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Introduction

From a practical point of view the concept of stability may be deceiving: Asymptotic
stability allows for arbitrary growth before a decay occurs. These transient effects which
are only of temporary nature have no influence on the asymptotic stability of a dynamical
system. However, these effects might dominate the system’s performance. Hence we are
in need of information which describes the short-time behaviour of a dynamical system.

Motivation

Everyone has noticed that devices need some time to get ready for use, like an old radio
warming up or a computer booting. On a larger scale, plants also need an amount of
time to reach their working point. But in this initial phase, the plant is particularly
vulnerable. The faster one wants to reach the working point, the more stress the plant
has to endure: there may be overshots which carry some parts of the plant to the limit
of their capacity. One may think of chemicals, which advance towards toxic or explosive
concentrations, before reaching the desired concentration of the reagents, or an autopilot
steering the wrong way before getting on track.

One could believe that such a distinctive behaviour in the initial phase can only occur for
complex dynamical systems. However, this behaviour can already be observed for linear
differential equations which provide simple models for dynamical processes.

To avoid catastrophes like those indicated above, one wishes to eliminate the bad influences
in the starting phase, or at least, to keep them small. Furthermore, methods are needed
that allow to predict if the system under consideration shows these transient effects, and
if so, to obtain information on the duration and intensity of these excursions.

This work is mainly concerned with questions dealing with the last two issues, namely
finding bounds on the exponential growth of linear systems. Although there are many
results on exponential bounds, there is still no systematic treatment in the literature.
The mathematical model of a plant will in general not yield the accurate description of the
behaviour of the real plant. Hence we are in need of results which are robust under small
perturbations of the mathematical model. Fortunately, these results follow directly from
our systematic treatment of the exponential bounds.

In addition to the general theory, we study two major classes of linear systems, namely
positive systems and delay-differential systems, which are used frequently in economics and
biology.
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Moreover, we study the influence of state feedback on the transient behaviour. We ob-
tain necessary and sufficient conditions to model a closed-loop system without transient
excursions.

Finite-dimensional linear systems are mostly used as an approximation of more complex
dynamical systems. These are obtained by linearization or discretization. Let us now
discuss two possible ways in which the transients of linear systems may influence the
dynamics.

From Transience to Turbulence

Most linear dynamical systems are obtained by linearizing a nonlinear model of a real
process around an equilibrium point. Now, Liapunov’s theorem implies that the nonlinear
system is asymptotically stable if the linearization is asymptotically stable.
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Figure 1: Toy model for turbulence.

But if the asymptotically stable linear system has solutions which move far afield before
eventually decaying, these solutions of the linear system may leave the domain for which
the linear system is a valid approximation of the nonlinear system. Hence small perturba-
tions from the equilibrium point may incite nonlinearities. Models of this kind have been
suggested in Baggett and Trefethen [8] to explain why turbulence of certain flows occurs
at Reynolds numbers much smaller than predicted from a spectral analysis. For example,
let us investigate the following nonlinear time-invariant ordinary differential equation

. - —1
&= Az + B(x) = ( 05 _3260>a:+HxH ((1] 0 )x, r € R? (1)

where A is an asymptotically stable, but nonnormal matrix and the nonlinearity B(x) is
conservative (energy-preserving), thus B only adds a rotation of the state-space to the



INTRODUCTION 3

linear system & = Ax. Figure |1| shows many trajectories of system starting on a circle
of radius 50.

The trajectories which converge to the origin are colored in black, which gives a rough
approximation of the domain of attraction for the origin. One observes that this domain
of attraction is flat, the nonnormality of the linear system & = Az quickly drives the
state into regions where the nonlinearity has strong effects on the state. Note that in this
example nonlinearity and nonnormality form opposite forces which create a sort of conveyor
belt driving the states away from the stable origin. The picture drastically changes when
replacing B(x) by —B(x).

From Transience to Permanence

Another interesting observation can be made when approximating infinite dimensional
systems by finite dimensional approximants. Now assume that there exists a sequence of
finite dimensional matrices which approximate an infinite dimensional linear operator, and
that this sequence consists only of stable matrices. Then the infinite dimensional system
need not be stable. But this can be detected by studying the transient behaviour of the
approximants. Let us consider the matrix exponential of Jordan-blocks .J,, of growing size n
associated with the eigenvalue A\g = —1/2. These blocks approximate a “multiply-and-shift”
operation J,, on the sequence space £*(C) given by

Joo 1 2(C) = *(C), (k) — (T — La).

But the spectrum of J, consists of a whole unit ball centered around \g, because it is a
Toeplitz operator with symbol s — —% + s, see Bottcher and Silbermann [21], and

90(Jw) = —3+S, whereS={s € C| |s| = 1}.

Hence the asymptotic growth rate of the semigroup generated by J is given by a(Jy) =
sup{Re A | A € o(J)} = /2. Figure[2shows the growth of |lexp(J,t)|| for n = 2,4, 8,16, 32.
Although all J,, n € N, are stable, the limit /2 of the transient growth rates given by
o = dt% He‘]”tH ’t:o coincides with the asymptotic growth rate of J..

The Curse of Nonnormality

Both of these examples suffer from the same defect: the linear matrix A is highly nonnor-
mal, i.e., there exists no orthogonal basis of eigenvectors. Moreover, if there are eigenvectors
which roughly point into the same direction then there are vectors of small size for which
the coordinates will blow up if they are represented in an eigenvector basis, see Figure
where w = 7/2v1 — 13/4v,. Clearly, if the angle spanned by v; and vy becomes more acute,
this results in larger coordinates of w in the {vy, v }-basis. Grossmann [49] [50] calls this
behaviour the “blind spot” of such a basis.

Henrici [54] has identified the nonnormality as a cause for the failure of many numerical
algorithms. He introduced the departure from normality as a measure of nonnormality.
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Figure 2: Exponential growth of Jordan blocks.

However, there are matrices for which the departure from normality is small, but transient
effects are present, e.g. dep(J,) = 1 for a Jordan block of dimension n.

Outline of the Thesis

The next chapter is devoted to some mathematical preliminaries which fix the notations
used throughout this thesis and cover some topics from linear algebra and functional anal-
ysis that are used in the later chapters.

In Chapter [2| we collect some facts for generators of strongly continuous semigroups and
semigroups of contractions. We introduce an indicator for contractions which forms the
basis of much of the later work. This indicator is related to a convex Liapunov function.
We also consider some duality issues here and discuss the stability of differential inclusions.
Chapter 3| deals with a suitable concept of stability and discusses several types of estimates
for the norm of the matrix exponential. Unfortunately, bounds based on spectral properties
have several drawbacks. Hence we are investigating alternatives, we consider exponential
bounds derived from quadratic Liapunov function and from resolvent estimates.

In Chapter [4] several small results are presented, including a discussion of transient norms
and quadratic Liapunov functions of minimal condition number for 2 x 2 matrices.

In Chapter [5] results for positive systems are derived. In a sense these systems exhibit
the “worst” transient behaviour as no cancellation of terms in the matrix exponential can
occur. We show that Liapunov functions for positive systems are of simple structure, and
so we can derive simple exponential bounds for positive systems.

Moreover, we can compare the transient behaviour of an arbitrary system with the be-
haviour of a positive one which allows us to apply the simple bounds to a large class of
matrices.

We close the “analysis” part of the thesis by considering differential delay equations in
Chapter [0} In order to obtain comparable results for the transient estimates a special class
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Figure 3: Nonnormality blows up coordinates.

of Liapunov functionals is introduced and studied. We also discuss numerical issues related
with the computation of these Liapunov functionals.

On the “synthesis” side, Chapter [7] is devoted to results under which a closed-loop system
satisfies given exponential bounds when state feedback matrices are introduced. We discuss
this topic for general norms, as well as for the special case of quadratic norms.
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Chapter 1

Preliminaries

In this chapter we fix some terminology and notations used throughout later chapters. Let
us denote the field of real numbers by R and the field of complex numbers by C. The
natural numbers are given by N = {0, 1,2, 3, ...}, and the ring of integers is called Z.

1.1 Matrix Analysis

This section fixes the notation for some standard notions from linear algebra. The n-
dimensional vector space over the field K = R or C is denoted by K”. If S is a subset of a
vector space K" the span or linear hull of S is the set

OéiEK,LL’Z'GS,k':l,Q,...}.

k
span S := {Z Q;x;

=1

The set span S is always a linear subspace of K".

The space of linear operators from K" into K™ is denoted by K™*". Its elements are
called matrices. If A = (a;) € K™" then AT = (aj;) € K™™ is its transpose and
A* = (aj;) € K™™ is its Hermitian adjoint. The kernel of A € K"*™ is given by ker A =
{z € K"| Az = 0} C K" and the image of A by im A = {Az |z € K"} C K™. For square
matrices with n = m we say that A is symmetricif A = AT, and it is Hermitian if A = A*.
It is called normal it AA* = A*A. The square matrix A € K™ is invertible if ker A = {0}.
Then there exists an inverse matrix A~' such that AA=" = A=A = [,,. Here I, is the
identity matrix of dimension n. The set of all invertible square matrices A € K"*" is the
general linear group Gl,,(K).

Now let us consider the inverse of a partitioned matrix, see [70, Section 0.7.3].

Lemma 1.1. Let M = (A B) be an invertible matriz. Then the inverse M~ can be

7
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obtained via one of the following formulas if the used inverses exist.

—1 —1 -1 -1
M_lz(A + AT BQCAT —A BQ), 0= (D—CAB)"

—QCA™! Q
_ R —RBD™ NP
M= (—DloR D'+ DlORBDl) . R=(4-BD7'O)"

These two descriptions yield the Sherman-Morrison- Woodbury formula
A7+ AT B(D - CA'B)"'CA™ = (A—- BD7'C)™. (1.1)
For the determinant of M we have
det(M) = det(A)det(D — CA™'B) = det(A — BD™'C) det(D).
The matrices D — CA™'B and A — BD~*C are called Schur complements of M.

1.2 Properties of Norms

In this section we recall some facts for vector norms on the vector space K". References
for this material can be found in the books by Horn and Johnston [70] and by Bhatia [1§],
and the article by Bauer, Stoer and Witzgall [12]. Let us first study vector norms.

Definition 1.2. A norm ||| on K" is called
1. absolute, if ||z|| = || |z||| for all x € K", where |z| = (|2i])iz1,....n,
2. monotone, if ||z|| < |ly|| for all z,y € K" with |z;| < |y;|,i = 1,...n,

3. symmetric, if ||z|| = |Pz| for all x € K" and all perturbation matrices P €
0,1y P2 = I,

Proposition 1.3. The p-norms on K", given by

n p
||, = (Z my”) L 1<p<oo, and ||z, = max]z],
i=1

satisfy properties (1)-(3) of Definition[1.9
Proposition 1.4 ([70, Theorem 5.5.10]). A norm on K" is absolute if and only if it is
monotone.

If v(+) is a norm on K", the dual of v(-) is defined by

vi(y) = sup [{z,y),| = sup Re(z,y),.
v(z)=1 v(z)=1
Here (x,y), = y*z is the inner product of x and y. It is easy to see that v*(-) is a norm. In
fact, v*(+) is a norm even if v(+) is a function which does not satisfy the triangle inequality,
but meets all other requirements of a norm. If B = {x € K" | ||z|| < 1} is the closed unit
ball of ||-|| then we denote the unit ball of the dual norm by B*.
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Proposition 1.5 ([12, Theorem 1]). If v(-) is a monotone norm on K", then so is v*(-).

