ) added to the minimization
problem. A natural choice is ϑ = ν ⊗ ν ′, which yields

Sε(ν, ν ′) = inf
π∈Π(ν,ν′)

C(π) + εKL(π|ν ⊗ ν ′), ε ≥ 0. (13)

(13) is also called the entropic optimal transport problem. As for the Kantorovich prob-
lem, the entropic problem admits a dual formulation, which can also be expressed in terms
of an arbitrary pair of random variables Y , Z with laws ν, ν ′:

Sε(ν, ν ′) = sup
f∈Cb(Y),
g∈Cb(Z)

E[f(Y )] + E[g(Z)]

− ε
(∫∫

exp
(
f(y) + g(z)− c(y, z)

ε

)
dν(y) dν ′(z)− 1

)
.

(14)

The entropic problem can be solved by a fixpoint iteration using Sinkhorn’s algorithm.
This functional fixpoint iteration is given by

gn+1 : z 7→ −ε logE
[
exp

(
fn(Y )− c(Y, z)

ε

)]
, (15)

fn+1 : y 7→ −ε logE
[
exp

(
gn+1(Z)− c(y, Z)

ε

)]
. (16)
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In the limit, fn → f∗, gn → g∗. The pair (f∗, g∗) then minimizes (14). For ε → 0 one
regains the solution to the Kantorovich OT problem (the pth power of the p-Wasserstein
metric when c = dp). However, this limiting process introduces numerical instabilities.
One option might be to use Sε directly as objective function, thus retaining the solution
of the entropic transport for a finite value of ε.
The development of efficient algorithms for the solution of classical and entropic OT
problems is a very active research area [Peyré and Cuturi, 2019]. With some conceptual
simplification, one can consider three groups of algorithms, based respectively on sorting,
linear programming and matrix scaling. The first is inspired by the one-dimensional
numerical sorting shortcut. A multivariate algorithm that approximates the 2-Wasserstein
distance using iterative swaps is presented in Puccetti [2017]. The algorithm makes use of
pairwise comparisons and leads to an approximate solution of the classical OT problem
in (1). A second class comprises algorithms that solve the OT-linear program through
specializations of the simplex method, which comprise variants of the Hungarian method
[Kuhn, 1956], the network flow and the transportation simplex algorithms [Luenberger and
Ye, 2016]. These algorithms yield the exact solution of the Kantorovich problem in (1).
The third class of algorithms solves the entropic problem in (13). Cuturi [2013] revived
interest in the Sinkhorn-Knopp method Knight [2008], yielding a computationally efficient
fixpoint algorithm (see Peyré and Cuturi [2019] for a thorough treatment). Variants are
discussed in articles such as Altschuler et al. [2017]. These algorithms provide a solution
which is exact for the entropic problem (Equation (13)), and that can be regarded as
an approximate solution of the classical problem (Equation (1)). For the Gaussian case,
formulas for the solution of the exact and entropic OT are available, see Equations (11)
and (36). Neglecting the Gaussian assumption, we obtain approximate solutions for the
general case, leading to a fourth approach. A comparison of the performance of alternative
algorithms (exact and approximated) can be found in the recent work of Dong et al. [2020],
to which we also refer for further details on algorithmic aspects.

2.2 Probabilistic Sensitivity Analysis
The recent works of Pan et al. [2019, 2020], Chatterjee [2020] demonstrate a new attention
in the statistical literature to the definition of measures of association between random
variables. Within such family, probabilistic sensitivity measures play an important role
in quantifying the relevance of random covariates on the response of computer simulators
Oakley and O’Hagan [2004], Oakley [2009]. The literature is vast, and we refer to the
monographs of [Saltelli et al., 2008, Sullivan, 2015], and to the handbook of [Ghanem
et al., 2017] for broad overviews.
Let X and Y be random vectors/variables on (Ω,F,P), with values in X ⊆ RnX and
Y ⊆ RnY respectively. If α ⊂ {1, . . . , nX} is an ordered multiindex of length a = |α|, we
denote by Xα = pα ◦ X the random vector obtained by X by selecting the components
indexed by α through the projection map pα(x1, · · · , xn) = (xα(1), · · · xα(a)).
We say that the mapping ζ : P(Y) ×P(Y) → [0,+∞) is a separation measurement if
ζ(ν, ν ′) ≥ 0 and ζ(ν, ν) = 0 for all ν, ν ′ ∈ P(Y). Now, if PY is the law of Y and PY |Xα
is the conditional law of Y given Xα, we define the probabilistic sensitivity index of Xα
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with respect to Y as
ξζα = E

[
ζ(PY ,PY |Xα)

]
. (17)

Equivalently, let π = P(X,Y ) ∈ P(X × Y) be the coupling between µ = PX and ν = PY
induced by the two random vectors; denoting by Xα = pα(X) ⊂ Ra, we can consider the
measure µα = (pα)]µ, the coupling πα = (pα, idY)]π = P(Xα,Y ) between µα and ν, and the
disintegration of (νx′)x′∈Xα ∈P(Y) of πα with respect to µα. We eventually get

ξζα =
∫
Xα

ζ(ν, νx′) dµα(x′). (18)

One calls ζ(PY ,PY |Xα) the inner statistic of ξζα. Several global sensitivity measures cur-
rently in use can be written in the form of (17) [Borgonovo et al., 2014]. To illustrate,
for nY = 1, setting the inner statistic equal to ζV(PY ,PY |Xα) = (E[Y ]− E[Y |Xα])2, one
obtains the well known first order variance-based sensitivity measure

ξVα = E
[
(E[Y ]− E[Y |Xα])2

]
= V[E[Y |Xα]] =

∫ (∫
Y
ydν −

∫
Y
ydν ′x

)2
dµα(x′). (19)

Normalized by V[Y ], ξVα in (19) is Pearson [1905] correlation ratio, and, under input
independence, coincides with the first order Sobol’ variance-based sensitivity index of
Xi [Saltelli and Tarantola, 2002, Liu and Owen, 2006]. Alternatively, if Y is absolutely
continuous, one can use the L1 norm between densities [Borgonovo et al., 2014], writing

ξL1
α = E

[∫
Y

∣∣∣fY (y)− fY |Xα(y)
∣∣∣ dy] =

∫
‖ν − νx′‖TVdµα(x′), (20)

where ‖ · ‖TV denotes the total variation norm of a signed measure. Equation (20) is a
representative of the family of global sensitivity measures based on Csiszar’s divergences
proposed in Rahman [2016]. Gamboa et al. [2018] introduce a family of probabilistic
sensitivity measures based on the Cramér-von Mises distance, defining

ξCvM-a
α = E

[∫
Y

(
FY (y)− FY |Xα(y)

)2
dFY (y)

]
=
∫∫ ∣∣∣Fν(y)− Fνx′ (y)

∣∣∣2 dν(y) dµα(x′).
(21)

The sensitivity measures in Equation (20) and the family of Rahman [2016] naturally
extend to the multivariate output case nY ≥ 2. The extension of variance-based indices
ξVα has been made systematic in Gamboa et al. [2014] with the introduction of generalized
indices based on the trace of the variance-covariance matrix of Y . Recent works that
address generalized variance-based Sobol’ indices also employing derivative-based methods
are Lamboni [2019, 2020]. A variance-based approach is also employed in Alexanderian
et al. [2020], where variance-based indices are modified to take into account the temporal
variation of the output process variance. The works of Fraiman et al. [2020] and Gamboa
et al. [2021] further extend ξCvM-a

α to the case in which the output belongs to a Riemannian
manifold and to a metric space, respectively. Recently, Fort et al. [2021] address the
sensitivity of models with stochastic output using these indices with the Wasserstein
distance as a metric. We cannot enter into further details, but this concise review shows
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that the definition of indices for vectorial outputs is an active research field, motivated by
industrial and machine learning applications [Marrel et al., 2011, Lamboni et al., 2011,
Marrel et al., 2017, Betancourt et al., 2020]. In the next section, we propose a new family
of indicators that exploits the theoretical foundations of optimal transport.

3 Defining Probabilistic Sensitivity Measures with Optimal Trans-
port Theory

This section is divided into three parts. In the first part, we define a family of sensitivity
indicators based on the OT framework. In the second, we discuss their properties in the
univariate output case. In the third, we address the multivariate output case.

