
Estimating Global Sensitivity Statistics from Given Data

Elmar Plischkea∗, Emanuele Borgonovob, Curtis L. Smithc
aInstitute of Disposal Research, Clausthal University of Technology, Germany

bDepartment of Decision Sciences, Bocconi University, Milan, Italy
cIdaho National Laboratory, Idaho Falls, USA

Abstract: International agencies explicitly recommend the use of global sensitivity statistics as part
of best practice in scientific codes audit and validation. However, estimation of these statistics is a
computationally intensive task, tempting analysts to resort to less informative but numerically cheaper
methods. This paper introduces a method for the estimation of global sensitivity indices from given
data, i.e., at the minimum computational cost. We address the problem with a statistic based on the
L1-norm. A formal definition of the estimator is provided and corresponding consistency theorems are
provided. The determination of confidence intervals through a bias-reducing bootstrap estimator is
investigated. The strategy is applied in the identification of the key-uncertainty drivers of the complex
computer code developed at the National Aeronautics and Space Administration (NASA) for the risk
assessment of lunar space missions.
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1. INTRODUCTION

Scientific models as implemented in software packages support analysts and decision-makers in virtually
all areas of science and engineering [25]. Agencies such as the US Environmental Protection Agency
[37], the National Aeronautics and Space Administration [3], the Florida Commission Hurricane Loss
Projection Methodology [14] and the European Commission [26, 27] recommend the utilization of
global sensitivity methods for best practices of model validation and audit. Identifying which factors
are the most influential, in some sense, in inducing the output uncertainty [18] becomes a crucial
part of uncertainty management when there is a large number of model inputs. In this case, it is of
particular relevance for analysts to identify those areas where to focus data collection and/or further
modelling efforts. However, a large number of factors is indeed one of the main obstacles to the use of
global methods, often termed the curse of model dimensionality [23, 24].

In this article, we introduce a design for estimating global sensitivity measures from given samples
making the estimation cost independent of the number of factors. In a model input-output framework,
we aim at post-processing the dataset generated by a Monte Carlo simulation, without additional
model runs.

We focus on the estimation of a recently introduced L1-norm sensitivity measure δ [1]. First, distribution-
based statistics are receiving increasing attention as they are able to overcome limitations of variance-
based statistics. Second, well-estimating them is a numerically challenging task and, to date, no
strategies for their estimation from given data has been suggested.

The material of this paper is largely taken from [22], submitted, where all mathematical proofs and
further discussions can be found.

2. ESTIMATING GLOBAL SENSITIVITY STATISTICS

This section offers a short review of numerical aspects in global sensitivity analysis (SA). We start
with the global SA frame. Consider x = [x1, x2, . . . , xk] ∈ X ⊆ Rk and y ∈ Y ⊆ R related through the



function
g : X → Y, x 7→ y. (1)

The function g(x) is not necessarily known analytically and is generally the output of a computer code
performing a numerical simulation. If an analyst is interested in studying the response of the numerical
code at a reference point x0 ∈ X , then she utilizes a local sensitivity method. Conversely, if she is
interested in apportioning uncertainty in y to its sources then she needs to explore the response of y as x
spans the entire input space. In a global SA, x is considered as a random vector X = [X1, X2, . . . , Xk]
on measurable space (X ,A), with Xi on space (X i,Ai). The model output y becomes a random
variable Y on (Y,B). The probability distribution of Xi is denoted by PXi(A) = P(Xi ∈ A), A ∈ Ai,
its distribution function by FXi(x) = P(Xi < x), x ∈ X i and its density by fXi(·). For Y , similar
notations apply.

Before discussing global sensitivity methods, let us recall the concept of a sensitivity analysis setting
[31]. A setting is a way of framing the sensitivity analysis quest in such a way that the answer can be
confidently entrusted to a given method [30]. The two main settings are factor prioritization and factor
fixing. They correspond to the identification of the most and least relevant factors, respectively.