Proposition 1.6. The dual norm of ||-||, is given by |||, where i + % = 1. Especially the
norms ||-||, and ||-||, are dual norms on K".

Proposition 1.7 ([70, Theorem 5.5.14]). The bidual v** of a norm v on K" equals v,
v*(x) = v(z) for all z € K".

A norm ||-]] on K" is called smooth if it is Gateaux-differentiable in every x # 0. A norm
|||l is smooth if and only if for every zy with ||zo|| = 1 there exists a uniquely determined
yo € K™ with |lyo|l” = (v0,20), = 1, see Werner [147, Satz II11.5.3]. The dual norm of a
smooth norm is in general not smooth.

Let us now turn to norms on K"*". A norm ||| on K™*™ is called a matriz norm, if it is

sub-multiplicative, that is, it satisfies ||[AB| < [|A| || B|| for all A,B € K™, If ||-|| is a
LLA=]]
lll

also denote with ||| . Each operator norm on K

norm on K" then A — sup,_, is a norm on K"*" called the operator norm which we

X" s a matrix norm.

Ezxample 1.8. A norm on K™*" which is not a matrix norm is given by the numerical radius
of A e K™

However, for every norm v on K™*" there exists a positive real constant o > 0 such that
av is a matrix norm. Here the norm v(A) = 4r,um(A) is a matrix norm on K"*" see [70,

p. 331]. |

The following lemma shows some properties of operator norms induced by monotone vector
norms.

Lemma 1.9. If ||-|| is a monotone vector norm on K" then the associated operator norm
satisfies the following properties, see [12].

(1) If A= (a;;) and B = (b;;) are nonnegative matrices in R™*™ that satisfy a;; > bj; > 0
then || Al = [|B]| -

(1t) For A = (a;;) € K™™ we have |A| < |||A| || where |A] = (|a;;|) € R™*™.

(i1i) The vector norm ||| is monotone if and only if the induced operator norm satisfies
|A]| = max;—1,_, || for all diagonal matrices A = diag(\;).

Hence, the operator norm induced from a monotone norm is not monotone by itself, but
satisfies the monotonicity condition only on the positive orthant.
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1.3 Spectral Value Sets and Stability Radii

In this section we present some notions which are used to analyse robustness issues for
matrices, see Hinrichsen and Pritchard [67]. Spectral value sets have been introduced
in [64], [65] as a tool to cope with the behaviour of highly nonnormal systems. These sets
are used to study the robustness of dynamical systems, including the analysis of numerical
algorithms.

Definition 1.10. The pair (A, ||-|| ) is called a perturbation structure in K¢ if A C K¢
is a closed convex cone and ||-|| 5 is a norm on the linear span of A, span(A). If CA = A
then we call (A, ||-||o) & complex perturbation structure.

Let us consider affine perturbations of the form
A~ Ap = A+ BAC, A e A, (1.2)

where B € K™ and C € K7 are given structure matrices, and (A, ||-||) is a perturbation
structure in K.

Definition 1.11. Let A be a matrix in K»*”, and B € K¢ and C' € K" be structure
matrices. For a given perturbation structure (A, ||-|]) in K we define the following
notions. The spectral value set of A corresponding to the perturbation level € > 0 is given
by
0(A,B.C|A)=0(A)U | ] o(4+BAC).
A€A | A<

The structured pseudospectral abscissa of A corresponding to the level € > 0 is given by
a.(A,B,C|A)=sup{Res|se€o.(A B,C|A)}.

The structured stability radius of A € K™*™ is defined by
r(A,B,C|A)=inf{e > 0|a.(A,B,C|A) > 0}.

For full block perturbations A = K¢ where [|-|| is an operator norm on K**¢, we drop the
dependence on A. In the unstructured case B = C' = [,, we write o.(A|A), a.(A|A)
and (A |A).

The spectral value set is the union of all the spectra of the perturbed matrices Ax where
A € A and ||A|| < e. The stability radius measures the robustness of the stability of the
matrix A under perturbations of the form (|1.2)).

Instead of characterizing the spectral value sets in terms of spectra of perturbed matrices,
we have the following description in terms of the resolvent of A, R(s, A) = (sI,, — A)~L.

Theorem 1.12 ([67, Theorem 5.2.16]). Given A € C™", let B € C"* and C' € C*" be
given structure matrices. If A = C™ and (A, ||-|) is a full block perturbation structure
the spectral value set of A for the level € is given by

0.(A,B,C)=0(A)U{se€C\a(A)||C(s] —A)"'B| >e"}.
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For the unstructured case, if B = I,, = C' and if ||-|| is the spectral norm ||-||,, we denote
0.(A, B,C) = 0.(A) and obtain

0.(A) = 0(A) U {s € o(A) | omin(sL, — A) < £} .

Here o,in(A) = 0,(A) denotes the smallest singular value of A. An unstructured spectral
value set of level ¢ is also called an e-pseudospectrum of A.

1.4 Linear Operators

Let X and Y be Banach or Hilbert spaces over K equipped with the norm ||-|| where K
is either R or C. Let A : D — Y be a linear map defined on a linear subspace D C X
and taking its values in a Banach space Y. A is called a linear operator with domain
D(A) := D C X and range A[X] := {Az|z € D(A)} C Y. The symbol L(X,Y)
stands for the Banach space of all bounded linear operators from X into Y (endowed with
the operator norm). We write £(X) instead of L(X, X). The identity operator on X is
denoted by Iy or just by I. An operator A is said to be closed if the graph of A defined by
{(z,Ax) € X xY |x € D(A)} is a closed subset of X x Y, and it is called a dense operator
if A[X]is dense in Y. A is densely defined if D(A) is dense in X.

Definition 1.13. Let A be a closed linear operator on X.
1. The resolvent set of A is given by

0(A) ={s € C|(sIx — A)~" exists in L(X)} .

2. The operator function R(s, A) : o(A) — L(X), s — (sIx—A)"!is called the resolvent
of A.

3. The complement in C of the resolvent set is called the spectrum of A, o(A) := C\p(A).
We define the following subsets of the spectrum,

op(A) = {s € C|slxy — Ais not injective} ,
oc(A) = {s € C|slx — Ais injective, not surjective, with dense range} ,

or(A) = {s € C|sIx — Ais injective and without dense range} .

op(A) is called the point spectrum of A, o¢(A) the continuous spectrum of A, and
or(A) the residual spectrum of A. A point A € op(A) is an eigenvalue of A and
x € D(A), z # 0 such that Az = Az is a corresponding eigenvector.

Like in the matrix case, we have the following tool for robustness analysis of closed linear
operators, see Hinrichsen, Gallestey and Pritchard [60].
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Definition 1.14. Let A be a closed and densely defined linear operator on a Banach space
X. The following set associated with the perturbation level £ > 0,

()= |J oA+4),

AEL(X),|A]<e

is called the e-pseudospectrum of A. The e-pseudospectral abscissa of A is given by
a.(A) =sup{Res|s € o.(A)}.
The e-pseudospectrum can also be characterized via the resolvent of A.

Theorem 1.15. Let A be a closed and densely defined linear operator on a Banach space
X. Ifee (O,supseg(A) HR(S,A)Hfl) then

o.(A)=0c(A)U {s € o(A) | |R(s, A)|| > 6_1} )

1.4.1 Block-Diagonal Operators

We now study a special class of linear operators for which the spectrum just consists of
the point spectrum. We consider the Hilbert space

X = @an = {(C(Zk)keN l’k € an, Z ||l'k||2 < OO} s

keN
which is called the Hilbert direct sum of X = C™ ny > 1, see also [30, Definition 1V.4.17].

We denote the elements of X by (z*)en or for short, (z¥). Here each z* is contained in
C™. The space X is equipped with the inner product <(a:k >2 Y oken (T Yk)o-
Given a sequence of square matrices A, € C"*" for k € N we define the block-diagonal
operator
A= @Ak X — X, A(.Tk)keN = (Akl’k)keN.
keN
The domain of A is given by

D(A) = {xEX

>l <oof.

keN

This is a dense subset of X because D(A) contains the following set
{(z")ren € X | 2% #0 for only finitely many &},

which is a dense subset of X.

Lemma 1.16. A =@, A is a closed and densely defined linear operator on X.
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Proof. We have already seen that A is densely defined. Let us take a sequence (x;) in D(A)
such that z; = (2"9),ey € X. If we assume that both limits z; — z and y; = Az; — y
exist in X then

y = lim Az; = lim (@ Ak) 289 = (A, lim 2F9) ey = (Apa®) ey = Ax.

Jee 772 \ ken Jres
Hence x € D(A) and Az = y and therefore A is a closed operator in X. O
Let us now have a look at the norm and the spectrum of block-diagonal operators.

Lemma 1.17. The operator norm of the block-diagonal operator A = @, .y Ar : X — X
is given by [|All = supgey || (Ar)|l2-

Proof. Given z = (%) with >, kaHz < 00. Then

sl = 3 i [ < 3 Al [ < supll s S et = (sup 14012 el

keN keN keN

On the other hand, there exists a sequence z¥ € C™ such that kaHQ =1 and ||Axl|, =
HAka:k H2 Consider the sequence

xJ‘? kz]?
0, k]

Then ||Z;]| = 1 and sup,, [|Az|| > sup, [|AZ;| = sup; ||A;a7||, = sup; ||Ay,||,- Therefore
1]l = supy [[Ax[l,-

From this lemma we obtain the following implications.

ij= ("), C X where *F= {

Corollary 1.18. Let A be a block-diagonal operator in X. The resolvent set of A is given

by the complement of
a(A) = (| o=(Ap).
e>0 keN
On o(A) = 0(A)° the resolvent is given by R(s, A) = @,y R(s, Ax). The point spectrum
of A is given by op(A) = Upen o(Ax)-
Proof. For s & Uy o(Ar) the operator @),y R(s, Ax) satisfies (B,cn R(s, Ax)) (sIx —

A) = @, en(R(s, A)(sIx, — Ay)) = Ix and analogously, (sIy — A) (Byey R(s, Ar)) = Ix.
By Lemma it is a bounded operator if and only if sup,_y || R(s, Ax)[|, < co. Now

sup | R(s, Ag)|l, =00 <= Ve > 03k e N: ||R(s, Ap)ll, > "
keN

By Theorem we write the set satisfing this condition as (.., Ugey 0c(Ar). Hence
Dy B(s, Ay) is undefined for s € op(A) = [,y 0(Ax) and it is unbounded for s €
o(A) \ op(A). Therefore the resolvent of A is R(s, A) = @,y R(s, Ar). O

Clearly (J,en0(Ax) C o(A). If the e-pseudospectra of A are disjoint for € > 0 small
enough then o(A) = op(A).
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1.4.2 Self-Adjoint Operators

Let X and Y be Hilbert spaces over K = R or C, equipped with the inner products (-, -)
and (-, )y, respectively. The material presented here follows [29, Appendix A.3] and [147].
Let us define the adjoint of an unbounded operator.

Definition 1.19. Let A be a densely defined linear operator on X. Then the adjoint
A*: D(A*) — Z is defined as follows. The domain D(A*) of A* consists of all y € X such
that there exists a y* € X satisfying (y, Az) = (y*, x) y for all x € D(A). For each such
y € D(A*) the adjoint operator A* is defined by A*y = y*.

We say that a densely defined linear operator A on X is symmetric if (z, Ay) = (Az,y)«
holds for all z,y € D(A). A symmetric operator is self-adjoint if D(A*) = D(A).