3.1 A family of OT-based indicators
In this subsection, we define a family of probabilistic sensitivity measures based on optimal
transport. We follow the notation in Section 2, and consider an OT-problem with cost
function c : Y× Y→ [0,+∞], lower semicontinuous, with c(y, y′) ≥ 0, c(y, y) = 0 for any
y, y′ ∈ Y, and such that c(y, y′) = 0 implies y = y′.

Lemma 2. Let ν, ν ′ ∈ P. The function K(·, ·) : P×P→ R defined by (1) is a separation
measurement and K(ν, ν ′) = 0⇐⇒ ν = ν ′.

Definition 3. We call

ξKα = E[K(PY ,PY |Xα)] = E

 inf
π∈Π(PY ,PY |Xα)

C(π)
 (22)

the OT-based global sensitivity measure of Xα with respect to Y .

With the interpretation as cost function, ξKα becomes the expected amount of work needed
to optimally connect PY to PY |Xα. Thus, the most important input (group) Xα is the one
associated with the highest expected amount of work when we pass from the marginal
(and current) probability measure of Y to the new probability measure of Y conditional
on receiving information about Xα.

Proposition 4. Suppose that ξKα . Then, ξKα ≥ 0 and ξKα = 0 if and only if Y and Xα are
statistically independent.

Thus, the family of OT-based sensitivity measures ξKα comply with Renyi’s postulate D for
measures of statistical dependence Renyi [1959], also called zero-independence property
in the recent works of Pan et al. [2019, 2020], Chatterjee [2020]. In particular, choosing
as cost function the pth-power of the Euclidean distance and then taking the 1/p-power
of the total cost, Rny , ξKα becomes:

ξWp
α = E[Wp(PY ,PY |Xα)] = E

 inf
π∈Π(PY ,PY |Xα)

{∫
||y − y′||p dπ(y, y′)

} 1
p

 . (23)

We call ξWp
α a p-Wasserstein based sensitivity measure. Additional properties are summa-

rized next.
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Proposition 5. 1. If p ≤ q then ξWp
α ≤ ξWq

α ;

2. Let Y be equipped with the discrete metric, i.e., a metric such that for all y, y′ ∈ Y,
d(y, y′) = 0 if y = y′ and d(y, y′) = 1 if y 6= y′. Then ξKα = ξL1

α in (20).

The first property means that if we increase the power p in (23) then we obtain a higher
expected cost for moving from PY to PY |Xα . The second property suggests that ξL1

α ,
a well-known moment-independent sensitivity measure, can be reinterpreted as an OT-
based sensitivity measure if the output space is equipped with the discrete metric.
The probabilistic sensitivity framework of Equation (17) does not require a functional
relationship between Y and X. However, in computer experiments and machine learning,
we often seek to determine, or have available, an input output mapping of the form y =
g(x)+E(x, ω), with g : X→ Y and where E : X×Ω→ Y is such that, for every value of x,
E(x) is a random vector on (Ω,F,P). Then, let Yα denote the simulator output conditional
on fixing Xα. We have Yα = g(xα;X−α) +E(xα;X−α, ω), where −α = {1, 2, . . . , ny} \α is
the complementary set of α. Clearly, Y has probability measure PY and Yα has probability
measure PY |Xα=xα .

Remark 6. The OT problem (5) is solved without taking the pth-root of the cost function
in several works. In this case, we write the corresponding sensitivity measure as

ξW
p
p

α = E[W p
p (PY ,PY |Xα)] = E

 inf
π∈Π(PY ,PY |Xα)

{∫
||y − y′||p dπ(y, y′)

} . (24)

Regarding the choice of p, the analyst has available a variety of possibilities. We note
that if y − y′ > 1, the higher the values of p, the more the cost function penalizes points
that are further apart. The converse happens if Y ⊆ [0, 1]. In the univariate output case
(nY ≥ 1), Vallender [1974] shows that when p = 1:

W1(ν, ν ′) =
∫ 1

0
|Qν(u)−Qν′(u)| du =

∫ +∞

−∞
|Fν(y)− Fν′(y)| dy, (25)

Then, p = 1 is a convenient choice and it has been used in industrial applications [Liu and
Homma, 2010]. For nY ≥ 2, [Panaretos and Zemel, 2019, Section 2] list several properties
that make p = 2 a convenient selection. On a historical note, the 2−Wasserstein metric is
also known as the Mallow distance, as it has been independently introduced and studied
in Mallows [1972].

3.2 The Univariate Case
In the specific case of univariate responses, nY = 1, several results are available for the
Wasserstein metric (some of them mentioned in the literature review section). In this
section, we review some facts useful as a premise to the multivariate case. Recalling the
notation of Theorem 1, we write FY = FPY , QY = QPY .

Proposition 7. Let nY = 1 and let Y have finite moments up to order p; then the
following hold:
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1. For any p ≥ 1,

ξWp
α = E

[( ∫ 1

0
|QY (u)−QY |Xα(u)|p du

)1/p
]

= E
[
‖QY −QY |Xα‖Lp(0,1)

]
. (26)

2. For p = 1,

ξW1
α = E

[∫
Y
|FY (y)− FY |Xα(y)| dy

]
= E

[∫ 1

0
|QY (q)−QY |Xα(q)| dq

]
. (27)

As soon as the conditional and unconditional distributions are known, equations (26)
and (27) yield analytical test cases for numerical experiments in the univariate case.
These integral expressions can be readily implemented in a computer algebra system
(e.g., Mathcad, Matlab or Mathematica).
Consider now the univariate Gaussian case. We recall that for univariate normal random
variables Y , Z in R with means µY , µZ and standard deviations σY , σZ , the 2-Wasserstein
distance between PY and PZ is given by the Wasserstein-Bures distance, that is

W2(PY ,PZ) =
√

(µY − µZ)2 + (σY − σZ)2. (28)

Conversely, for Y and Z with expectations µY , µZ and standard deviations σY , σZ ,
but not necessarily normally distributed, we have W 2

2 (PY ,PZ) ≥ (µY − µZ)2 + (σY −
σZ)2 ≥ (µY − µZ)2 Givens and Shortt [1984]. Then, we immediately have that ξW 2

2 ≥ ξV.
Moreover, given generic Y1 and Y2 with means µ1, µ2 and standard deviations σ1, σ2, their
2-Wasserstein distance is minimal when they are both normally distributed.
Proposition 8. Let α = {i} for simplicity. Letting a = (a1, a2, ..., anX ), if the input-
output mapping is of the form Y = aXT , with X ∼ N(µX ,ΣX) with mean µX =
(µ1, µ2, . . . , µnX ), and variance-covariance matrix ΣX = (σt,s), t, s = 1, 2, . . . , nX , with
σt,s = σs,t, σt,t = σ2

t and σt,s = ρt,sσtσs, where ρt,s is the correlation coefficient between
Xt and Xs, we have

ξW2
i = E

[√(
µY − µY |Xi

)2
+
(
σY − σY |Xi

)2
]

, (29)

with µY = aµTX ,

µY |Xi=xi =
nX∑
j=1

aj

(
µj + (xi − µi)

σii,j
σii,i

)
, (30)

Σc
i = [σit,j = σt,j −

σt,i · σi,j√
σi,i

, t, j = 1, 2, . . . , nX ], (31)

and σ2
Y = aΣXa

T , σ2
Y |Xi = aΣc

ia
T .

Let us explore the link between ξW2
i in (29) and variance-based sensitivity measures fur-

ther. In several works (e.g., Janati et al. [2020]), the square of the 2-Wasserstein distance
is used. In the normal distribution case, we can write

ξ
W 2

2
i = E

[(
µY − µY |Xi

)2
+
(
σY − σY |Xi

)2
]

= ξVi + E[(σY − σY |Xi)2] = AdvW
2
2

i + DiffW
2
2

i .
(32)
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The second equality in (32) evidences that the squared 2-Wasserstein importance of Xi in
the normal case is equal to the variance-based sensitivity measure of Xi plus a contribu-
tion coming from the difference in standard deviations. Hence the OT-based sensitivity
measure decomposes into an “advective part” which acts constantly on all point, (AdvW 2

i

in Equation (32)), and may therefore be identified as a movement of the center of gravity,
i.e., the mean, and a “diffusive part”(DiffW 2

i ) leading to a non-directional dispersion of
the data. The equality in (32) suggests that, under the assumptions of Proposition 8, the
advective and diffusive parts contribute additively to the input importance, if the squared
2-Wasserstein semimetric is considered as a separation measure. This is not true if the
2-Wasserstein metric is considered; decomposing (28) into these two parts, by Jensen’s
inequality and recalling that 1

2(|a|+ |b|) ≤
√
a2 + b2 ≤ |a|+ |b|, leads to

1
2
(
E
[∣∣∣µY − µY |Xi ∣∣∣]+ E

[∣∣∣σY − σY |Xi ∣∣∣]) ≤ ξW2
i ≤ E

[∣∣∣µY − µY |Xi ∣∣∣]+ E
[∣∣∣σY − σY |Xi ∣∣∣] .