Several global methods have been developed since the 90’s to address these two settings, among them
are screening methods [16], non-parametric or regression-based [29, 12], variance-based methods [35,
18], density-based [19, 5, 1, 15] and expected-value-of-information based ones [17]. The common feature
of the last three classes of methods is that they are, on the one hand, the most informative in terms of
uncertainty appraisal and, on the other hand, the most computationally intensive since these methods
use averages over inner statistics.

An example of a function studied in the global SA literature is the Ishigami function [32],

Y = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1 = (1 + 0.1X4

3 ) sinX1 + 7 sin2X2 (2)

with X = [X1, X2, X3, X4], X = (−π, π)4 and Xi ∼ U(−π, π) (independently uniformly distributed).
X4 is an additional dummy factor. The first four graphs in Figure 1 show the density fY (y) (fat)
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Figure 1: Conditional and unconditional densities of the Ishigami test function.



and the conditional densities fY |Xi=xi(y) for i = 1, 2, 3, 4. One notes that knowlegde of X1, X2 or
X3 leads to evident modifications in the shape of the density of Y . However, if an analyst quantifies
the contribution of X3 to uncertainty by individual contribution to variance, she would consider X3

as non-influential because the conditional mean E[Y |X3] is constant. However, as Figure 1 shows,
knowing X3 = x3 modifies fY (y).

3. DENSITY-BASED SENSITIVITY METHODS

Let X : (Ω,F) → (X ,A) and Y : (Ω,F) → (Y,B) be two random variables on the probability space
(Ω,F ,P). If X = x, then the conditional distribution FY |X=x(y) represents the decision-maker’s new
degree-of-belief about Y . Measuring the separation between FY (y) and FY |X=x(y) or between fY (y)
and fY |X=x(y) is a way to quantify the effect of fixing X at x on the decision-maker’s degree-of-belief.
We use the L1-norm between densities. The separation is written as

si(x) =

∫
Y

∣∣fY (x)− fY |X=x(y)
∣∣ dy. (3)

By Scheffé’s theorem [33, 7] it holds that

si(x) =

∫
Y

∣∣fY (x)− fY |X=x(y)
∣∣ dy = 2 sup

B∈B

∣∣PY (B)− PY |X(B)
∣∣ (4)

where the sup operation is extended to all sets B in the algebra B of Y. Eq. (4) implies that instead of
measuring the separation of two distributions utilizing the L1-norm (left hand side) one can equivalently
use the variational distance. More specifically, the variational distance in the right-hand side of (4) is
a generalization of the Kolmogorov-Smirnov distance dKS and the discrepancy metric dD [9],

dKS = sup
y∈Y

∣∣FY (y)− FY |X(y)
∣∣ ≤ dD = sup

all closed balls A

∣∣PY (A)− PY |X(A)
∣∣

≤ dδ = sup
B∈B

∣∣PY (B)− PY |X(B)
∣∣ . (5)

The Kolmogorov-Smirnov distance inspects discrepancy over all half-rays in Y, the discrepancy metric
over all closed balls in B, while the variational distance in dδ considers all (measurable) sets in B.

In a global SA context, si(x) is conditional on Xi = x. The lower graph in Figure 1 shows estimates
of si(x) (i = 1, . . . , 4) for the Ishigami model. When averaging over the possible values of si attained
by Xi we obtain the following definition.

Definition 1 Given two random variables X and Y on measurable spaces (X ,A) and (Y,B), we define
the importance of X on Y as

δ(Y,X) = 1
2E[si(X)] =

∫
X
fX(x) · sup

B∈B

∣∣PY (B)− PY |X=x(B)
∣∣ dx. (6)

Note that, by Scheffé’s theorem, it is

δ(Y,X) =
1

2

∫
X
fX(x)

∫
Y

∣∣fY (y)− fY |X=x(y)
∣∣ dy dx. (7)

Using the definition of a conditional density function, the following symmetry relationship follows
easily,

δ(Y,X) =
1

2

∫
X×Y
|fX(x)fY (y)− fXY (x, y)| dy dx = δ(X,Y ). (8)



Equation (8) shows that δ(Y,X) provides a way of judging whether Y is dependent on X. If Y
is independent of X then δ = 0. In fact, by definition of independence between random variables,
fXY (x, y) = fX(x)fY (y). Conversely, if some dependence is present, fXY (x, y) 6= fX(x)fY (y), which
implies δ(Y,X) 6= 0, regardless of what moment of Y the input X is contributing to. Thus, by δ(Y,X),
one avoids type I errors, i.e. deeming an input factor as unimportant when it is indeed influencing the
output.