It can be shown that if A is a closed, densely defined linear operator then A* is also closed
and densely defined.
For continuous linear operators we define the following classes of Hilbert space operators.

Definition 1.20. Let A € L(X,Y).

(i) The operator A* € L(Y, X) which satisfies (Ax,y), = (z,A*y) forallz € X,y e YV
is called the adjoint operator of A.

(ii) A is called unitary if A is invertible with AA* = Iy and A*A = Ix.
(ili) Let X =Y. Ais called self-adjoint (or Hermitian) if A = A*.
(iv) Let X =Y. Ais called normal if AA* = A*A.
Clearly, self-adjoint and unitary (in case of X =Y’) operators are normal.
Lemma 1.21 ([147, Lemma V.5.10]). For A € L(X) the following facts are equivalent.
1. A is normal.
2. ||Az|| = ||A*z|| for all z € X.
The norm of a self-adjoint operator can be calculated as follows.

Proposition 1.22. For a self-adjoint operator A € L(X) the norm is given by
|A]l = sup [{z, Az) |

2l <1
Lemma 1.23. Let A be an element of L(X) where X is a complex Hilbert space. A is
self-adjoint if and only if (x, Ax)y is real for all x € X.

Definition 1.24. A self-adjoint operator A on the Hilbert space X is called nonnegative,
if (x, Ax)y > 0 for all z € D(A), and it is called positive if (x, Az), > 0 for all nonzero
x € D(A). If there exists an € > 0 such that (z, Az) , > ¢|jz||* for all z € D(A) then A is
called coercive.



Chapter 2

Contractions and Liapunov Norms

Consider a linear time-invariant dynamical system, & = Az where A € C™*". If all solutions
decay in norm with ¢ > 0 growing, A is said to generate a contraction semigroup. In this
chapter we want to address the relationship between stability and contractions, and the
dependence of the contraction property on the norm. Moreover, as quadratic Liapunov
functions allow an interpretation as norms, we introduce the concept of Liapunov norms
which provides a link between stability and contractions.

2.1 One-Parameter Semigroups in Banach Spaces

One-parameter semigroups provide a natural generalization of the flow concept associated
with a system of linear ordinary differential equations. In this section we want to recall
some of its properties. For an in-depth coverage see Engel and Nagel [38], Curtain and
Zwart [29], Pazy [113], and Hille and Phillips [59].

Definition 2.1. Let X be a given (real or complex) Banach space and (7'(t)):cr, be a
family of operators in L(X). This family is called a strongly continuous semigroup in X if

T(t+s)=Tt)T(s), t,s>0, T(0)=1 and

g 1t — T(t)x is continuous on R, for all x € X.
The semigroup (7'(t))ser, is called uniformly continuous if

}Lir% |T(t+h)—=T(t)]] =0 forall t>0.

In the following 7" or (T'(t))icr, will denote a strongly continuous semigroup on a real or
complex Banach space.

Each uniformly continuous semigroup is also strongly continuous. Strongly continuous
semigroups are also called Cy-semigroups. We list some known properties of strongly con-
tinuous semigroups in the following proposition, which combines results from [38, Propo-
sition 1.5.3], [29, Theorem 2.1.6], and [113, Theorem 1.2.4].

15
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Proposition 2.2. A strongly continuous semigroup (T'(t))ier, on a Banach space X has
the following properties.

o Forallz € X, limp T (t)x = .

e Forallz € X, limp o1 f(f T(s)xds = x.

o ||T°(t)|| is bounded on every finite subinterval of R .
For continuity issues we have the following result.

Lemma 2.3. [747, Lemma VII.4.3] If (T'(t))ier, is a strongly continuous semigroup on a
Banach space X then the map

Ry xX — X, (t,z) — T(t)x

1s continuous, and uniformly continuous in T' on compact intervals of Ry. In particular,
for every xy € X the map x : t — T(t)xq is continuous, x € C(Ry, X).

Associated with every T is the (infinitesimal) generator A given by

Az = }111{% (T (h)x — ), (2.1)

which is defined for every x € X for which the limit in the right hand side of ({2.1]) exists,
i.e., the domain of A is given by

D(A) ={z e X| }111{‘1(1) +(T(h)x — x) exists}.

If T is uniformly continuous then D(A) = X and A is a bounded linear operator. A
uniformly continuous semigroup can always be written as the exponential of its generator
T(t)x = ez, 2 € X,t > 0 where the exponential is defined by the familiar power series

o0

A= SO L), 120,

k=0

which is absolutely convergent in L(X). For all z € D(A) the orbit map ¢, : t — T(t)z is
right differentiable at ¢ = 0 and ¢,(0) and £7'(t)z| .o always denote the right derivative
at t = 0. By the semigroup property, ¢, is differentiable for all ¢ > 0, because for h > 0,
h<t

lim L(T(t + h) — T(t))x = T() lim 1(T(h) — T(0))z = T(t)¢(0)

AN A0
fim 5. (T() = T(t = h)w = im T(t = h)3(T(h) = T(0))z = T()2.(0).

Strongly continuous semigroups always admit an exponential bound.
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Proposition 2.4 (|38, Proposition 1.5.5]). If (T'(t))ier, is a strongly continuous semigroup
then there exist constants 3 € R and M > 1 such that

T(t)|| < Me’, t>0. 2.2
|

Definition 2.5. A strongly continuous semigroup (7'(t));cr is called ezponentially stable if
there exist constants M > 1, 3 < 0 such that is satisfied. Tt is called (M, 3)-stable if
the semigroup T satisfies the growth bound for prescribed M and 3. The semigroup
T is called (marginally) stable if t — ||T(t)|| is bounded on R, . These notions are also
applied to the associated generators of the semigroups.

We will study the matrix case in Chapter 3| The set of operators which generate a (M, 3)-
stable semigroup is described by the following Hille-Yosida Generation Theorem.

Theorem 2.6 ([38, Theorem 11.3.8]). Let A be a linear operator A on a Banach space X
and let M > 1 and 8 € R. The following statements are equivalent.

1. A is the generator of a (M, 3)-stable semigroup.

2. A is closed and densely defined, and for every real o > 3, « is contained in the
resolvent set o(A) of A and the resolvent R(c, A) satisfies

M
R(a, A)f|| € ——==, keN 2.3
It ) < 23
3. A is closed and densely defined, and for every s € C with Res > 3 one has s € o(A)
and o
A< ——— k . 2.4
|17 A < Res g *EN (2.4)

Note that in order to verify (2.3)) the resolvent only needs to be known on the positive
half-line (3, 00). The resolvent of a generator can be used to recover the semigroup.

Theorem 2.7 ([I13] Theorem 1.8.3]). Let A be the generator of a strongly continuous
semigroup T'. Then for each x € X andt >0

T(t)z = lim (I — iA)_k:z; = lim (2R(% A))kac,

k—oo k k—o0 t?

and the limit is uniform in t on compact subsets of R.

This formula is the main tool for the proof of Theorem 2.6, The term (I—+A)~! corresponds

h
to an implicit Fuler step in numerical analysis.

-1 5 -20
Example 2.8. Figure shows the norm of the matrix exponential for A = ( 0-10 725>

and of the resolvent approximations (I —t/kA)~* of e/ for k = 1,6 and 24. |

The resolvent is obtained from the semigroup by a Laplace transformation.
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Figure 2.1: Approximation of the matrix exponential by resolvent powers.

Corollary 2.9 ([4]). Let A be a (M, 3)-stable generator of the semigroup T. Then for any
s € C with Res > 3 and all x € X the map t — e *'T(t)x from Ry to X is Bochner-
integrable and

R(s, A)x :/ e *'T(t)x dt. (2.5)
0
In particular, an operator A is the generator of a strongly continuous semigroup T if and

only if its resolvent R(-, A) is the Laplace transform of T given by (2.5)).

So we have three mathematical objects at our hands which can be mutually reconstructed
from one of the other objects: the semigroup itself, its generator, and the resolvent of
the generator. For each property of the semigroup, matching properties of the generator
and the resolvent can be found. Some connections between these objects are listed in the

following proposition.

Proposition 2.10 (|4, Proposition 3.1.9]). Let A be the generator of a strongly continuous
semigroup (T'(t))icr, on a Banach space X . Then the following properties hold.

(i) lim, oo sR(s, A)x = x for all x € X.
(i) R(s, A)T(t) = T(t)R(s, A) for all s € o(A), t > 0.
(iii) x € D(A) implies that T(t)z € D(A) and AT (t)x = T(t)Ax.

(iv) [oT(s)xds € D(A) and A [, T(s)vds = T(t)x —x for allz € X and t > 0.

(v) For every A € C, (eMT(t))i>0 is a strongly continuous semigroup and A — NI is its
generator.

(vi) Let z € X and A € C. Then x € D(A) and Az = Az if and only if T(t)x = ez for
allt > 0.
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We can identify the semigroup operation ¢ — T'(t)xg on X as a solution of an abstract
Cauchy problem using the generator A,

z(t) = Az(t) with initial value z(0) =y € X. (2.6)

Proposition 2.11. [7]7, Satz VII.4.7] Let A be the generator of the strongly continuous
semigroup T on X, and let xo € D(A). Then the function z : Ry — X, z(t) = T(t)xo
is continuously differentiable with values in D(A), and solves ([2.€]). Moreover, x(-) is the
only solution of with these properties, and x(t) depends continuously on the initial
value xg.

Hence if 7y € D(A) then z(t,z0) = T(t)zo is a solution of (2.6). Hence 4(T(t)zo) =
&(t,xg) = Ax(t,z9) = AT (t)zo. Such solutions are called classical solutions. If xq & D(A)
then x(t,x9) = T(t)zo is not necessarily differentiable anymore. Such a solution is called

mild solution of (2.6)).

We now study a special class of semigroups.

Definition 2.12. A strongly continuous semigroup (7'(t)):cr, is said to be a contraction
semigroup, if ||T(t)|] < 1 for all ¢ > 0. It is said to be a stricf]| contraction semigroup if
|T(t)]] < 1fort>0,and it is called a uniform contraction semigroup if there exists § > 0
such that [|T(t)|| < e Pt > 0.

Note that there are strict contractions, which are not uniform contractions as the following
finite dimensional example shows.

Ezample 2.13 ([67, Example 5.5.27 (iii)]). Consider the matrix A = (7' 2 ). The spectral
norm of its matrix exponential is given by

le|| = (t+ VIt e), (2.7)
see Proposition [£.4] The derivative of (2.7) is given by

Lt =e [(t+vive) (Vite T -1,

which is negative for ¢t > 0 because /1 + 2 > 1. As % HeAtH li—o = 0, A generates a strict,
but not a uniform contraction semigroup. Interestingly, the first three terms of the Taylor
series of t + /1 + 2 in ty = 0 coincide with the series expansion of e’. |

Lemma 2.14. For a strongly continuous semigroup (T(t))er, it holds that

im L — 1 im 1 —infl
lim Hlog | 7(6)]| = sup Hog [T()], Jim Hog | T() = inf Hog IT@)]. (28

n [67], the notions of “strong” and “strict” contraction semigroups are used instead of “strict” and
“uniform” contraction semigroups.
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Proof. We show that the supremum and infimum of ¢t~ f(¢) with f(¢t) = log|T(t)| are
attained at the boundaries t = 0 and ¢ = oo, respectively. To this end, we note that the
function f(t) is subadditive, as we have for all s,¢ > 0

f(t+s) <log([[T@[T(s)]) = £(E) + f(5)-

As T is a strongly continuous semigroup, there exist M > 1 and 5 € R such that || T(¢)]| <
MePt. Hence t71f(t) < B+t tlog(M). Now [59, Theorem 7.6.1] gives the second equality
in (2.8)). For the first equality, compare with [59, Theorem 7.11.1]. O

Ezample 2.15. Note that the function g : t — ¢t~ !log||T(¢)|| is in general not a monotone
decreasing function. To see this, let us consider the following matrix in real Schur form,

-1 —-100 0 —150 0 200 -—1000
1 —1 1 =10 25 11 =200
-1 400 =30 O 250

A= -1 -1 5 5 200 [,
~1 -2 30
~1 —625
1 -1

where empty entries are filled with zeros. A MAPLE-based computation returns HeQ'E’AH =

0.8395 and [|e*}|| = 30.54. Hence lg(08395)/55 = —0.06998 < 1.13971 = log(30:59)/3 " s0
that g is not monotonically decreasing. The transient behaviour t — ||eAtH is depicted in

Figure

Lemma motivates the following definitions.