(33)

Example 9. With the notation in Proposition 8, consider a linear model Y =
3∑
i=1

aiXi,
with a1 = 4, a2 = −2 and a3 = 1. Assuming µX = (1, 1, 1), σ2

i = 1, and ρi,j = 0.5, the
values for ξW2

i , ξW
2
2

i , and the corresponding advective and diffusive parts are reported in
Table 1.

Table 1: ξW2
i , ξW

2
2

i and associated decompositions into advective and diffusive parts for
Example 9.

ξW2
i E

∣∣∣µY −µY|Xi∣∣∣ E
∣∣∣σY −σY|Xi∣∣∣ ξ

W 2
2

i AdvW
2
2

i DiffW
2
2

i

X1 3.79 2.79 2.21 17.15 12.25 4.90
X2 0.40 0.40 0.03 0.25 0.25 0.00
X3 1.75 1.60 0.56 4.31 4.00 0.31

Regarding ranking, Table 1 shows that X1 is the most important variable, followed by X3
and X2, under both the Wasserstein and the Wasserstein-squared metrics. The last three
columns report the neat decomposition into advective and diffusive contributions showing
that for all variables, the advective part is predominant: it accounts for 71% of ξW

2
2

1 , and
for more than 90% of ξW

2
2

2 , and ξW
2
2

3 . The first three columns also show that the advective
part plays a major role in the Wasserstein-based importance, ξW2

1 . From the values in
columns 2-4, note that ξW2

1 − E
∣∣∣µY −µY|Xi∣∣∣ ≈ 1, while E

∣∣∣σY −σY|Xi∣∣∣ ≈ 2.21, due to the
non-additivity of the two contributions to ξW2

1 .

3.3 The Multivariate Case
In the case nY ≥ 2, closed form expressions similar to Equations (26) and (27) are generally
not available, and the Wasserstein distance will have to be found solving a corresponding
data-driven optimization problem that we discuss in Section 4.2. Nonetheless, in the
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particular case of elliptical distributions it is still possible to find the distance in a form that
generalizes (29). Elliptical distributions have been widely studied in the statistical and
actuarial sciences Cambanis et al. [1981], Landsman and Valdez [2003]. A random vector
Z is elliptically distributed if its characteristic function can be represented in the form
φ(z;µZ ,Σ∗Z) = eiz

Tµ∗Zh(zTΣ∗Zz), where h : R+ → R+ is called the characteristic generator
(see [Cambanis et al., 1981, Theorem 2] for technical conditions), and µ∗Z and Σ∗Z are
called the location and dispersion parameters, respectively. One correspondingly writes
Z ∼ EC(µ∗Z ,Σ∗Z , h) where EC stands for elliptically contoured, as in Cambanis et al. [1981]
— however, we will use elliptical, for short, henceforth. Note that, if the first moment,
µZ , of Z exists then µZ = µ∗Z ; if the second moment exists then the variance-covariance
matrix ΣZ is related to the dispersion parameter Σ∗Z as ΣZ = −2h′(0+) [Cambanis et al.,
1981, Theorem 4], where h′(0+) is the right derivative of the characteristic generator
at the origin. The family of Gaussian distributions is retrieved for h(·) = e−

1
2 (·). The

following result combines findings in Gelbrich [1990], Landsman and Valdez [2003].

Proposition 10. Assume that the second moment of Y is finite. If PY is elliptical with
generating function h, and PY |Xα is elliptical with the identical generating function h for
all values Xα, then ξW2

α = ξWB
α , where

ξWB
α =E

[√
‖E[Y ]−E[Y |Xα]‖2

2+Tr
(

ΣY +ΣY |Xα−2
(
Σ1/2
Y ΣY |XαΣ1/2

Y

)1/2
)]
. (34)

Proposition 10 suggests that if, in a probabilistic sensitivity analysis, all the involved
distributions are of the same elliptical family then we have a closed form expression of
ξW2
α , that becomes a probabilistic sensitivity measure based on the Wasserstein-Bures

metric. If this condition is met, it is not necessary to actually solve the OT-problem in
(5) to obtain the Wasserstein distance, but one can directly benefit from the closed form
expression in (50).
Equation (50) can be used to expose a relationship between OT-based sensitivity measures
and the generalized variance-based sensitivity indices of Gamboa et al. [2014]. Let us
restrict attention to the argument under the square root in the right-hand side of (50): it
is the sum of an advective part given by L2 distance between the means and a diffusive
part involving the covariance matrices.

Proposition 11. Let α = {i}, i ∈ {1, . . . , nX}. For the advective part in the squared
Wasserstein-Bures sensitivity measure, we have:

AdvWB2

i = E
[
‖E[Y ]− E[Y |Xi]‖2

2

]
= E

[
nY∑
t=1

(E[Yt]− E[Yt|Xi])2
]

=
nY∑
t=1

ξV,ti , (35)

where ξV,ti is the univariate variance-based sensitivity measure (19) of Xi with respect to
Yt. Moreover, if we assume that the inputs are independent then we have AdvWB2

i =∑nY
t=1 V[Y t]Sti , where Sti is the Sobol’ first order sensitivity measure of Xi with respect to

Y t.
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The equality AdvWB2

i = ∑nY
t=1 ξ

V,t
i holds for generic input distributions. If we consider that

inputs are independent, then AdvWB2

i becomes the numerator of the variance-based global
sensitivity measure introduced in Gamboa et al. [2014]. Let us denote this sensitivity
measure by SGamb

i . Then, under independence, we can reinterpret SGamb
i as the advective

part of ξWB2

i . Our results show that an OT-based importance measure contains one ore
more additional terms compared to a generalized variance-based sensitivity measure. In
the case of elliptical distributions this additional term is known, and is the diffusive part.
For general distributions the additional terms are not generally known analytically, as
the determination of OT-based sensitivity measures involves the full solution of the OT
problem.

Corollary 12. Let X ∼ EC(µX ,Σ∗X , h), with finite second moment. For notation sim-
plicity, we consider the case α = {i}. If Y = AX + b, where A is an nY × nX ma-
trix and b ∈ RnY , then ξW2

α = ξWB
α , with ξWB

α in Equation (50), where µY = AµX +
b, ΣY = AΣXA

T , ΣY |Xi = AΣc
iA

T , Σc
i as defined in Equation (31), and µYk|Xi =

nX∑
j=1

ak,j

(
µj + (Xi − µi)

σii,j
σii,i

)
, for k = 1, 2, . . . , nY , with σii,j as in (31).

Moreover, if X ∼ N(µX ,ΣX) and given ε ≥ 0 then the corresponding entropic probabilistic
sensitivity measure (see Equation (13)) can be written as

ξSεα = E

√√√√ m∑
t=1

(µY,t − µY |Xα,t)2 + Tr
(
ΣY + ΣY |Xα −Dε

)
+ L(Dε, ε)

 , (36)

where Dε =
(

4Σ
1
2
Y ΣY |XαΣ

1
2
Y + 1

4ε
2I
) 1

2
, I is the identity matrix, and

L(Dε, ε) = ε
2

(
nY · (1− log(ε)) + log det

(
Dε + ε

2I
))
. (37)

The first part of Corollary 12 suggests that if the model output is a linear transformation
of an elliptical input then we obtain closed form solutions for the corresponding OT-
problems, with the conditional moments and variance-covariance matrices determined
analytically. The second part benefits of a recent result in proven by [Janati et al., 2020]
and suggests that, for linear models with normal random variables, we have a closed form
solution for the entropic OT-based probabilistic sensitivity measure ξSεα as well. Note
that, setting ε = 0, one regains (50).