In the remainder, we explicitly consider Y as the model output in (1) and X as the random vector
of input factors. We fix one input variable Xi of interest. Then, the importance of factor Xi on Y is
given by

δi = δ(Y,Xi) = 1
2 E[si(Xi)] =

1

2

∫
X i

fXi(x)

∫
Y

∣∣fY (y)− fY |Xi=x(y)
∣∣ dy dx. (9)

δi possesses additional properties [1, 2], one being normalization: 0 ≤ δi ≤ 1, with δi = 0 if and only
if Y is independent of Xi. A second property is scale invariance: Suppose that z(y) is a monotonic
function of Y . Then, it has been proven that δ(Y,Xi) = δ(z(Y ), Xi) [2]. By (8), we even have
δ(Y,X) = δ(z1(Y ), z2(X)) for monotonic maps z1, z2. A third property is the following [1],

δ1,2,...,k =
1

2
EX

[∫
Y

∣∣fY (y)− fY |X1=x1,X2=x2,...,Xk=xk(y)
∣∣ dy

]
(10)

where fY |X1=x1,X2=x2,...,Xk=xk (y) is a Dirac δ−density centered at (x1, x2, ..., xk). By (10), δ1,2,...,k
is the distance between the present state-of-knowledge and the state in which uncertainty in Y is
completely resolved. Such distance is unity independently of the point (x1, x2, ..., xk) at which the
factors are fixed. Then, we gain an additional insight about δi: It is the distance towards certainty
that we expect to travel by getting to know factor Xi.

4. ESTIMATORS

Our first step is to set forth a formal definition of the estimators. We rely on the notion of class-
conditional densities. Here a class is a sub-sample stemming from a suitable partition of the dataset.

Having fixed a generic factor i, we partition X i into M classes. The key-intuition of our approach is
the following. We replace the density conditional to Xi = x by the conditional density generated by
Xi belonging to the class-interval of a suitably chosen partition of X i. Formally, let P = {Cm|m =
1, . . . ,M} with

⋃M
m=1 Cm = X i and Cm∩Cm′ = ∅, m 6= m′ denote a partition of X i intoM classes. The

probability of Xi belonging to class Cm is given by PXi(Cm) =
∫
Cm fXi(x) dx. By the total probability

theorem, the class-conditional density of Y given Cm ⊂ X i is

fY |Cm(y) =

∫
Cm fY |Xi=x(y)fXi(x) dx∫

Cm fXi(x) dx
=

1

PXi(Cm)

∫
Cm
fXiY (x, y) dx. (11)

Then, we call

Sm = S(Cm) =

∫
Y

∣∣fY (y)− fY |Cm(y)
∣∣ dy (12)

the class separation induced by Cm ⊂ X i. Correspondingly, we define an approximation of the
distributional-importance of Xi for partition P as

δPi =
1

2

∑
C∈P

S(C)PXi(C) =
1

2

M∑
m=1

SmPXi(Cm). (13)

We have the following result.



Theorem 2 Suppose that Xi has a continuous density on X i. Consider a series of partitions Pj =

{Cj1, . . . , C
j
2j
} of X i with C01 = X , Cj2m−1 ∪ C

j
2m = Cj−1m for j > 0 which is finely grained such that

limi→∞maxm=1,...,M PXi(C
j
m) = 0 and which has positive mass in each class such that for all j and m,

PXi(C
j
m) > 0. Then limj→∞ δ

Pj

i = δi.