Definition 2.16. For a strongly continuous semigroup (7'(t)):cr, , the initial growth rate
of T is given by ap(T") := limp o % log || T(t)]| , the asymptotic growth rate of T is given by
wo(T) = limy_.o  log | T(2)]]-

The notation wy is standard, to match this symbolism «y is introduced as the initial growth
rate. From Lemma we immediately get ap(A) > wo(A). Moreover the following
characterizations are available for the initial and asymptotic growth rates.

Corollary 2.17. Let T be a strongly continuous semigroup. Then
ao(T) =inf {8 € R| for allt >0, ||T(t)|| < e}, (2.9)
wo(T) = inf {3 € R | there exists M > 1 such that for all t >0, ||T(t)|| < Me'} . (2.10)

Proof. We only show (2.9)) as ([2.10)) can be found in [38, Proposition IV.2.2]. By Lemma/|2.14]
we have ag(T') = supy 1 log [|[T(¢)|| . If 3 € R is such that ||T'(t)|| < e’ for all ¢ € R, then

ag(T) < supysg 1loge’ = 3. Thus ag(T) < inf{3 € R|Vt >0, ||T'(t)|| < €’*}. Let us now
consider the semigroup (S(t))ier, = (e7*"*T(¢))scr, . This is a contraction semigroup,
as

IS = e DT (t)]| = exp (log [|T(t)]| — ao(T)2)
=exp (¢t (Llog||T(t)|| — ao(T))) < e’ =1.
Hence ao(T) > inf{8 € R|Vt >0, ||T(t)|| < e} which shows (2.9). O
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With respect to our stability investigations we now have the following results.

Corollary 2.18. A strongly continuous semigroup T is exponentially stable if and only if
wo(T) < 0. It is a contraction semigroup if ao(T) < 0, and it is a uniform contraction
semigroup if ap(T) < 0. If T is a uniform contraction semigroup which satisfies ||T'(t)| <
et t >0, then (e7P'T(t))ier, is a contraction semigroup.

A semigroup is uniformly continuous if and only if its generator is bounded. For unbounded
generators the initial growth rate might be +oo if ||T'(s)|| > v > 1 for s € (0,4), and 6 > 0
small. An example showing such behaviour will be presented in Example [2.38|

The relation between the growth rates of 7" and properties of the generator A is studied in
the following theorem. We only consider the case of bounded generators.

Theorem 2.19. Let A be a bounded linear operator on a Banach space X, and (T(t))er,
be the uniformly continuous semigroup generated by A. Define

a(A) =sup{ReA| A eo(A)}, pn(A) = hm #([[1+ AR —1). (2.11)
Then the following holds,
0o(T) = ji(4) > a(A) = wo(T). (2.12)
Proof. We have ety = T( )Jo for all x € X and all t € R;. Then by Lemma
wo(T) = mf log T ()| = infllog ||6AtxH : reX, |z =1

AtH

Now we need to know that a(A) = inf;oq " ||e . Gelfand’s formula for the spectral radius

p(A) = sup{[A| [A € o(A)} = lim /[ A%] (2.13)
applied to T'(t) gives together with Lemma [2.14]
_ Yk _ tlimg oo (k) "L log||T(kt)|| _ wo(T)t
p(T(1) = lim |[T(kt)[ " = e et

For bounded generators, the Spectral Mapping Theorem ([38, Lemma 1.3.13]) yields
{eM X ea(A)} =0o(T(t)).

Therefore there exists an eigenvalue A\g of A such that the spectral radius p(7'(¢)) of the
semigroup 1" satisfies

p(T(t)) — ewO(T)t — ‘ekot‘ — eRc/\ot — ea(A)t.
Hence wy(T') = a(A). For the initial growth rate we have by Lemma [2.14]
aog(T) = sup +log HeAtH = lim % log HeAtH = 11{% +log (|| + At|)

_hm (I + At —1) wu(A).

Here we approximated eAt by the linear part of its Taylor series, I + At and used log(1 +
r) ~ r for |r| small. The inequality between an(7") and wy(7) in (2.12) follows from
Lemma 2.141 O
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However, if A is unbounded then the domain of A is only a subset of X, and only the
inequalities wo(7) > a(A) and ay(T) < p(A) hold. We study a counterexample which
illustrates one of these gaps in the following subsection.

2.2 Asymptotic Growth Rates

Let us now turn our attention to the asymptotic growth rate of a strongly continuous
semigroup 1" with generator A. In in section we describe a method of constructing strongly
continuous semigroups with wo(7") > a(A). The spectral radii of the semigroup operators
T(t) are connected to the asymptotic growth rate of T' via

p(T(1) = e ™ t>0,

which we already used in the proof of Theorem [2.19] This proof is also valid for unbounded
generators, see [38, Proposition IV.2.2]. For stability analysis one likes to connect the
spectrum of the generator A with the asymptotic growth rate, however one only obtains
the following result.

Theorem 2.20 ([38, Theorem IV.3.6]). The spectrum of a strongly continuous semigroup
T and the spectrum of its generator A satisfy

"Wt C o(T(t))  forallt > 0. (2.14)
More precisely, the following inclusions hold for all t > 0,
e7PAt op(T(t)), e?cAt oc(T(t)), e?R(At = or(T(t)).

We will demonstrate that there exist semigroups where the generator has only a point
spectrum and which yield a proper subset in the spectral inclusion (2.14). An example
with wo(T) # a(A) is due to Zabezyk [152], see also Trefethen [I37]. In the following
we present a detailed analysis of this example. For a given sequence of natural numbers
(ng)keny with np > 1 we consider the Hilbert direct sum of the spaces C", denoted by
X = @,y C™. We now investigate semigroups on X.

Proposition 2.21. If (Tj(t))iwcr, , k € N, are strongly continuous semigroups on X with
generator Ay, and for eacht € Ry the sequence (|| Ty (t)||)ren is bounded then T = @, oy T is

a strongly continuous semigroup on X = @keN Xy. Its generator is given by A = @keN Ay
and has the domain D(A) = @, .y D(Ax) C X.

Proof. Let us verify that T is a strongly stable semigroup. We have for s,t > 0

T(s+1t)= @ Ti(s+1) = @ Th(s)Tk(t) = (@ Tk(S)) (@ Tk(t)) =T(s)T(t),

keN keN keN keN

7(0) = P 7:(0) = P Ix, = Ix.

keN keN
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Thus 7T is a semigroup. By boundedness, T'(t) € L(X) for all ¢ € R,. Moreover, for all
r= (") eX

. . T ko ky _

11{%(T(t)a: ) 11{%(Tk(t)w ) =0

shows that T is strongly continuous. The domain of its generator A is given by

D(A) = {x exX %%(Tm)x — ) exists} = {z = (2" |2" € D(AL)} = @ D(Ay)
keN
and clearly, A = @, Ax. O

Note that for stable A, € C™*™ (Ty(t))is0 = (e*!);50 are uniformly continuous semi-
groups, however T' = @, . Tk is generally only strongly continuous.

If the following condition is satisfied then the spectral abscissa a(A) = {Res|s € o(A)}
of the generator A and the asymptotic growth rate of the semigroup do not coincide.

Theorem 2.22. Let A be a closed and densely defined linear operator on a Hilbert space
X that generates the semigroup (T'(t))ier, . If the limit of the e-pseudospectral abscissas
satisfies

lima.(A) > a(A) (2.15)

E—

then the asymptotic growth rate of the semigroup T satisfies a(A) < wo(T).

Proof. Let us suppose that the asymptotic growth rate of the semigroup (7°(t))icr, gen-
erated by A satisfies wo(T) < & := lim._ga.(A). If 5 € (wo(T'), @) then for every € > 0
there exists w € R such that the resolvent of § + iw satisfies || R(3 + iw, A)|| > e~'. Thus
the resolvent R(-, A) is unbounded on 3 + iR, hence of Theorem does not hold.
Therefore wy(T) > & > a(A). O

Remark 2.23. For block-diagonal operators A = @, . Ar we have R(s, A) = @, R(s, Ar)
and ||R(s, A)|| = supgey [|R(s, Ax)||. Therefore o.(A) = ey 0(Ax), hence a.(A) =
SUDgen Qe(Ay). If there exists sequence of matrices for which a(Ay) = « is constant and
which satisfies, say, o (Ar) > a + %, then this sequence can be used to construct an
operator which satisfies Theorem [2.22]

Our choice of the matrix sequence (Ay)ren such that A = @, .. A satisfies Theorem m
will consist of Jordan blocks of growing dimensions.

Remark 2.24. We can regard these Jordan blocks as finite dimensional approximants of
an ¢*(C)-Toeplitz-operator which has a continuous spectrum, see [21} 20]. Let us consider
the Toeplitz operator Joo(\) : £2(C) — £%(C), (zx) — (Az + zp1) with A € C which is
composed of a multiplication operator and a shift operator on ¢?(C). Its spectrum consists
of all points which are enclosed by {a(e*?) | ¢ € [0,27]} with a winding number of 1 where
a(t) = XA+t is the symbol belonging to the Toeplitz operator J, (). Here the spectrum is
a disc of radius 1 centered at A. A finite dimensional approximation of J.(\) is given by
the Jordan block J, () of dimension n.
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We will derive properties of Jordan blocks by a direct analysis. Let J, be the Jordan block
of size n for the eigenvalue 0 and set .J,,(\) = AL, + J,. For an estimate of the norm of the
resolvent of J,, we use the Neumann series which consists only of finitely many terms since

J, is nilpotent,
n—1
(sI, — J,) -t ( )
k=0

which is valid for all s # 0. Taking norms we have HJL’“H =1 for k < n and therefore
I _ 1 1—|s|™
st = 57| < 1ol N T N
k=0 19 |s|™ [s] =1
Now consider the set {\ € C| [A[ =1 — =5}, n € N*. For each of its elements A we have
(A = J,) 7| < (n+1) [(1 — n_+1) — 1} - Note that (1—-15)""—1 € [1,e—1]. Hence for

every n € N* there exists ¢ > 0 small enough such that o.(J,) C{\ € C| |A\| <1— n+r1
Finally we present the construction of an example illustrating the gap between a(A) and
wWo (T)

Ezample 2.25. Let us consider the diverging sequence x = 2ik and set Ay = Ji(zy) for k =
1,2,... We show that the associated block multiplication operator A = @ Ay is unbounded
and has only a discrete spectrum given by o(A) = J,—, 0(Ax). To this end, note that
(g )ren+ is an unbounded sequence. Therefore, A is an unbounded operator. Moreover,
by the results derived above we see that the spectrum of o(A) = (..o Upen- 0c(Ax), see
Corollary , is just J,—, 0(Ag). For this, note that the e-pseudospectra of Ay, are disjoint
for € > 0 small enough. In particular, for every k € N* there exists an £ > 0 such that

0-(Ap) = oe(ap] + Ji) C{AEC| A=y < 1- 5}

Hence the spectrum of the operator A consists only of a point spectrum. Now by Proposi-
tion A generates the strongly continuous semigroup 7" which is again of block diagonal
form

T(t) = @ezikte‘]’“t, teR,.