Example 13. Consider the linear model
{
Y1 = X1 + 2X2 + 3X3
Y2 = 2X1 + 5X2 −X3.

With the same dis-

tribution for X as in Example 9, Y is now multivariate normal with mean µY = (3, 6)
and variance-covariance matrix ΣY = ( 15 7.5

7.5 33 ) . In Example 9, we have seen that X1 is
the most important input when the output is Y1 and X2 is the most important when the
output is Y2. When we consider the output vector (Y1, Y2) obtain the importance of the
inputs is reported in Table 2. In these calculations, we used ε = 2 for the entropic OT.
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Table 2: Analytical values of ξW2
i and ξS2

i for the multivariate test case in Example 13.

Variable ξW2
i ξS2

i

√
AdvWB2

i ξW2
i -

√
AdvWB2

i Entropic Penalty
X1 6.47 6.95 4.24 2.23 0.48
X2 6.52 7.05 4.41 2.11 0.53
X3 2.86 4.17 2.55 0.3 1.31

The second and third columns report ξWB
α , and ξS2

α , respectively. The fourth column in 2
reports the root square of the advective contribution of the inputs to ξWB

α , the fifth column
reports the difference ξW2

i -
√

AdvWB2

i , which can be interpreted as the residual diffusive
part in the input importance, the sixth column the entropic penalty, as difference between
ξS2
α and ξWB

α , with ε = 2 in the entropic OT problem. We register ξWB
1 ≈ ξWB

2 , and
ξWB

1 ≈ 2.2 · ξWB
3 . In ξWB

1 and ξWB
2 , the advective contributions are about twice the diffu-

sive contributions. For X3, the diffusive component is 11% of ξWB
3 . In ξS2

i , the penalty
contribution accounts for about 7% and 8% of ξS2

1 , ξS2
2 , and it increases at about 31% for

ξS2
3 , respectively.

4 Estimation
The direct implementation of (24) for the estimation of OT-based probabilistic sensitivity
measures requires two steps: an appropriate sampling strategy for generating realizations
of X and Y that follow the appropriate distributions, and a procedure for obtaining
the inner statistic via optimal transport. Regarding sampling, in simulation we have
available a double-loop Monte Carlo estimation strategy, that results in a brute force
numerical translation of (24). A second class consists of pick-and-freeze designs Gamboa
et al. [2016] that grant a more efficient estimation of conditional quantities, or a given-data
technique that uses input partitioning, and generalizes the intuition behind correlation
ratio estimators of Pearson [1905]. This technique has been used in works such as Strong
et al. [2012] for variance-based sensitivity measures and Strong and Oakley [2013] for
value-of-information.
A second aspect to consider is the computational algorithm for solving the OT problem
and thus quantifying Wp(PY ,PY |Xα). We need to distinguish the case nY = 1 (univariate
output) and nY > 1 (multivariate output).

4.1 Asymptotic Consistency
We focus on given-data estimation because this approach allows one to quantify proba-
bilistic sensitivity measures from a sample of size N obtained within a plain Monte Carlo
uncertainty quantification (thus, we need to run the simulator N times). In this respect,
the approach is nominally advantageous when compared to a double loop approach, whose
cost is of the order of nX ·N2 simulator evaluations. Also, a given data approach allows
one to estimate global sensitivity measures from input-output samples coming from data
collection, without the need of a simulator in the loop. The exploration of pick-and-freeze
designs is left as an avenue of further research.
We recall that in a given-data context, PY is approximated by the empirical measure on
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the Monte Carlo sample of the output, and PY |Xα is approximated by subsampling from
the available observations, as follows. Let Xα denote the support of Xα and let P (Xα)
denote a partition of Xα whose cardinality is nP , i.e., P (Xα) = {X1

α,X
2
α, . . . ,X

nP
α } such

that Xα = ⋃nP
m=1 X

m
α , and Xm

α ∩ Xj
α = ∅ for all j 6= m, and let δP = maxnPm=1 diamXm

α

denote the diameter of the partition. Let also PN(Xα) = (X1
α(N),X2

α(N), . . . ,XnP (N)
α (N))

denote a sequence of partitions indexed by N , and whose cardinality is determined by a
function nP (N) that links the partition size nP to the sample size N .

Definition 14. We say that PN(Xα) is induced by a proper partition refining strategy if:
(i) PN ′(Xα) is finer than PN(Xα), whenever N ′ > N ; (ii) δP (N) → 0 as N → ∞; and
(iii) nP (N) is increasing in N with limN→∞ nP (N) =∞ and limN→∞

N
nP (N) =∞.

The above definition makes formal the intuition of a partition refining strategy (see
Borgonovo et al. [2014], among others). Consider now a sample of size of N of real-
izations of X and Y , (xN,yN), with xN = {x1,t, x2,t, . . . , xN,t} for t = 1, 2, . . . , nX and
yN = {y1,r, y2,r, . . . , yN,r}, for r = 1, 2, . . . , nY . Consider also ymN = {ym1,t, ym2,t, . . . , yNm,t}
the conditional realizations of Y given that Xα ∈ Xm

α (N), m = 1, 2, . . . , np(N). We can
write the given-data estimator of ξWp

α as

ξ̂
Wp

α (N) =
nP (N)∑
m=1

P[Xα ∈ Xm
α (N)]Wp(yN , ymN ), (38)

where Wp(yN , ymN ) is the Wasserstein distance between the empirical versions of the mea-
sures PY and PY |Xα∈Xmα (N). We report the explicit expression of Wp(yN , ymN ) in the next
section. In the remainder, the hat ·̂ indicates an estimator.

Proposition 15. Consider ξ̂Wp

α (N) in Equation (38). Case 1): Xα is a discrete random
variable: If Wp(PY ,PY |Xα) is bounded for all values of Xα then limN→∞ ξ̂

Wp

α (N) = ξWp
α .

Case 2): Xα is absolutely continuous: If Wp(PY ,PY |Xα) is bounded for almost all values
of Xα and if PM(Xα;N) is a sequence of partitions induced by a proper partition refining
strategy then

lim
N→∞

ξ̂
Wp

α (N) = ξWp
α . (39)

Proposition 15 reassures the analyst that the given-data estimator ξ̂Wp

α (N) is a consistent
estimator of ξWp

α .
If we assume that the influence of an input on the output is restricted to the variation of
the first moments and the diffusion contribution, we can resort to the Wasserstein-Bures
approximation. A given data estimator of the Wasserstein-Bures importance measure is
written as

ξ̂
WB

α =
nP (N)∑
m=1

Nm

N

 nY∑
t=1

(µ̂Y,t − µ̂Y |Xα∈Xmα ,t)
2+

Tr
(

Σ̂Y + Σ̂Y |Xα∈Xmα − 2
(√

Σ̂Y Σ̂Y |Xα∈Xmα

√
Σ̂Y

)1/2
)

1
2
, (40)
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where µ̂Y,t and µ̂Y |Xα∈Xmα ,t are empirical means, Σ̂Y and Σ̂Y |Xα∈Xmα empirical covariance
matrices. A similar expression holds for a given-data estimator of ξSεα in Equation (36):

ξ̂
Sε

α = E

√√√√ m∑
t=1

(µ̂Y,t − µ̂Y |Xα,t)2 + Tr
(
Σ̂Y + Σ̂Y |Xα − D̂ε

)
+ L(D̂ε, ε)

 , (41)

with obvious meaning for the symbol D̂ε.

Proposition 16. Assume that the estimators of the means and variance-covariance ma-
trices in ξ̂

WB
i and ξ̂

Sε

α are consistent. If Xα is a discrete random variable then ξ̂
WB
α and

ξ̂
Sε

α are consistent estimators of ξWB
α and ξSεα . If Xα is an absolutely continuous random

variable then ξ̂
WB
i and ξ̂

Sε

α are consistent provided that PM(Xα;N) is a proper partition
refining strategy.

Proposition 16 details the conditions under which the given-data estimators ξ̂WB

i and
ξ̂

Sh(σ)
α are consistent. In the next section we provide additional details on the estimators

in Equation (38).