Theorem 2 ensures that, as the number of partitions grows, the approximation δPi tends to δi. From
Theorem 2 and (12), we are faced with the problem of estimating fY and fY |Cm for which we use
kernel-density [20, 7]. Assume that {(xj , yj)|j = 1, . . . , n} is a sample of n pairs of realizations of Xi

and Y where we suppress the dependency on factor i in x. The estimate f̂Y (·) is obtained from a kernel-
density estimation of all realizations {yj |j = 1, . . . , n} while f̂Y |Cm(·) is obtained from a kernel-density
estimation of the subset {yj |xj ∈ Cm}. For a given kernel K(·) and m = 1, . . . ,M these kernel-density
estimates are

f̂Y (y) =
1

n

n∑
j=1

1

α
K

(
y − yj
α

)
,

f̂Y |Cm(y) =
1

nm

∑
xj∈Cm

1

αm
K

(
y − yj
αm

)
.

(14)

Here, nm =
∑

xj∈Cm 1 is the number of realizations in class Cm of P. With a given set of ` quadrature
points {ỹj |j = 1, . . . , `}, (14) we define the point-wise separation of the estimated densities by

sm,j = f̂Y (ỹj)− f̂Y |Cm(ỹj), j = 1, . . . , `, m = 1, . . . ,M. (15)

The numerical integration of these estimates may be performed using the trapezoidal rule, yielding

Ŝm =
1

2

`−1∑
j=1

(|sm,j+1|+ |sm,j |) (ỹj+1 − ỹj) , m = 1, . . . ,M. (16)

Definition 3 An estimator of δi on the partition P = {Cm|m = 1, . . . ,M} with quadrature points
{ỹj |j = 1, . . . , `} is denoted by

δ̂i =
1

2n

M∑
m=1

nmŜm. (17)

Fixing a factor i, we suggest the following program for estimating δi = δ(Y,Xi).

1. a) Setting the dependent variable among the variables of a given dataset, if one is not in a global
sensitivity analysis framework;
or
b) performing a traditional uncertainty analysis, if we are investigating the output of a computer
code.

2. Partitioning the dataset to form the classes Cm, m = 1, 2, . . . ,M .
3. Approximating the densities conditional to these classes via kernel smoothing, (14).
4. Estimating δi using (16) and (17).

We observe about step 1 that no restrictions apply on the random number generator (simple random,
quasi Monte-Carlo or Latin hypercube sampling) used for obtaining the realizations from the random
vector X; about step 2 that several partition strategies are available [21]. One way which has been
proven effective by the authors is partitioning the data by factor ranks, forming nearly equipopulated
classes. Numerical experiments have shown that increasing equipopulated partitions beyond 50 classes
has negligible effect on the estimation accuracy. We observe about step 3 that from the knowledge of



the conditional distributions additional information can be extracted from the data. In fact, plotting
the unconditional model output density against the conditional densities provides a direct way for
assessing whether and how fixing a factor modifies the model output density.

It is a necessity to show that δ̂i is a consistent estimator of δi for two reasons. First, if the model allows
the adoption of an estimation strategy based on increasing sample sizes, then we need to be ensured
that δ̂i → δi. Second, if the model allows only a fixed budget of model runs, then we need to assess
confidence intervals around δ̂i at finite or small sample sizes. When using bootstrap we need to prove
that δ̂i is consistent for ensuring that the bootstrap estimator is also consistent.

Theorem 4 δ̂i is a consistent estimator of δi, i.e., limn,M,`→∞ δ̂i = δi.

We note the complementarity of Theorems 2 and 4. Theorem 2 states that a strategy based on
partitions leads to a consistent estimator of δi, provided that class densities are consistently estimated.
Theorem 4 ensures that this is the case if one combines the trapezoidal rule and kernel-density, under
the assumptions of convergence of the kernel-density estimators. The latter can be found, for instance,
in [7, 11].