Each row of e’k contains the first terms of a Taylor expansion of the exponential series e’.

Now consider the sequence (xy)ren = ((01,09,...0k_1, 1%, Og11,-.-))ken C X where 1, =
(1...1)" € R* matches an Ay, block. Then T'(x3)ken = (0, ..., Agly yields

wo(T) > lim supt Yog [|T(t)xw|| / |zx]| = hm supt llogHeAktlkH = hmt oge' = 1.

t—o00 ke

The asymptotic growth rate is therefore at least 1, whereas the spectral abscissa a(A) =
SUD)\eo(4) Re A = supyey a(Ay) = 0. [ |
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2.3 Initial Growth Rates

Let X be a Banach space over K = R or C with norm ||-||. The dual space X* = L(X,K)
is the set of all bounded linear functionals which map X into K. Let us denote the value of
the functional y € X* in x € X by (y,z) € K. The dual space is a Banach space equipped
with the dual norm

Iyl = sup {[{y, z)| [ ]| < 1} = sup {Re (y, ) | [l«] < 1}. (2.16)

Indeed, this is the operator norm for linear functionals (y,-) : (X,|]|) — (K, |-|).

Definition 2.26. We call (z,y) € X x X* a dual pair (DP) if ||z|| ||yl = (y,x) # 0 and
we speak of a normed dual pair (NDP) if a dual pair (z,y) satisfies (y,z) = 1. If ||z|| =1,
ly||* = 1 and (y,z) = 1 then (z,y) is a unitary dual pair (UDP). We call y € X* a dual
vector of x € X if (x,y) is a dual pair.

By the Hahn-Banach Theorem, the set of dual vectors y € X* of a given x € X is never
empty. We collect some properties of dual pairs in the following proposition.

Proposition 2.27. Let X be a Banach space and denote its dual space by X*. Forx € X
and y,y € X* we have

(i) If (z,y) is a dual pair then (ax, By) is a dual pair for all o, 5 > 0. Moreover, if X
is a Banach space over C then (("'z, Cy) is a dual pair for all ( € C, ¢ # 0.

(ii) In a reflexive Banach space X, if (x,y) is a dual pair then (y,x) is a dual pair in X*.
(iii) If (z,y) and (z,y") are dual pairs then (x,0y-+(1—0)y') are dual pairs for all§ € (0,1).
(iv) Every dual pair (z,y) with ||y||" = 1 satisfies the subgradient inequality

forall ze X: |z + z|| > ||z|| + Re (y, 2). (2.17)

Proof. Ttem (i) follows directly from Definition and properties of the norm. For (i),
recall that a reflexive Banach space X is isomorphic to its bidual X** via 2z — 2, 2 : y —
(y,z). Hence there exists an isomorphism between dual pairs (y, 2) € X* x X** and dual
pairs (z,y) € X x X*. To prove (i) note that by definition of the dual norm (2.16)),
[(u, z)| < ||lz|| ||lu||" for all z € X, u € X*. If (z,y) and (z,y') form dual pairs then let us
consider u = 0y + (1 — 0)y’ € X* for § € [0, 1]. We have

™ = (u, @) = 0 |zl lyll" + (1 = ) [l /1" = =] (0 lyll” + (2 = 0) ly'Il")
> [zl 16y + (1 = 0)y'I" = ll]l [lull"-
Thus equality holds in ([2.18)), and therefore u is a dual vector of . For item (iv), consider

the unitary dual pair (x,y). If we have a pair (u,y) € X x X* which only satisfies ||ul| = 1

and [|y||" = 1 then Re (y,u) < 1. Setting u = ;3% € X for 2 € X, 2 # —a gives

(2.18)

r+z

1= (y,z) > Re(y,u) :Re<yam

> for all z € X \ {~x}.
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By multiplication with ||z 4 z|| we obtain (2.17)). The case z = —z is directly verified,
[z]] + Re (y, 2) = [|=]| — (y,z) = 0. O

2

Figure 2.2: Dual pairs and dual norms.

In terms of convex analysis [120], equation shows that every dual vector y of x with
ly||"=11s a subgradient of the norm ||-|| at the point x. More precisely, Proposition (1v)
implies that (z,y) is a DP if and only if the hyperplane {z € X |(y,z) = ||z ||y||"} is a
supporting hyperplane in z of the ball B(r) = {z € X | ||z|| < r} with radius r = ||z||. If
(x,y) is a UDP then y is an outer normal of B in x. We demonstrate this property in the
following examples.

We visualize some dual norms and dual pairs for norms in R2.

Consider a symmetric positive definite matrix P € R?*2. Then
w 1 1 |zl p = V&' Pz defines a norm on R?. Its dual norm is given by

- - lyllp = max {(y, x), | (x, Pr)y = 1} = [yl p-» (2.19)

as (y,x), is maximal on the unit sphere of (R?|-||p) for =
(y, P*1y>2_l/2P*1y with [|z||, = 1. Unitary dual pairs are given by
J J J (x, Px) with ||z||, = 1, because these vectors satisfy 1 = ||z||, =
(Pz,), = {(Px), P~ (Px)), = |[Pal[3-. Hence |Pa]p = 1.
Figure [2.2| shows the unit ball B and the dual unit ball B* of |||,
Figure 2.3: Duals of where P = ('.7%). We see that if (z,y) is a UDP then y is an
the oco-norm. outer normal of B in . Moreover, the right image shows that JB*
collects all possible dual vectors for all x € B so that the pair (y,x) is a unitary dual pair
with respect to the dual norm.

Example 2.28. Let us now consider the pair of dual norms ||z||; = |z1| + |22| and ||z|| =
max{|z1|, |z2|}. For z € {(£1,x9) with |zo| < 1 or (zq,41) with |z1] < 1} its dual vector
is uniquely determined by y = (£1,0) or y = (0, +1).

However, for x = (£1,+£1) the duals are not uniquely determined, see Figure for an
illustration. The unit box B, is shaded gray, and in the vertices the dual pairs are not
unique. Attaching all these dual vectors to the origin gives the unit ball of ||-||;. [
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For a given closed linear operator A in X consider x € D(A) with ||z]| = 1. We are
interested in the direction in which Az points with respect to the unit ball of ||-||. This
motivates the following definition.

Definition 2.29. Let A be a closed linear operator on X. The initial growth of A in
x € D(A) is given by
(e, 4) = lim & (2 + hAa] = 2], (2.20)

For a closed linear operator A, we call u(A) = sup{u(z, A) |z € D(A), ||z|| < 1} the initial
growth rate of A. The closed linear operator A is called dissipative if p(A) < 0, it is called
strictly dissipative if p(A) < 0.

We can rewrite limy o 3 (|| + hAz|| — ||z|)) as limy_.o ([|tz + Az|| — ||[tz]|). Then for s,¢ >
0,
[(s + ) + Ax|| = (s + ) ||z]] < sz + Axl| + (¢ = (s + 1)) [lz]| = |lsz + Ax[| — s [=]].

Thus the term ||tz + Az||—t ||z|| is monotonically decreasing in t. Additionally, ||tz + Ax|—
|tz|| > — ||Az|| for all £ > 0, hence the limit in (2.20) exists. We therefore have

ule, A) = inf [[(sTx + Az = s [l (2.21)

The term “initial growth rate” is slightly misleading, as we have not assumed that A
is a generator of a semigroup. However, if A is the generator of a uniformly continu-
ous semigroup the following lemma shows that we regain the initial growth rate used in

Theorem .19

Lemma 2.30. If A € L(A) is the generator of a uniformly continuous semigroup then
p(A) = limy~ o h= (| + Ah|| — 1) is the initial growth rate of the semigroup (e*)ier., .

Proof. 1f A is the generator of a uniformly continuous semigroup, then D(A) = X and

sup pu(x, A) = sup Tim ([|(¢1 + A)z[| = ||z[])

[lz]|=1 llzfl=1*

= lim sup ([[(¢] + A)z|| = t[lz]]) = lim (JA + [t)[} =) = u(A)

£=00 |z )=1

as the limit lim; (|| (t/ + A)z| — t) is monotone in ¢ for all z € X, ||z|| = 1. Therefore
the initial growth rate of a generator A with D(A) = X also satisfies (2.11)). O

The following result connects Definition [2.29| with the discussion of dual vectors.

Proposition 2.31. Given a closed linear operator A in X. Then for all x € D(A), © # 0,

A
pu(x, A) = sup {Re %; ;>C> ‘y € X™ is a dual vector ofx} : (2.22)

Hence the initial growth rate of A satisfies

1(A) = sup {Reéy’,wz;l@

=sup {Re (y, Az) |z € D(A) and (x,y) NDP}.

x € D(A) and (z,y) DP}
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Proof. Let us denote the right hand side of by fi(z, A). We first show that ji(x, A) <
w(z, A). Let y be a dual vector of x with ||y||" = 1. From we have for all A > 0 that
|z|| + hRe (y, Az) = (y,z) + hRe (y, Ax) = Re (y,z + hAz) < ||x + hAz||, which implies
that Re (y, Az) < 7 (||z + hAz|| — ||z||) for all A > 0, hence

~ . l o
Az, A) < lim 3 (lo + hAz]| — l])). (2.23)

To see the converse inequality fi(z, A) > p(z, A) let us fix € D(A) with ||z|| = 1. Then
for all ¢ > 0 there exists y, € X* such that Re (y;, (t] + A)x) = ||(t] + A)z|| and [Jy|" = 1.
With p(z, A) = inf{||sz + Az| — s||z|| | s > 0}, see (2.21)), the following inequalities are
valid for all £ > 0

p(x, A) +t < ||(tI + A)x|| = t Re (y;, ) + Re (y;, Ax)
< min{t + Re (y, Az), t Re (g, x) + ||Az||}.

Hence 14 1 (u(z, A) — || Az|]) < Re (y, z) < 1 and p(x, A) < Re (y;, Az). Now the unit ball
of X* is compact in the weak* topology of X* hence there exists a weak® accumulation
point of (y;)ier, for ¢ — oo named y'. This accumulation point satisfies Re (y/,z) = 1.
Hence

I/1"<1, Rely,z)=1 Re(y, Az) > pu(z A).

But this already implies that ||| = 1 and (y/, ) = 1. Thus (z,y’) is a normed dual pair
with (v, z) = 1 and p(z, A) < Re (v, Az). This shows j(x, A) > u(z, A). O

Hence a contraction semigroup has a dissipative generator, and a dissipative generator
corresponds to a contraction semigroup. Let us now consider a different characterization
of dissipativity.