4.2 The given-data OT-Problem and Corresponding Algorithms
It is possible to write the OT problem explicitly for each partition in the given-data
estimator of Equation (38). With the definitions in the previous section, consider a
sample of size N and a partition set Xm(N) as defined above, we have:

infs p

√√√√ N∑
k=1

∑
j:xj,i∈Xmα (N)

sk,j
nY∑
t=1

(yk,t − yj,t)p

subject to
N∑
k=1

sk,j = 1
N
,

∑
j:xj,i∈Xmα (N)

sk,j = 1
Nm
, Nm = #{j : xj,i ∈ Xm

α (N)},

(42)

where #{·} denotes cardinality of a set, so that Nm counts the realizations of Xα which
are included in Xm

α (N); note that the realizations yk,t follow PY , while the realizations yj,t
follow PY |Xα∈Xmα (N).
The corresponding entropic optimization problem is, then,

infs
N∑
k=1

∑
j:Xα∈Xmα (N)

(
sk,j

∑nY
t=1(yk,t − yj,t)2 + ε exp

(
−
∑nY

t=1(yk,t−yj,t)2

ε

))
such that

N∑
i=1

si,j = 1
N
,

∑
j:Xα∈Xmα (N)

si,j = 1
Nm
, Nm = #{j : xj,i ∈ Xm

α (N)}.
(43)

Following Cuturi [2013], the problem in (43) can be solved by applying the Sinkhorn
algorithm.
Note that the number of realizations of Y available for the estimation of the unconditional
distribution differs from the number available for the conditional estimation. To illustrate,
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suppose that we have N = 10, 000 and M(N) = 20, with equally populated partitions.
Then, we have 10, 000 realizations for estimating the marginal distribution while we have
Nm = 500 realizations for the conditional distributions in each partition. This aspect is
particularly relevant for sensitivity measures based on distances between density functions.
When kernel density estimation is used, a few realizations of Y in a partition may lead to
a too rough approximation of the conditional density. However, if we cast the estimation
of the distance between PY and PY |X in an OT framework, the issue is avoided, because
one works directly with realizations of Y .
The literature is actively studying algorithms to solve problems (42) and (43). The
analyst needs to make an up-front choice, depending on whether she aims at an exact
or at an approximated solution of the OT-problem. In the first case, she needs to solve
Problem (42) in each partition with an exact solver (e.g., the Hungarian method). In the
second case, she may consider solving Problem (43) instead of Problem (42), for which
faster algorithms are available. These algorithms yield an exact solution of the entropic
OT-problem which, for small values of the penalty, can be used as approximation of the
original OT-problem. The trade-off is then the one between precision and time.
We examine alternative algorithmic implementations. The first is the sorting algorithm of
Puccetti [2017]. The second is a direct encoding of the Sinkhorn iteration algorithm, fol-
lowing the works of Cuturi [2013]. This implementation is computationally fast, but prone
to numerical instability. We then propose an alternative implementation, that eliminates
this instability by considering a logarithmic transformation of the entropy function. As a
further alternative, we consider the Wasserstein-Bures approximation, with the calculation
of the given-data estimators in (40) and (41). These estimators are computationally con-
venient, as they involve only linear algebra operations. All these algorithms have been im-
plemented in corresponding Matlab subroutines, to allow for a uniform comparison. The
codes can be retrieved at https://github.com/emanueleborgonovo/OTsensitivity.

5 Numerical Experiments with Analytical Test Cases
This section is divided in two parts. In the first part, we discuss experiments in a univariate
setting, in the second part we address a multivariate setting with new analytical test cases
as benchmarks.

5.1 Univariate Output Test Case
In the case nY = 1, the solution of the OT-problem in each partition is simplified by
the possibility of using the convenient reordering strategy we have discussed. For illus-
trative purposes, we report results for the case of an input-output mapping with sev-
eral inputs, nX = 999, response given by Y = aXT , with a = [a1, a2, . . . , a999] and
X = [X1, X2, . . . , X999], with ai = 4 for i = 1, 2, . . . , 333, ai = −2 for i = 334, 335, . . . , 666,
ai = 1 for i = 1, 668, . . . , 999. The inputs are correlated normal random variables, with
means and standard deviations equal to unity and correlations given by ρi,j = 0.5, i, j =
1, 2, . . . , 999, i 6= j. Correspondingly Y is normal, with E[Y ] = 999 and V[Y ] = 5.025·105.
Table 3 reports analytical results for the OT-based importance measures, both in the form
of the Wasserstein-Bures distance in (29) and in the quantile-integral form of (26), which
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lead to identical results in this case (the expressions have been encoded in Mathcad).

Table 3: Probabilistic Sensitivity Measures for the nX = 999, nY = 1 normal 50%
correlated test case.

Parameter ξW1
i ξW2

i ξW8
i ξL

1
i ξVi

X1, X2, . . . , X333 433 474 634 0.306 .500
X334, X335, . . . , X666 430 471 628 0.303 .495
X667, X668, . . . , X999 431 472 631 0.305 .498

The second column reports the values of ξW1
i for the three inputs. We register similar

values of ξW1
i across the three groups, a consequence of the input correlations. The same

is registered for the other sensitivity measures in Table 3. Note that ξW1
α ≤ ξW2

α ≤ ξW8
i ≤

ξW∞i for all i, in line with item 1 of Proposition 5. For comparison, Table 3 also reports the
values for two already introduced global sensitivity measures based on the L1 norm and
on the contribution to variance, respectively. Note that the all sensitivity measures agree
on the input ranking. Figure 1 reports results for the numerical estimates at increasing
sample sizes.

Figure 1: Numerical estimation of probabilistic sensitivity measures for the d = 999
correlated normal random variables test case. Horizontal axis: size of the Monte Carlo
Sample. Vertical axes: values of the probabilistic sensitivity measure.

The input samples of sizes ranging from N = 50 to N = 500000 are generated with crude
Monte Carlo. We use the partition refining strategy

M(N) = min
{⌈

N2

7 + tanh(1500−N
500 )

⌉
, 48

}
. (44)
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At each N perform 20 replicates of the experiment. The whole analysis takes 525 seconds
on a personal computer, with Intel(R) Core(TM) i7-7700HQ CPU, 2.80GHz processor
and 64GB RAM.
Figure 1 shows that all estimates tend to the corresponding analytical values as the sample
size increases. In the fourth panel, we report values for ξW∞α , for which, however, analytical
values cannot be obtained. Nonetheless, we register ξW∞α ≈ 1850, higher than the ones of
the other ξWp

α with lower values of p, consistently with item 1 in Proposition 5. Overall,
these experiments (and additional ones we performed not reported for brevity) show that
the 1-dimensional computation of OT-based sensitivity measures is straightforward.

5.2 Multivariate Normal Output: Numerical Experiments
In this section, we consider the same inputs and outputs of Example 13. We com-
pare results for estimation of ξW2 implementing the sorting algorithm of Puccetti [2017],
the Sinkhorn algorithm with and without provisions for numerical stability, and the
Wasserstein-Bures estimator in (40) [see the end of Section 4.2]. Our main goal is to
investigate asymptotic behavior and timing.
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Figure 2: Multivariate-output analytical test case: results for alternative estimators.
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Figure 2 reports results at increasing sample sizes. The starting sample size is N = 50,
while the end sample size depends on the algorithm; we use M(N) in (44). Figure
2(a) shows the estimates obtained implementing the sorting algorithm of Puccetti [2017].
Overall (i.e., from sample N=50 to N=100,000), the analysis takes about 4 minutes on
the above mentioned personal computer. The estimates converge towards the analytical
values as the sample size increases. At N = 500 the ranking of the inputs is correctly
identified, and the estimation error for the two most important inputs is negligible. For
all N ≥ 500, the values of ξ̂W2

1 (N) remain close but larger than those of ξ̂W2
2 (N) with no

ranking reversals, ξ̂W2
3 (N) remains consistently lower than ξ̂

W2
2 (N) and ξ̂

W2
1 (N).