5. BIAS REDUCTION AND CONFIDENCE BOUNDS

To control undesired numerical influences for a point estimation strategy we propose the following
approach. The rationale is to profit from information about the conditional and unconditional dis-
tributions of Y , yielded by Step 3 of Section 4 and to utilize a statistical test to check whether the
difference in FY (y) and FY |Cm(y) is significant. The estimate Ŝm is ignored, if the contribution of class
Cm is deemed insignificant by the test; otherwise, it is summed in eq. (17). Because its statistic can
be related to δ̂i, the (asymptotic) two-sample Kolmogorov-Smirnov (KS) test [6] is a natural choice for
this approach. Let F̂Y (y) denote the empirical distribution functions of Y and F̂Y |Cm(y) the class-based
empirical conditional distribution function. Then, the contribution of class Cm to δ̂i is insignificant at
niveau α if

max
y∈Y

∣∣∣F̂Y (y)− F̂Y |Cm(y)
∣∣∣ ≤ Kα

√
1
n + 1

nm
(18)

where Kα is the upper α-quantile of the Kolmogorov distribution, n is the overall sample size and nm
the subsample size of class Cm. Employing (18) to estimate the KS test statistics adds one additional
calculation in Step 4. Using the trapezoidal quadrature rule, (18) is then replaced by

max
κ=1,...,`−1

∣∣∣∣∣∣
κ∑
j=1

(sm,j + sm,j+1) (ỹj+1 − ỹj)

∣∣∣∣∣∣ ≤ 2Kα

√
1
n + 1

nm
. (19)

To set a rejection level α in (18), we can utilize a dummy variable and exploit our knowledge of the
fact that it is uninfluential.

For maintaining the confidence assessment in the estimators, the literature offers us two main methods:
the bootstrap and the jackknife [34, 10]. To our purposes, the bias-reducing bootstrap estimator of [8]
arose as the most efficient one and it is used in the example in Section 6. Let b̂ias(δ̂) = δ̄∗ − δ̂, where
δ̄∗ is the average of the moment-independent measure estimates derived from bootstrap replicates of
the given observations (i.e., drawing a sample of n realizations from the n available observations, with
replacement). Then, one obtains the bias-reducing bootstrap estimate of δ:

ˆ̂
δ = δ̂ − b̂ias(δ̂) = 2δ̂ − δ̄∗. (20)

By the theory of bootstrap, one knows that ˆ̂
δ is a consistent estimator of δ, provided that δ̂ is which

is ensured by Theorem 4. We can therefore utilize the distribution of 2δ̂ − δ̄∗ for assessing confidence
in the estimates. This is particularly relevant at small sample sizes.



6. UNCERTAINTY MANAGEMENT IN THE DESIGN PHASE OF A LUNAR
SPACE MISSION

We now challenge the presented approach by application to the output of a complex computational
code for a realistic decision-support model. The code is a simulation model utilized by NASA and
the US Idaho National Laboratory for safety assessment in the design phase of the next generation of
lunar space missions [3]. This model has been developed by a team of NASA’s and Idaho National
Laboratories risk experts to corroborate the risk assessment of lunar space missions in accordance with
NASA’s Risk Assessment Procedures [36]. The model is computationally intensive, with 872 uncertain
input factors.

The mission is modelled as an 8-phase process, from launch to orbit around the moon, to astronauts
activity on lunar soil to return to earth. For a detailed description of the phases, we refer to [3]. To
our purposes, let us evidence that the model is a black-box processing k = 872 uncertain input factors.
This high number of factors makes it crucial to determine which factors analysts need to focus resources
in data collection and further modelling efforts (i.e. identifying areas where to intervene when). We
investigate whether this information can be gathered from a dataset generated by quasi-Monte Carlo
uncertainty propagation through the model. The sample of the dataset is of size 65536 × 873, where
n = 65535 is the number of realizations and 873 is split into k = 872 input factors plus the model
output.

Note that, for this model, the cost for estimating δi through a double-design is 872 · nint · next + n
[4]. Even if a low value of next were used (say 4 as in [4]), the cost would rapidly become prohibitive.
As a reference, at nint = 65536, C ≈ 230, 000, 000 model runs are required. Similarly, for first order
effects η2i , if one assumes independence and utilizes the result in [28] one obtains C ≈ 57, 000, 000
model runs at nint = 65536. Such high C, which is determined by the high number of factors, would
impair the identification of key-uncertainty drivers, because of the long computational time and of
memory limitations. Conversely, by the proposed approach it is C = 65536. The total time required
to process the dataset is around 600secs on a personal computer. Figure 2 displays the results of Step
3 of the algorithm proposed in Section 4. It reports the distributions of the model output obtained by
conditioning on X748, X152, X143, X713, X7 and X88 (this is a subset of the 872 factors).
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Figure 2: fY (y) and fY |X748
(y),fY |X152

(y),fY |X143
(y),fY |X713

(y),fY |X7
(y),fY |X88

(y) for the output of
the NASA space mission model.