Lemma 2.32 ([147, Theorem VIL.4.15]). A closed linear operator A on X is dissipative if
and only if for all x € D(A) and all X > 0,

AL = A)zl} = Alle]] (2.24)

In particular, if (0,00) is contained in the resolvent set of A then A is dissipative if and
only if for all z € X and all A > 0: ||AR(\, A)z|| < ||z]|. This characterises dissipativity
in terms of the resolvent, which we analyse further by stating a version of the theorem of
Hille-Yosida for contractions.

Theorem 2.33 ([I147, Theorem VIL.4.11}). The closed linear operator A is the generator
of a contraction semigroup (T'(t))icr, on X if and only if A is closed and densely defined,
every A > 0 is contained in the resolvent set of A and satisfies ||[AR(A, A)|| < 1.

Hence every generator of a contraction semigroup is dissipative. However for the converse
implication we need that the positive real half-line is contained in the resolvent set of
A which is not enforced by . The question when a dissipative operator is also the
generator of a contraction semigroup is answered by a famous theorem of Lumer and
Phillips.
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Theorem 2.34 ([4, Theorem 3.4.5]). Suppose that A is a densely defined closed linear
operator on a Banach space X. Then A is a generator of a strongly continuous contraction
semigroup (T'(t))ier, if and only if A is dissipative and the range (A — A)[D(A)] = X for
some A > 0.

Pazy [113] Corollary 1.4.4] notes the following corollary.

Corollary 2.35. Suppose that A is a densely defined closed linear operator on a Banach
space X. If both A and its adjoint A* are dissipative then A generates a contraction
Semigroup.

If X is a Hilbert space then it can be identified with its dual X ~ X*. In particular,
|z||> = (2, ) for all z € X so that each 2 € X has a uniquely determined dual, namely, =
itself.

Lemma 2.36. Suppose that X is a Hilbert space. The initial growth rate of a bounded
linear operator A € L(X) is given by

H(A) = La(A+ A%,
Proof. By Proposition [2.31] we have

1(A) = sup Re(z, Az) =1 sup (z,(A+ A")z) = Ja(A+ AY).

llzll=1 flz]|l=1
For a proof of a(A + A*) = sup, = (z, (A + A%)z) (the Rayleigh principle) in Hilbert
spaces, see [I51, Theorem XI.8.2]. O
The dissipativity of A then only depends on properties of the self-adjoint linear operator
A+ A*, see Definition [1.24]

Corollary 2.37. Let A € L(X) be a linear operator on a Hilbert space X. Then the initial
growth rate v of A with respect to the norm ||-||y satisfies

p(A) <0 <= —(A+ A") is positive,

u(A) <0 <= —(A+ A) is coercive.
For strongly continuous semigroups the initial growth rate may be +oo as the following
example shows.

Ezample 2.38. Consider the Hilbert space X = @, . R? which is the direct sum of copies
of R2. Let us study the unbounded linear block-diagonal operator

B —k 4k +2\
A_@(O _k_l). XX,
keN*

which is built up from stable 2 x 2 matrices A;. Each of these matrices satisfies a growth

bound 1.5 =~ % < sup;>g ||6AktH < @ ~ 2, see Theorem but the maximum value of
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0 . I . I . I . I .
0 0.5 1 1.5 2 2.5

Figure 2.4: Norm of the matrix exponential for A = @zozl Ap.

t— HeA’ftH is attained at ¢ for which ¢; — 0 holds as & — oo, which can be verified
numerically. The semigroup (7'(t))ier, = (e*');cr+ generated by A will also satisfy 1.5 <
sup,so |7°(t)|| <2, and therefore lim;_o || 7°(¢)|| > 1, hence T is not a uniformly continuous

semigroup, and u(A) = ay(T) = oo, see Corollary and Theorem [2.19] Figure
shows the spectral norm He““” for A = @iozl Ay |

Remark 2.39. Let A be the generator of a strongly continuous semigroup 7'. The initial
growth rate u(A) collects the microscopic effects of t — ||T'(¢)|| for ¢ > 0 near zero, while
a(A) models the macroscopic or asymptotic effects. Hence if u(A) differs significantly
from a(A), say p(A) > 0 while a(A) < 0, then we expect non-trivial transient effects in
t — ||T'(t)|| for moderately sized ¢t > 0 like multiple local maxima and minima. Note that
1 depends on the used norm, while « is independent of the norm.

2.3.1 Initial Growth Rates in Finite-Dimensional Spaces

We will now turn to the matrix case and study the initial growth rate associated with a
vector norm ||-|| of interest for matrices in K"*" . In finite dimensions we identify y € K"
with the linear form f, € (K")* : 2 — y*z | Hence the evaluation of a linear form (f,, )
with f, € (K")*, x € K" is identified with the inner product (z,y), = y*z for z,y € K".
Let us collect some of the properties of the initial growth rate.

Proposition 2.40. Given matrices A, A" on K™" and scalars z € K, € R. The initial
growth rate p(-) satisfies

(i) —p(—A) <ReA < u(A), X € a(A), () w(A+zI) = u(A) + Rez,
(i) p(aA) = |af p((sgn ) A), (v) p(A+A) < p(A) + p(A),
(i) |u(A)] < [ All, (vi) p(A) = lime oo (|1t + All —2).

2Note that y — y* is not C-linear.
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Proof. From Proposition we know that

1(A) = sup{Re (Az, y), | lz[l lylI" = (v, y), = 1}.

Moreover, u(—A) satisfies —p(—A) = inf{Re (Az, y), | ||z]| ||ly]|" = (z,y), = 1}. Hence by
enlarging or restricting the conditions on the pair (x,y) we obtain the required statements.
For item (i), consider an eigenvector = corresponding to an eigenvalue A € o(A). Then
for all dual vectors y of x, Re (Az,y), = ReX(z,y), = ReA|ly||" ||z||, which shows (3).
Items (i) and (iv) hold as u(aA) = p(sgna o A) = |af u((sgna)A) and

WA+ zD) = sup Re((A+zDr.y)y= sup Re((Az,y),+ (z0,3),) = u(A) + Rez.
(z,y) NDP (z,y) NDP

Formula (vi) is found in Lemma [2.30] For (i) let us replace the unitary dual pair (z,y)
by the normed pair (z,y) where ||z|]| = 1 = ||y||". Then

pA) < sup  Re(Az,y), < sup |ly[I" [[A]l[|=]] = [[A]l.

llell=1=[ly|I" llzll=1=Ily|I*

Now t — ||Al| < ||[It + A]| for all £ > 0 and hence by (vi) we have u(A) > — ||A|| which
shows the lower bound in (%ii).
The subadditivity (v) is again verified using Proposition [2.31]

p(A+A) = sup Re((A+ A)z,y),

(2,4) NDP

< sup Re(Az,y),+ sup Re(A'z,y), = p(A)+ u(4").
(z,y) NDP (z,y) NDP

Hence all statements of Proposition have been verified. O
Items (ii) and (v) of Proposition imply that u is a convex function with

plaA+ (1 —a)A') <au(A)+ (1 —a)u(A) forall A, A" € K™ and « € [0, 1].

Items (iii) and (v) show that p a continuous function, as u(A + A) < p(A) + ||A|l and
H(A) < p(A+A) + p(—A) < p(A+A) + A
A matrix A € C™*™ generates a contraction semigroup with respect to ||-|| if the closed
unit ball B = {z € C"| ||z|| < 1} is forward-invariant under the flow of & = Ax. Hence for
every t > 0 the inclusion e’B C B holds. Note that this only needs to be checked for an
infinitesimally small £ > 0, i.e., we need a criterion which decides if for every initial value
xo € OB the derivative of the solution z(t, z¢) of £ = Az int = 0, (0, x¢), points inside or is
tangentially to the unit ball B. And indeed this information is provided by the initial growth
rate p(A) as p(z, A) < 0 for all z € 9B is equivalent to limpnp 3 ||z 4+ hAz|| — |lz]| < 0
which shows that ||z + hAz| < ||z|| = 1 for h — oo, hence Az points inside or along the
unit ball. Thus B is forward-invariant under the flow of & = Az if u(A) < 0, where p
satisfies

p(A) = lti\rgt’l (11 +tA] —1). (2.25)
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We have seen in Proposition and Proposition that this limit is well-defined since
t=1 (|| + tA]| — 1) is monotonically decreasing for ¢ \, 0 and since it is bounded from below
by — [l A}

The following theorem recalls the formulas for some standard operator norms and gives
the corresponding initial growth rates.

Theorem 2.41. Let v = (z;) € C" and A = (a;;) € C™™. If p,(-) denotes the initial
growth rate with respect to the norm ||-||, (p = 1,2, 00) then

llly =l Al = mjfdxz |ai;| pi(A) = max (Re% +) ’%’\) ;

i#]

lelly = [2lails lAll =y fmax Ai(A* ), pa(A) = 3 max Ai(A + A7),

oo = maxfz;[,  [[All :mng!awl, floo(A) = max (Reaii+2|aij|> -
J J#i
The operator norms |[|-||; , |||, and ||-||, are called (absolute) column-sum norm, (absolute)
row-sum norm and spectral norm, respectively.
Proof. We will show the formulas for the initial growth rates. Note that the spectral norm

is self-dual, therefore

p2(A) = sup Re(z, Az), = 3 sup 2" (A + A")z = JA\pax(A + A%),

llz]l=1 flz]|=1

where the last equality follows from the Rayleigh-Ritz Theorem for Hermitian matrices,
see [70]. For the 1- and oco-norm case we use the fact that the real part of z € C can be
represented by Re z = lim,_., |z + r| — r. By setting r = ¢! in (2.25)) we obtain

pi(A) = %in%t_l |1+ At|| =t = lim ||[r] + A, — 7

= ma lim |a;; +7r| —r+ a;;] | = max | Rea;; + ail | .
jX<T_>OO’ 4i | Z’ J‘) jX< 3j Z| J’)

i#j i#]
Analogously, ji, = max;(Rea;; + Z#i |aij])- -

The following proposition is a direct consequence of the characterization of dissipativity in

Lemma and the rule u(A — 3I) = u(A) — 8 of Proposition [2.40]

Proposition 2.42. Suppose ||-|| is an operator norm on K"*™. Then n(A) is the least
upper exponential bound for ||e*||, p(A) =min {p € R|Vt > 0: [[eM]| < et'}.

This characterization also holds for uniformly continuous semigroups on a Banach space
X, as ||€AtH < el4lt for t € R, see also (2.9) and Theorem @
If the matrix norm under consideration is not an operator norm, dissipativity and p(A) <0
are not equivalent as the following example shows.
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Ezample 2.43. Suppose that C™" is endowed with the Frobenius norm [| Al = />, ; lai; ?

which is a matrix norm, but not an operator norm. Furthermore, if A is a matrix of rank
1 then ||A] = [|A|l,. Hence if A € C™™ has a simple uniquely determined rightmost
eigenvalue then HeAt” e HeAt for ¢ large since the dominant eigenmotion “survives”
asymptotically, see Proposition For A = (’05 _3260) the transient behaviour ¢ +— HeAtH
is depicted in Figure for both the Frobenius and the spectral norm. The initial growth

I,

\ || E—

Figure 2.5: Transient motion and the Frobenius norm.

rate of A with respect to ||-|| (which is negative here) is not an upper exponential bound
for HeAtHF. However, for large ¢, | eAtHF is a good approximation of He““”z. [ |

If the initial growth rate is negative then its absolute value can be interpreted as a dissi-
pativity radius, as the following result implies.

Lemma 2.44. Let A € K™ and ||-|| be an operator norm on K"*". Suppose that A is
dissipative with p(A) < 0. If A € K™ |A|| < 0 then

e < el ¢ >

Hence A+ A is dissipative, if 6 < |u(A)|. On the other hand, if § > |u(A)| then A+ A
with A = 01 is not dissipative.