Figure 2(b) displays results when the fast implementation of the Sinkhorn algorithm is
used. In this case, the code solves one entropic OT problem in (43) per partition. To
illustrate at N = 10000 we have M = 22 partitions, and 3 inputs, which leads to a
total of 66 optimal transport problems of size 454 × 10000 to be solved. The average
time to solve one of these problems with the fast implementation is 0.51 seconds, so that
the overall time is about 36 seconds. At the largest sample size N = 100, 000, we have
M = 48 partitions, and we need to solve 144 problems of size 2128×100000. The average
solution time is 20.36 seconds and overall 47 minutes are needed. Similarly to the results
in Figure 2(a), the ranking of the inputs is identified already at the smallest sample size
(in which the the analysis takes less than a second), and does not changes as the sample
size increases. At the largest sample size, the estimation errors are of the order of 0.8%,
1% and 8%, for ξW2

1 , ξW2
2 and ξW2

3 , respectively.
Figure 2(c) displays results when the Sinkhorn algorithm with numerical stabilization is
used. The sample sequences ends at N = 30000, because the calculations at larger sample
sizes fail due to an out-of-memory problem. At N = 30000, we have 96 optimal transport
problems of size 937 × 30000. The average time for the solution of each problem is 511
seconds per problem, for a total of about 14 hours. At this sample size, the errors are at
about 3.7%, 1.5% and 2.5%, respectively for ξW2

1 , ξW2
2 and ξW2

3 . However, note that the
inputs are correctly ranked at all sample sizes, even at the smallest ones.
Figure 2(d) displays results when the Wasserstein Bures estimator in Equation (40) is
used. One notes a convergence to the analytical values, with percentage error in the
estimate approaching zero for N ≥ 10000. The time required to carry out the entire
analysis from N = 50 to N = 100000 is about 0.6 minutes.

6 An Environmental Test Case
This sections applies the method to the environmental simulator in Bliznyuk et al. [2008],
to which we refer for a full description of the problem that originates this model. We make
use of the Matlab code available at https://www.sfu.ca/˜ssurjano/environ.html.
The model simulates the dispersion of chemical pollutants in the soil at S spatial locations
in T points in time as a function of four inputs: the mass of pollutant spilled at each
location (Ma), the diffusion rate in the channel (D), the location of the second spill (Lo),
and the time of the second spill (τ). These inputs are assigned uniform distributions over
the ranges Ma ∈ [7, 13], Di ∈ [.02, 0.12], Lo ∈ [0.01, 3], and τ ∈ [0.01, 30.295]. Regarding
the output grid, the default option foresees five locations and 200 points in time, so that
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nY = 1000. We run the simulator with a N = 30000 quasi-Monte Carlo sample based
on Halton sequences Owen [2006] to perform an initial uncertainty quantification. From
this sample, we estimate the variance-based sensitivity measure of the four inputs at each
location, through a given-data strategy, with M = 32 partitions (Figure 3).

Figure 3: Sensitivity Maps for ξV,qi /V[Y q] = Sqi , q = 1, 2, . . . , 1000, i = 1, 2, 3, 4.

Panels (a)-(d) in Figure 3 display the sensitivity measures ξV,qi /V[Y q], q = 1, 2, . . . , 1000
for each time and space location for the four inputs. One notes the sharp discontinuity
in the values of ξV,qi /V[Y q] for all inputs at t = 30. This discontinuity is generated by
the emergence of the second pollutant spill. Panel (a) displays the sensitivity map for
input Ma; one observes an increase in the importance in this input up to time t = 30,
then a sudden decrease and a further increase for t > 30. Panel (b) Di; one observes a
decrease with time of the importance of this input, till t = 30; a further sudden decrease
at t = 30 and an increase for t > 30. Panel (c) shows that the location of the second spill
(Lo), is inactive up to t = 30, then has a very high value of the variance-based sensitivity
measure, being almost the only key-driver of model output variability around t = 30. Its
importance then decreases as t increases. Panel (d) shows that τ has an overall lower
importance than the other three inputs. Panels (e) and (f) display, respectively, the sum
of the variance-based sensitivity measures and the spatio-temporal behavior of the model
output variances. Panel (e) shows that the sum of the sensitivity measures is close to
unity at almost all times preceding t = 30, has a discontinuity at t = 30 and is lower
then unity for t > 30. This result means that, with the exclusion of the discontinuity, the
output response is close to be additive on a global scale before t = 30 and then interactions
emerge after such time. Panel (f) evidences the jump in model output variance at t = 30.
This point-wise analysis provides information on the spatio-temporal behavior of the
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model response, but does not yield a univocal indication of the overall importance of the
inputs. To obtain this indication, we compute the OT-based sensitivity measures. We
rely on the same algorithmic approaches of Section 5.2. The reordering algorithm, the
fast Sinkhorn implementation and the Wasserstein-Bures estimators allow us to consider
the entire sample of size N = 30000. With 4 inputs and 32 partitions, the algorithms
take 14, 15 and 3 minutes, respectively. The Sinkhorn implementation with numerical
stabilization requires 54 hours, with a sample of size N = 15000 and 17 partitions, for a
total of 68 OT-problems solved.
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Figure 4: Estimates of ξW2
i with alternative methods.

The final estimates of the algorithms are, indeed, similar, leading to ξ̂W2
Ma u 72, ξ̂W2

Di u 73,
ξ̂
W2
Lo u 179, ξ̂W2

τ u 35. Thus, the location parameter Lo is consistently identified as the
most important input, followed by Ma, Di, and with τ playing a minor role. This last
result confirms the visual impression of Panel (d) in Figure 3, while the much higher
relevance of the location parameter with respect to the mass and diffusion parameters
was not granted by a visual inspection of Panels (a), (b) and (c) in Figure 3. This high
relevance is attributable to the abrupt change in system behavior caused by the insurgence
of the second spill. The fifth bar in each group of Figure 4 reports the values of

√
AdvWB2

i ,
whose square, as we have shown, differs for a normalization factor from SGamb

i . We observe
that the advective part (i.e., the variance-based contribution) accounts for about 0.86%,
0.69%, 0.70% of ξ̂WB

Ma , ξ̂WB

Di , ξ̂WB

Lo , respectively, while it accounts for only 3% of ξ̂WB

τ .

7 Conclusions
The theory of optimal transport nested into a probabilistic sensitivity analysis frame
leads to an elegant approach for the sensitivity analysis of multivariate responses. The
resulting approach applies to samples generated by computer simulators or retrieved by
data collection, and does not require the assumption that inputs are independent. The
associated dependence measures comply with Renyi’s postulate D for measures of statis-
tical dependence and analytical expressions become available when the input and output
distributions are elliptical. In this case, we have shown that the separation measurement
becomes the Wasserstein-Bures metric and that its advective part measure coincides with
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the variance-based sensitivity indices of Gamboa et al. [2014]. Exploiting the continuity
of the Wasserstein metric, we have proven that given-data estimators are asymptotically
consistent. The sequential nature of the estimation challenges OT-solvers, evidencing a
trade-off between accuracy and time. However, the advances in the algorithmic solution
of OT-problems recently achieved in machine learning lead to fast implementations, with
very promising results. In particular, we have seen that given-data estimators based on
the Sinkhorn iteration, on reorderings and on the Wasserstein-Bures approximation yield
accurate estimates at reasonable sample sizes and with fast execution times. These re-
sults pave the way to the application of OT-based sensitivity measures within uncertainty
quantification and feature selection for multivariate output contexts. Possible further re-
search avenues comprise, on the one hand, the comparison and integration with existing
approaches for multivariate output sensitivity and the application to large dimensional
data-driven problems in machine learning and industrial applications.

A Proofs
Proof of Lemma 2. By (1), we have that K(ν, ν ′) = infπ∈Π(ν,ν′) C(π) is greater than or
equal to zero, and, in particular, K(ν, ν ′) is null if ν = ν ′. Thus, K(ν, ν ′) complies
with the definition of separation measurement. In addition, if K(ν, ν ′) = 0 for some
π∗ ∈ Π(ν, ν ′), then it must be C(π∗) =

∫
c(y, y′) dπ∗(y, y′) = 0. Because the integrand is

non-negative, by the monotonicity of integrals it must hold that c(y, y′) = 0 on a set of
non-null measure with respect to π∗. Then, because c(y, y′) = 0 implies y = y′, it holds
that ν = ν ′.

Proof of Proposition 4. The first property, E[K(PY ,PY |X)] ≥ 0, follows immediately from
the fact that K(PY ,PY |X) ≥ 0. For the second property, independence of Y and Xα is
equivalent to PY |Xα = PY . Hence, applying Lemma 2 shows that ξKα = E[Kα(PY |Xα ,PY )] =
0 ⇐⇒ Y and Xα are independent.