Figure 2 allows us to visually appreciate that Y is statistically influenced by factors X748, X152 and
X143 in a much stronger fashion than by factors X713, X7, and X88.

In Step 4, (see Section 4), δ̂i and η̂2i are determined. We discuss these results in conjunction with
the assessment of confidence intervals through the bootstrap estimator (20). Figure 3 shows that
at n = 65536 the confidence intervals are non overlapping for both the most important and least
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Figure 3: Bootstrapping results for ˆ̂
δ of X748, X152, X143, X713, X7 and X88

relevant factors. Thus, information on the key-uncertainty drivers is reliable. At the lowest sample
size of n = 512 these factors are still identified as the most important ones, although there is a slight
overlapping among the distribution of ˆ̂

δ of X152 and both X713, X7. However, at n = 1023 there is no
overlapping. Thus, in a factor fixing setting, already at n = 1023 one can conclude that factors X713,
X7 and X88 do not deserve priority when compared to factors X748, X152, X143. The simultaneous
estimation of δi and η2i , i = 1, 2, · · · , 872 provides analysts with additional insights. Figure 4 displays
δ̂i and η̂2i , i = 1, 2, . . . , 872
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Figure 4: Results of density and variance based sensitivity measures for the NASA space mission
model.

Overall, the agreement about the key-drivers of uncertainty between is high, although not perfectly
coincident. In particular, the value of the correlation coefficient on ranks is ρRank

δ,η = 0.86, while the
value on the corresponding Savage scores [13] is ρSS

δ,η = 0.89. By construction, these values indicate
that the disagreement concentrates mostly on the non-relevant factors. Also, results reveal that 479
variables are associated with null values of both δ̂i and η̂2i . To further corroborate this finding, one
has available (and can examine) the results of the KS-test filter for all partitions and all factors. The
KS-test systematically shows that these factors have no influence on the model output.

Figure 4 shows that factors X143, X152 and X748 are associated with global sensitivity statistics
outstanding over the remaining ones both according to δi and η2i . However, X748 ranks third with
variance-based sensitivity measures, while ranking first with δi. The reason is functional dependence
and, namely, the presence of interactions. By computing

∑n
i=1 η̂

2
i one understands whether interac-



tions matter in the model response. In our case, it is
∑872

i=1 η̂
2
i ≈ 0.42. Thus, individual effects account

for around 42% of the model output variance. This difference highlights the active role of interac-
tions in determining the model behaviour. We know that interaction effects are not captured by η2i .
η2i does not account for the importance of X782 associated with its interactions with the remaining
factors. This finding is in agreement with the analysis of interactions performed by [3] for the same
model employing a deterministic design (finite change sensitivity indices). Such design delivers useful
information on maintenance and inspection policies, but does not aim at producing information on
uncertainty drivers. Indeed, the very low value (0.08) of Savage score correlation between the ranking
induced by δi and finite change sensitivity indices confirms the intuition that deterministic methods
ought not to be utilized as surrogates of global methods for uncertainty analysis purposes. However,
factor X152 represents a notable exception. It is ranked among the three most important factors by all
methods (δ̂, η̂2i and the finite change sensitivity indices). This fact suggests that X152 indeed deserves
priority in further data collection and modelling efforts.

7. CONCLUSIONS

This work has presented a new strategy for estimating global sensitivity measures from given data.
We have defined new estimators for density-based statistics. Numerical aspects have been analysed,
with the introduction of a bias-reduction strategy as well as the determination of confidence bounds
through bootstrapping. The method has the following advantages. It allows a notable reduction in
computational burden, making the estimation cost independent of the number of factors. Thus, it is
appropriate in the factor prioritization and factor fixing settings for models with a high number of
inputs.
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