Proof. The subadditivity of the initial growth rate and Proposition give the estimate

HB(A+A)tH < eHA+A)E < er(A)+p(A))t < ep(A)+o)t

By Proposition [2.40] (iv) we have p(A + 61) = pu(A) + 61 and for § > |u(A)| and A = 41,
the initial growth rate (A + A) > 0, hence A 4+ A is not dissipative. O

Hence if A is dissipative, matrix perturbations A € K™ with norm ||Al| < |u(A)| will not
destroy dissipativity, (A + A) < 0. On the other hand, for § > |u(A)| the perturbation
A =41 satisfies p(A+ A) > 0.

Let us return to the discussion of duality issues related to dissipativity. In the following
(-, ), denotes the standard Euclidean inner product in K™ while ||-|| is an arbitrary vector
norm on K”. Let us denote the unit sphere by S = {z € K" | ||z|| = 1}.
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Figure illustrates the unit balls of dual norms and a pair of dual vectors (z,y) € S x S*.
A small calculation shows that the line connecting x with ¥/|jy|? is tangent to the unit ball
B in x, as y is an outer normal of B in x.

Now if A is strictly dissipative with
2

(x%eln\l}lgp Re (y, Az), < 0

then all z = Ax = & point inside the unit ball B. In other
words, if (x,y) is a unitary dual pair with respect to |||,
| the angle spanned by z = Az and the outer normal y is
obtuse. Figure[2.6]depicts allowed directions for a given .
If A is a dissipative matrix with max(,,) nop Re (y, Az), <
0 then there may exist x € 0B such that Az spans a right

) angle with the outer normal y, hence Az is tangentially
-2 L to the unit ball B.

-2 — 0 1 2
As a different interpretation of Proposition|2.31} the initial
Figure 2.6: Dissipativity. growth rate for a general norm corresponds to a right-
most point of the numerical range of A (also called field
of values). The numerical range of A with respect to the norm ||-|| is defined as follows,
A
Wy (A) = {% (x,y) € C" x C" is a dual pair of ||H} c C. (2.26)
LU, y 2

AW (A) is the set of all Rayleigh quotients of dual pairs, its numerical abscissa is defined
by the initial growth rate with respect to the norm ||-||,

ny.(A) = sup {Rew | w € W (A)}

and equals the initial growth rate with respect to the norm ||-||, nj.| = |- There exists a
well-studied object which is closely related to the numerical range associated with |||,
W (+). This is the object of the following theorems and propositions.

Theorem 2.45 (Gershgorin’s Theorem). For A € K™ set R; =, lai|, i =1,...,n,
and define the ith Gershgorin disk by G;(A) = {z € C| |z — au| < R;}. Then

n

a(4) C §(A) == Si(A).

i=1
FEach connected component of G(A) contains at least one eigenvalue of A.
For a proof, see [70]. We will now have a closer look at the Gershgorin set G(A).

Proposition 2.46. For a given matriz A € C*™ the Gershgorin set G(A) is contained
in the numerical range Wy (A) of A associated with |||, and the numerical range is
contained in the convex hull of the Gershgorin set, that is,

G(A) € W (A) C conv G(A). (2.27)

oo’
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Proof. Let us first describe dual vectors of € C™ with respect to |||, . Note that its dual
norm is ||-||5, = ||-|l;- We introduce the index set I(z) := {i € {1,...,n}| ||lz|l, = |2}
which collects all critical indices of . Then the set of all dual vectors of x with respect to
|| is given by

€l(x) i€l(x)

where €’ is the i-th unit vector in C". This can be seen as follows. For every y € D(z),
its dual norm is given by |ly||>. = |lyll, = Dicr ilTil = |zl Xier@ @ > 0 and
(Y, 2)g = D icr(ny GiTiTi = )12 Yicrw) @ = |zl [[vll, - Hence the pair (z,y) is a dual
pair by Definition . Conversely, assume that y is a dual vector of z. Then (x,y), =
Yo i = ||zl llyll, = max; |z;| > ¢, |y:| has to hold. But generally, we only have for
z,y € C" with (z,y), € R, that

n n
E Yix; = E Yix;
i—1 i=1

To obtain equality in (2.28), we must have y; = 0 for all indices i with [|z|| # |zil.
Collecting all those indices i with |z;] = ||z|_, in the set I(x), we rewrite as
dicr(w) YiTi < D ier( Vil 2] - Again, to obtain equality, y; must be a nonnegative multiple
of z;. As y is a dual vector of z, at least one y; # 0 which shows that y € D(z). In the
case that I(z) = {i} the dual vectors y of z satisfy y = ax;e’ for @« > 0. We now show
that every z € G(A) can be represented by a Rayleigh quotient z = (Ax, y),/(z,y), where
(x,y) is a dual pair with respect to ||-|| .. For z € G(A) there exist an index iy and ¢ € C,
|¢| < 1 such that z = @iy, + (3244, 10ig;)¢. By introducing ¢; € C such that a;,; = |as,;|
|¢;| = 1, we have

< ol il < max [z 3 . (2.28)
=1 =1

z:ai0i0+2ai0j(CCj), |CC]| § 1 for all j = 1,...,71,.
J#i0

The pair (x, ) of vectors z = (((y,...,1,...,(¢,)" with a 1-entry in the ig-th component
is a normed dual pair associated with |[-||  because |z|| = 1 as [((;| < 1, and because
le®]|, = 1, (e, x), = 1 by construction. Hence z = (', Ax),/(e", x), € W (A) and
therefore G(A) C W (A).

On the other hand, for every z € W, (A) there exists a dual pair (z,y) such that z = %x;;i?.

(@) a;zie’ for the index set I(z) defined above and

Since y € D(x), it is given by y = Y.,
a; > 0, >y @i > 0. For each ig € I(x) the vector y* = z;,e® is a dual vector of .

Since |f—7| <1 forall j €{1,...,n} the associated Rayleigh quotient satisfies
0

<Ax’ yl()) jz L €T
) 2 _ = ; Zaiojffj = iy, + Zaiojx—? € G(A). (2.29)
) 2 20710

j=1 J#io ‘o
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Hence we obtain for z = % € W (A),
5= <A$7 y>2 _ Ziel(x) <A.’L’, aiyi>2 _ . <xayi>2 <A3§',y2>2
(z,9), Zje](:v) (z,0517), iel(x) Zje[(ac) aj{z, y), (z,y7),

where (o), € G(A) by (2.29)). Therefore, each z € W (A) is given by a convex combi-

(z.y")q
nation of elements in G(A) and thus W, (A) C conv G(A). O

The numerical range of A € C™"*™ associated with any norm always contains the spectrum
of A, hence the first statement of Theorem follows immediately when x in the Rayleigh
quotient is set to an eigenvector of A.

Remark 2.47. We conclude from (2.29)) that we obtain the Gershgorin set if we consider
Rayleigh quotients of dual pairs (x,y) where the dual vector y of x is a scalar multiple of
a unit vector, that is,

<A:L’,y>2
<ZL‘,y>2

s4) = {

(z,y) DP of |||,y = x4, for some io} . (2.30)

This equation allows the following interpretation. Let us consider the unit sphere S, =
{r € C"| ||z||, =1} C C" as a CW-complex, see [75]. If we delete all its components of
dimensions less than n — 1 we get a set of open faces. These faces consist of points with
uniquely determined dual vectors. Using only those points for the Rayleigh quotients, we
arrive at ([2.30)). Hence each Gershgorin disk G;(A) corresponds to those Rayleigh quotients
which correspond to dual pairs with y = ¢’ as dual vector.

From Proposition [2.31] and Proposition [2.46] we get the following characterization of the
initial growth rate with respect to the oo-norm.

Corollary 2.48. For all A € C" ",
foo(A) = max{Rez |z € W (A)} = max{Rez |z € §(A4)}. (2.31)

Proof. We have sup{Re z|z € G(A)} = sup{Re z|z € conv §(A)}, and hence (2.31] follows
from ([2.27)). [

Definition 2.49. A matrix A = (A4;;) € C"*" is called diagonally dominant (with negative
real parts of the diagonal elements) if

forall i=1,...,n: Reaii+Z|az~j| <0, (2.32)
JFi

it is called strictly diagonally dominant if the strict inequality holds in (2.32]).

An application of Corollary gives the following result.
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Corollary 2.50. A (strictly) diagonally dominant matriz A € C™™ is (strictly) dissipative
with respect to |||, froo(A) <0 (1oo(A) <0, respectively). Moreover, its Gershgorin disks
are located in the open (closed) left half-plane, G(A) C C_ (S(A) Cc C_).

Proof. From z € G(A) it follows that Rez < max; <Re @i + D iz |a¢j|> = loo(A). Hence

if A is (strictly) diagonally dominant, then o (A4) < 0 (pso(A) < 0), such that G(A) c C_
(S(A) C C_, respectively). 0

—4
Example 2.51. Let us consider the matrix A = ( 2 —01 0 ) Its Gershgorin set contains two

disks of radius 2 centered at —4 and —1 and a dlsk of radius 1 centered at —7, while the
spectrum is given by o(A) = {—0.4171, —4.251, —7.332}. Figure [2.7 shows the spectrum,
the Gershgorin set, and the numerical range with respect to the oco-norm shaded in gray.
Note that, unlike the Euclidean numerical range W5, the set W, is not necessarily a convex

3

Figure 2.7: Numerical range W, (A) and Gershgorin disks G(A).

set. |

For later references, we collect the characterizations of the initial growth rate in the fol-
lowing corollary.

Corollary 2.52. The initial growth rate u(A) of A € K" associated with the vector
norm ||-|| is characterized as follows

u(A) = gie [l iz = Hom ([l = 1) = lim 3 dog [l (2:33)
= }IL\ (I +Ahr|| —1) = lim (lIrf+ Al —r) (2.330)
:}L%%(\\(IJFQA) | - —}Ll\r%h(u R -1, k=123, ([233))
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A *A
pu(A) = max Re {4z, y), = max Re x) (2.33F)
(z,y) DP <l‘7 y>2 (z,y) DP y*[E
p(A) =inf {w e R|Vt >0 [|e?|| < e} 2:334)
1
= inf {w eR ‘ Va>wVzeC: |[(af —A) 2| < — ||z\|} : (2.33¢)

Proof. The characterizations (2.33) and ([2.33p]) are given in Theorem and Defini-

tion m Equation (2.33p)) follows from (2.33)) by replacing e with the product formu-
lation (I — £A)™" from Theorem and with (I + £A)*. We can identify the terms of

(2.33P) with the initial growth rate as for all k € N, k > 1, (I — LA)™ = I + At + O(t?)
and (I +LA)" = I + At +O(t*). Equation is due to Propositionwhile
is derived in Proposition m The last characterization is an application of The-
orem to A —wl, namely, A — wl is dissipative if ||(A +w)] — A)z| > A||x| for all
A > 0. Setting o = A +w and z = (ol — A)~ 'z gives (2.33F). O

2.4 Liapunov Norms

Liapunov theory plays an important role in many fields of applied mathematics. Here the
initial growth rate serves as an indicator if the semigroup 7' = (e!*),cg, forms a contraction
with respect to the norm under consideration. The same fact can also be interpreted in
the following way: The norm is a Liapunov function for the system & = Ax. We will prove
this and related facts in the current section.