Proof of Proposition 5. Item 1. By [Panaretos and Zemel, 2020, Equation (2.1)], Wasser-
stein metrics satisfy Wp(PY ,PY |X) ≤ Wq(PY ,PY |X) if p ≤ q. Then, taking the expecta-
tions of both sides leads to the desired result. Item 2. Let Y be absolutely continuous.
Let (Y, d) be a metric space with the discrete metric. Also, let P, Q be two probability
measures on (Ω,F), with densities fP(y), fQ(y). Dobrushin [1970] proves that in the case
Y is univariate and the metric for the optimal transport problem is the discrete metric
then the Wasserstein metric is given by W (P,Q) = supB∈B(Ω) |P(B) − Q(B)|. Then, by
Scheffè’s theorem Scheffé [1947], we have

W (P,Q) = sup
B∈B(Ω)

|P(B)−Q(B)| =
∫
R
|fP (y)− fQ(y)|dy. (45)

Hence, ξL1
X is an OT-based sensitivity measure between density functions.

Proof of Proposition 7. The proof follows straightforwardly by combining (25) and (10)
with (17).
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Proof of Proposition 8. If X ∼ N(µX ,ΣX) and Y = aXT + b, then Y ∼ N(µY , σY ) with
µY = aµTX and σ2

Y = aΣXa
T . Also, Y |Xi ∼ N(µY |Xi ,ΣY |Xi), with µY |Xi given in (30) and

ΣY |Xi = Σc
i , in Equation (31). Therefore, Y and Y |Xi are normal random variables for

all values of Xi. Consequently, by [Givens and Shortt, 1984, Proposition 7], we have that
W2(PY ,PY |Xi) is the Wasserstein-Bures distance which is given by

W2(PY ,PY |Xi) = WB(PY ,PY |Xi) =
√(

µY − µY |Xi
)2

+
(
σY − σY |Xi

)2
. (46)

Then, combining (46) and (17), we obtain Equation (29).

Proof of Proposition 10. By Theorem 2.1 of Gelbrich [1990], if PY and PY |Xα are elliptical
with the same generating function h then the Wasserstein distance between PY and PY |Xα is
given by

W2(PY ,PY |Xα) =
√
||µY − µY |Xα||22 + Tr

(
ΣY + ΣY |Xα − 2

(
(ΣY )1/2ΣY |Xα(ΣY )1/2

)1/2
)

=

WB(PY ,PY |Xα). (47)

By assumption, this holds for all values of Xα, and inserting this expression in the common
rationale of (17) completes the proof.

Proof of Proposition 11. To prove Equation (35), note that

ADVWB2

i = E
[
nY∑
t=1

(µY,t − µY |Xi,t)2
]

=
nY∑
t=1

E[(µY,t − µY |Xi,t)2] =
nY∑
t=1

ξV,ti . (48)

Moreover, we report the results in [Gamboa et al., 2014, Section 3.1]. First, note that
under independence one can write

g(X) = gi(Xi)− gi(X−i) + g−i,j(Xi, X−i)− E[Y ], (49)

where gi(Xi) = E[Y |Xi]−E[Y ], g−i(X−i) = E[Y |X−i]−E[Y ], and gi,−i(Xi, X−i) = g(X)−
gi(Xi) − g−i(X−i). Under independence, the variance of Y can be decomposed as ΣY =

ΣY
i + ΣY

−i + ΣY
i,−i, and the generalized Sobol’ sensitivity index of Xi is then Si = tr(ΣY

i )
tr(ΣY ) ,

where tr(ΣY
i ) equals the sum of the individual contributions of Xi to the variance of Y t,

that is tr(ΣY
i ) = ∑nY

t=1 ξ
V,t
i .

Proof of Corollary 12. Let Y = AX + b, with Y a random vector in Rm on probability
space (Ω,F,P), A = (ai,j), i = 1, 2, . . . , nX , j = 1, 2, . . . , nY , and b = (b1, b2, . . . , bnY ).
First, let X ∈ RnX , X ∼ EC(µX ,Σ∗X , h) with finite second order moment. If A is an
nY ×nX matrix and b ∈ RnY , then Y ∼ EC(AµX+b, AΣ∗XAT , h) and Z = Y |Xi is elliptical
[see Landsman and Valdez [2003] among others]. At the same time, as proven in Cambanis
et al. [1981], if X is elliptical then the random variable U = X|Xi is elliptical and U ∼
EC(µX|Xi ,Σc

i
, h), with Σc

i as given in (31). Therefore, (Y |Xi) ∼ EC(AµY |Xi +b, AΣc
iA

T , h).
Then, Y and (Y |Xi) are both elliptical random variables with generating function h.
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Then, the 2-Wasserstein metric between PY and PY |Xi W2(PY ,PY |Xi) is equal to the
Wasserstein-Bures metric WB(PY ,PY |Xi) in (11) for every Xi. Then, we have

WB(PY ,PY |Xi) =
√
||µY − µY |Xi||22+Tr

(
ΣY +ΣY |Xi−2

(
Σ1/2
Y ΣY |XiΣ

1/2
Y

)1/2
)

(50)

for all values of Xi, with µY = AµX + b, ΣY = AΣXA
T , ΣY |Xi = AΣc

iA
T , Σc

i as defined
in Equation (31), and µYk|Xi =

nX∑
j=1

ak,j

(
µj + (Xi − µi)

σii,j
σii,i

)
, for k = 1, 2, . . . , nY , with σii,j

as in (31).
For the second part of the Corollary, the following holds. If X is normally distributed, then
the linear combination of normal random variables is still normal. Then, Skε(PY ,PY |Xi)
has the closed form expression recently proven in [Janati et al., 2020], namely

Sε(PY ,PY |Xi) =
√
||µY − µY |X ||22 + Tr

(
ΣY + ΣY |Xi −Dε

)
+ L(Dε, ε), (51)

with Dε and L(Dε, ε) as given after Equation (36) and in Equation (37), respectively,
where µY , µY |X and ΣY , ΣY |Xi are formally identical as in the first part of the proof.
Then, substituting the right hand side of Equation (51) into Equation (22) completes the
proof.

Proof of Proposition 15. In the proof convergence is meant as convergence in probability.
Case 1: Discrete Xα. In this case, the support of Xα is a countable collection of realiza-
tions of Xα, Xα = { x1

α, x
2
α, . . . , x

M
α }, with corresponding probability mass function whose

elements are the values P[Xα = xmα ] ≥ 0, for all m = 1, 2, . . . ,M . Correspondingly, ξWp
α

can be rewritten as

ξWp
α =

M∑
m=1

P[Xα = xmα ]Wp(PY ,PY |Xα=xmα ). (52)

Then, consider a dataset of sizeN of input output realizations. Let yN = {y1,t, y2,t, . . . , yN,t},
t = 1, 2, . . . , nY , be the set of realizations of Y . Let also ymN = {ym1,t, ym2,t, . . . , yNm,t} denote
the conditional realizations given that Xα = xmα . We write the given data estimator of
ξWp
α in Equation (52) as

ξ̂
Wp

α (N) =
M∑
m=1

P̂[Xα = xmα ]Ŵp(yN , ymN ), (53)

where by Ŵp(yN , ymN ) we indicate that the Wasserstein distance is computed on the sample.
Then, let P̂[Xα = xmα ] be any consistent estimator of P[Xα = xmα ]. P̂[Xα = xmα ] can be
P[Xα = xmα ] itself, if this is known. This is typically the case in simulation settings, where
the joint input distribution is assigned by the analyst. Alternatively, the ratio Nm

N
, where

Nm denotes the number of realizations of Xα equal to xmα in the dataset, is a consistent
estimator of P[Xα = xmα ] by the law of large numbers. Then, note that the continuity
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of the Wasserstein distance (Sommerfeld and Munk [2018] and [Villani, 2009, p. 109,
Corollary 6.11]) implies that Ŵp(yN , ymN ) → Wp(PY ,PY |Xα=xmα ) as N → ∞. Hence, for
every m,

P̂[Xα = xmα ]Ŵp(yN , ymN ) →
N→∞

P[Xα = xmα ]Wp(yN , ymN ), (54)

so that

limN→∞ ξ̂
Wp

α (N) = limN→∞
∑M
m=1 P̂[Xα = xmα ]Ŵp(yN , ymN )

= ∑M
m=1 limN→∞ P̂[Xα = xmα ]Ŵp(yN , ymN ) = ∑M

m=1 P[Xα = xmα ]Wp(yN , ymN ) = ξWp
α .

(55)

Case 2: Absolutely Continuous Xα. ξWp
α is now written as

ξWp
α =

∫
Xα

Wp(PY ,PY |Xα=xα)fα(xα)dxα (56)

where the integral in the above expression is meant in a Riemann-Stieltjes multivariate
sense and the density fα(xα) exists for the absolute continuity of Xα. We introduce a
sequence of refining partitions P δP

M (Xα) = {Xm
α (N), m = 1, 2, . . . ,M(δP )}. One says that

ξWp
α = lim

δP→0

M(δP )∑
m=1

Wp(PY ,PY |Xα∈Xmα (δP ))P[Xα ∈ Xm
α (δP )] (57)

if the limit exists. Then, consider a fixed partition PN
M (Xα) of size M(N) for a given

sample of size N . For such fixed partition, the given-data estimator of ξWp
α is written as

ξ̂
Wp

α (N) =
M(N)∑
m=1

P̂[Xα ∈ Xm
α (N)]Ŵp(yN , ymN ), (58)

where, with similar notation as in the first part of this proof, y is the set of realizations of
Y in the sample and ymN = {ym1,t, ym2,t, . . . , yNm,t} denotes the conditional realizations given
that Xα ∈ Xm

α (N). Fixing the partition size M , the first part of the proof implies that
this estimator is consistent for every fixed partition, that is

M∑
m=1

P̂[Xα ∈ Xm
α (N)]Ŵp(yN , ymN ) →

N→∞

M∑
m=1

P[Xα ∈ Xm
α (N)]Wp(PY ,PY |Xα∈Xmα ). (59)

Then, we consider altering the partition size in accordance with the sequence of refining
partitions PN

M (Xα) as the sample size increases. For a proper refinement strategy, the
maximal diameter in the partition decreases with increasing N , and (58) and (59) then
convergence to the Riemann-Stieltjes integral

ξ̂
Wp

α (N) →
N→∞

∫
Xα

Wp

(
PY ,PY |Xα

)
dP[Xα] (60)

where we used Ŵp(yN , ymN ) → Wp(PY ,PY |Xα∈Xmα (δP )) which holds by continuity of the
Wasserstein distance and the strong law of large numbers (see Sommerfeld and Munk
[2018], and [Villani, 2009, p. 109, Corollary 6.11]). The integral (60) then exists by the
assumption that Wp(PY ,PY |Xα∈Xmα (δP )) is bounded.
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Proof of Proposition 16. We use the notation from the proof of Proposition 15. In order
to save space, we write suggestively Tr

√
A,B = Tr

(
A+B − 2

(
B1/2AB1/2

)1/2
)

for the
diffusive part. In the present proof we start noting that if Y is normal, then ξWB co-
incides with ξW2 and we fall under Proposition 15. For all other cases, we consider the
discussion below. Case 1: Xα discrete. Let Xα have a countable number of realizations
x1
α, x

2
α, . . . , x

M
α . Then,

ξWB
α =

M∑
m=1

P[Xα = xmα ]·

√√√√nY∑
t=1

(
µY,t − µY |Xα=xmα ,t(N)

)2
+ Tr

√
ΣY (N),ΣY |Xα∈Xmα (N). (61)

Let Yt, t = 1, 2, . . . , nY , denote a generic component of the multivariate output vector Y .
Let x = (xj,i), where i = 1, 2, . . . , nX , j = 1, 2, . . . , N denotes a sample of realizations of
X and let y = (yr,t), r = 1, 2, . . . , N , t = 1, 2, . . . , nY denote the corresponding dataset of
output realizations. The estimator µ̂Y,t(N) = N−1

N∑
r=1

yr,t is consistent. Also,

Σ̂Y (N) = (σ̂r,s) =
(

1
N − 1

nY∑
t=1

(yr,t − µ̂Y,t)(ys,t − µ̂Y,t(N))
)
r,s=1,...,N

(62)

is a consistent estimator of ΣY . Let yr|Xα=xmα ,t denote the realizations of Yt conditional on
the fact that Xα = xmα and let Nm denote their cardinality. Then, for the mean, we have
µ̂Y |Xα,t(N) = N−1

m

Nm∑
r=1

yr|Xα=xmα ,t. For the covariance matrix, we have

Σ̂Y |Xα(N) = [σ̂r,s = 1
N − 1

Nm∑
r=1,s=1

(yr,t − µ̂Y |Xα=xmα ,t)(ys,t − µ̂Y |Xα=xmα ,t(N)). (63)

These are consistent estimators of µY |Xα and Σ̂Y |Xα , respectively. Noting that Nm → ∞
as N →∞, and that by the law of large numbers Nm

N
→ P[Xα = xmα ] as N →∞, we have

lim
N→∞

ξ̂
WB
α (N) =

lim
N→∞

M∑
m=1

Nm

N

√√√√nY∑
t=1

(µ̂Y,t(N)− µ̂Y |Xα=xmα ,t(N))2 + Tr
√

Σ̂Y (N)),Tr(Σ̂Y |Xα∈Xmα (N))

=
M∑
m=1

P[Xα = xmα ]

√√√√nY∑
t=1

(µY,t − µY |Xα=xmα ,t)2 + Tr
√

ΣY ,ΣY |Xα∈Xmα = ξWB
α . (64)

Case 2: Xα absolutely continuous. In this case, ξWB
α is written as

ξWB
α =

∫
Xα

√√√√nY∑
t=1

(µY,t − µY |Xα,t(N))2 + Tr
√

ΣY (N),ΣY |Xα(N)dFXα . (65)
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By definition of Riemann-Stieltjes sum, we can write

ξWB
α = lim

δP→0

M(δP )∑
m=1

P[Xα ∈ Xm
α ]

√√√√nY∑
t=1

(µY,t − µY |Xα∈Xmα ,t(N))2 + Tr
√

ΣY (N),ΣY |Xα∈Xmα (N).

(66)
Let then PN

M (Xα) be a sequence of partitions determined by a partition refining strategy.
Then, limN→∞ implies limδ(P )→0. Let us now write ξWB

α = limN→∞
∑M(N)
m=1 Sm(N), where

the summand Sm(N) is given by

Sm(N) = P[Xα ∈ Xm
α (N)] ·

√√√√nY∑
t=1

(µY,t − µY |Xα∈Xmα (N),t(N))2 + Tr
√

ΣY (N),ΣY |Xα(N).

(67)
The given-data approximation of Sm(N) is

Ŝm(N) = P̂[Xα ∈ Xm
α (N)]

√√√√nY∑
t=1

(µ̂Y,t − µ̂Y |Xα∈Xmα (N),t(N))2 + Tr
√

Σ̂Y (N), Σ̂Y |Xα(N).

(68)
Similarly to the previous part of the proof, letting yr|Xα∈Xmα (N),t denote the realizations of
Yt conditional on Xα ∈ Xm

α (N), the estimators

µ̂Y |Xα∈Xmα ,t(N) = 1
Nm

Nm∑
r=1

yr|Xα∈Xmα (N),t, (69)

and
Σ̂Y |Xα∈Xmα = (σ̂r,s)r,s=1,...,n = 1

Nm − 1

nY∑
t

(yr,t − µ̂Y,t(N))(yr,t − µ̂Y,t(N)) (70)

are consistent estimators of µY |α∈Xmα ,t(N) and ΣY |Xα∈Xmα , respectively for any PM(Xα;N);
also Nm

N
is a consistent estimator of P̂[Xα ∈ Xm

α (N)]. Thus, P̂[Xα ∈ Xm
α (N)] → P[Xα ∈

Xm
α (N)]. By the consistency of µ̂Y |Xα∈Xmα ,t(N) and of µ̂Y |Xα=xα,t(N), as N → ∞ both
|µ̂Y |Xα∈Xmα ,t(N)−µY |Xα∈Xmα ,t(N)| → 0 and |µ̂Y |Xα=xα,t(N)−µY |Xα=xα,t(N)| → 0. A similar
reasoning applies to the variance-covariance estimators. Thus, as N → ∞, we have by
consistency that it converges to the Stietljes integral

ξ̂
WB
α (N)→

∫
Xα

√√√√nY∑
t=1

(µY,t − µY |Xα)2 + Tr
√

ΣY ,ΣY |XαdP[Xα] = ξWB
α (71)

Hence, if the limits of Ŝm(N) for N →∞ exist then (71) is well-defined.
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