Definition 2.53. Let A € K™, If ||-|| is a vector norm on K" such that the associated
initial growth rate satisfies p.j(A) < 0 then ||-|| is called a Liapunov norm for A. It is
called a strict Liapunov norm if . (A) < 0.

If |||l is a Liapunov norm for A then it generates a contraction semigroup, hence A is
marginally stable, and if the norm is a strict Liapunov norm, then A is exponentially
stable and generates a uniform contraction semigroup which follows from Proposition [2.42
Let us recall the definition of a Liapunov function.

Definition 2.54. A Liapunov function for the linear system & = Az is a continuous
function V' : K™ — R for which the following properties hold:

1. V is proper at 0, i.e., the set {x € K" |V (z) < e} is compact for all € > 0.

2. V is positive definite, V(0) = 0 and V(z) > 0 for all z # 0.

3. For each initial value xy # 0 there exists a time 7 > 0 so that the solution z(¢, ) of
& = Az satisfies V(z(t,x0)) < V(xg) for t € (0,7) and V(z(7,20)) < V().

It is well-known that the existence of a Liapunov function for £ = Az implies that this
system is asymptotically stable, see Sontag [128]. We now have a canonical candidate for
a Liapunov function, namely, the Liapunov norm.
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Lemma 2.55. If ||-|| is a strict Liapunov norm for A € K™*™ then it is a Liapunov function
for the system © = Ax.

Proof. Since ||-|| is a norm, it is clearly positive definite and has compact level sets. Now
by the characterization of p in (2:33[), we have ||ez|| < e*W!|z|| for all z € K". As
wu(A) < 0, A generates a uniform contraction with respect to ||-||, or in other words, ||-|| is
strictly decaying along the solutions of # = Axz. Thus the norm is a Liapunov function for
T = Ax. O

In most cases, however, the norm of interest is not a Liapunov norm for the system under
investigation. We therefore have to deal with two different norms, a given one and a suitable
Liapunov norm. To compare these different norms on C" we introduce the following notion.

Definition 2.56. Suppose v and ||-|| are norms on C". The eccentricity of norms of v(-)
with respect to ||-|| is given by

max|z|=1 V()

ecc(v) = ecc(v, ||]|) = (2.34)

minHmH:l I/(l’) .

The eccentricity measures the deformation of the unit balls of these two norms with respect
to each other. Clearly,

AXo0 Y] _ MAXa20 (o)
ecc(v, [|-]) = () ; T ecc(|-[|,v). (2.35)
M0 - w20 3 ()

This notion can now be employed to compare the transient behaviour under different
norms. We obtain from Proposition the following exponential bound.

Corollary 2.57. Let A € C"" and given two norms ||-||,v(-) on C™. If () denotes the
initial growth rate with respect to v(-) we obtain

[e®]| < ece(w, ||-[)e ", ¢ > 0. (2.36)

Proof. Proposition m gives the exponential estimate v(et) < e (At for t > 0. For all
y € C", y # 0 we obtain by considering the v-norm of the normed vector ¥/|jy| that

Joll min v(a) < v(y) < ly] max (o). (2.37)

This implies for the associated operator norms ||T||,v(T') of any T € C"*"

[T (minpo v(z)) " v(Tw)
T| =sup —— < su T = ecc(v, ||-|)v(T). 2.38
I7l = sup o < sup L= T =l D). (238)

Setting T' = e gives the desired result. O
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In particular, if v is a strict Liapunov norm for A, then p,(A) < 0, and (2.36)) guarantees
asymptotic stability. Let us study the following special setup for Corollary [2.57]

Proposition 2.58. Given a vector norm ||-|| on K™ and an invertible matriz W € Gl,,(K).
Define v(-) = ||[W-||. The eccentricity of v is given by the condition number of W,

k(W) := ecc(v, ||-])) = W |[Ww1]], (2.39)
and the weighted initial growth rate satisfies

pp v (A) =, (A) = py (WAW™). (2.40)

max||; | =1 || Wzl

Proof. The eccentricity of v is given by ecc(v) = Now, max|j,j=1 [|[Wz/| is the

min ;=1 [|Weal *
operator norm of W and (minj ||VV:15||)71 = max|wy|=1 [|z| = max), =1 [|[W 1y is the
operator norm of W~! such that holds. For the initial growth let us determine the
operator norm associated with v,

A A AW
JA) — s PAT) I AT WAy

= sup S = = |waw,
@ R Wl e e A

where we used y = W~txz. The characterization (2.33g]) of the initial growth rate provides
us with

pv(A) = lim R Y v(I + Ah) — 1) = lim RH||[W (I + ARyW | = 1)
=lim b~ (|| + WAW'h|| = 1) = py (WAW ),

h—0

which shows ([2.40)). O

Surprisingly, there always exists a norm which realizes the best possible exponential bound.
To see this, let us define the following constants, which measure transient motions.

Definition 2.59. Suppose A € K™*™ and ||-|| is a given operator norm on K"*". For any
B > a(A) the transient growth or transient amplification of (e4?);>q corresponding to the
exponential rate [ is defined by

Mg(A)=inf {M eR|Vt>0: [ < Me™}. (2.41)
We set Mg(A) = oo if there is no M which satisfies the inequality in (2.41]).
Now, Mg(A) = My(A— BI) so that there is no loss of generality by only considering 5 = 0.
Definition 2.60. Given a norm ||| on K” and a stable matrix A € K™*".

1. A norm v(-) on K" is called transient norm of A if u,(A) < 0 and ecc(v, ||-]|) =
My(A) = sup;> HeAt” )

2. The Feller norm on K" induced by the matrix A is defined by ||z||, = sup, ||e**z|| -
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This norm is named after W. Feller who used such a norm construction in his proof [41]
of the Hille-Yosida Generation Theorem 2.6 Comparing with Definition [2.53], we see that
each transient norm is also a Liapunov norm.

Lemma 2.61. The Feller norm ||-|| , induced by a stable matriz A € K"*" is a transient
norm of A.

Proof. 1t is easily verified that ||-|| , is indeed a norm, the triangle inequality holds because

o+ gl = sup e (z +y)|| < sup ([le®z| + [le*y]]) < Nzl +llyll, for all z,y € K"

At
The cccentricty of |-, is given by cce(|.,) = =0l el e now show ha

inf) ;=1 sup;>o ||eAtacH = 1. If A is an exponentially stable matrix then for an arbitrary
r € R", sup;> eAt:c” is attained in finite time, say in to > 0. Then we have for y = etz
that HeAtyH < |ly|| for all t € R,. Now consider the case that A is only marginally stable.
If K = C then we choose an eigenvector corresponding to a purely imaginary eigenvalue
iw € o(A). Then ||etz| = [le*'z|| = |lz|. If K =R and A € R™" is marginally stable
then there exists a complex conjugate pair +iw of eigenvalues of A. Let x € C" be an
eigenvector associated with iw. For all ¢ > 0 we have

2 HeAtRexH = HeAt(:E +z)|| = [[e“"x + e“"z|| = 2 ||cos(wt)Re z — sin(wt)Im z||,

which is a periodic oscillation, hence it attains its maximum in finite time ¢3. Arguing as
above, the trajectory starting in y = eRe x now satisfies HeAtyH < |ly|| for all £ > 0.
Hence the eccentricity of ||-|| , equals the transient amplification,

Mqy(A) = sup [[e™|| = ecc ||| , - (2.42)
>0

To determine the initial growth of A with respect to ||| , note that for all ¢ > 0

Jeai], = sup [e-+9]) = sp o < sup e = ],
s>0 s>t s>0

thus A generates a contraction with respect to ||-||, and the initial growth rate satisfies

More precisely, we have the following result for the initial growth rate with respect to the
Feller norm.

Corollary 2.62. Given a stable matrix A € K"*". Then the initial growth rate of A with
respect to the Feller norm ||-|| 4 satisfies pia(A) = min{u(A),0}.

Proof. 1f p(A) < 0 then by Proposition [2.42] |le*z|| < e*@!||z|| < ||z for all z € K"
and all t > 0. Hence ||z, = sup,, ||e"z]] = ||z|| and therefore pa(A) = u(A). Now,
for p(A) > 0 Lemma shows that ps(A) < 0 Moreover, if u(A) > 0 there exist
zo € K" and ¢y > 0 such that |le*™xg|| = ||zoll, > [|zo]. But for h > 0 with h < t,,
supysy, || o || = sup,s [|e o || = [|2ol| 4 and hence pa(A) = 0. O
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Therefore if (A) > 0 then the resulting Feller norm is a Liapunov norm, but not a strict
Liapunov norm. Otherwise, if p(A) < 0 then the original norm ||-|| which coincides with
|-|] 4 is already a strict Liapunov norm. The following lemma shows that the unit ball of
a Feller norm is of simple structure.

Lemma 2.63. Suppose that A € K™"™ is stable. Then the closed unit ball B4 of the
associated Feller norm ||-|| , is given by

By=[)e "B, (2.43)

0
where B is the closed unit ball of ||| .

Proof. By definition, € B, holds if and only if for all t > 0, e**x € B, or equivalently,
r € e~ B which gives (2.43). O

2.4.1 Transient Norms and Duality

Let us now investigate duality issues for transient norms. For dual norms we obtain the
following result.

Theorem 2.64. Suppose that ||-|| is a vector norm on K" with associated initial growth
rate u(-) and let p*(-) denote the initial growth rate with respect to the dual norm ||-||* on
K™. Then for all matrices A € K"*" the following statements hold

1. p(A) = (A%,
2. pi2(A) < 3(pu(A) + p*(A)).
Proof. The first statement follows directly from Proposition [2.31]

pu(A) = max max  Re (Az,y),, p(A*) = max max  Re (A%y, x),.

llzl|=1 [y lI*=1,(z,y),=1 lyll*=1 [[z[|=1,(z,y),=1

Now as Re (Az,y), = Re(A*y,z), the equality p*(A) = pu(A*) is proved. The second
statement follows from the first, because

H(A) + 1" (A) = p(A) + p(A) > p(A + A7) > a(A + A
= Amax(A + A%) = 2u5(A) = po(A + AY),

where we used that p is a subadditive function, which is bounded from below by the
spectral abscissa a(B), see Proposition (i) and (v). In case of Hermitian matrices the
spectral abscissa is an eigenvalue. ]

This theorem shows that given any norm, the initial growth rate for the spectral norm is
the best lower bound for all mean values between the initial growth rate of a norm and
the initial growth rate of its dual norm. For the following pair of dual norms, 1-norm

and oo-norm, we have uf(A) = ps(A) for all A € K", Part 2 of Theorem has the
following consequence.
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Corollary 2.65. Suppose that A € K™ satisfies p1(A) + poo(A) < 0. Then A generates
a contraction semigroup with respect to the spectral norm, such that

p12(A) < 5(p1(A) + p1oo(A)) < 0.

Estimates involving p; and ps, will be studied in more detail in Chapter [5
Now that we have treated the initial growth with respect to dual norms let us consider the
eccentricities of dual norms.

Proposition 2.66. For vector norms v(-), ||-|| on K" it holds that

ecc(v, || ]) = ecc(”, [I-]I").

Proof. Tt suffices to show that ecc(v*, ||-]|*) < ecc(v, ||-||) since the bidual norms equal the
original norms, hence

ece(v, |[-I) = ece(v™, ||-I) < ecc(v”, [|-]|") < ecc(v, -]} (2.44)

implies equality. To this end, let us prove that max,«~—; v*(y) = max, (-1 [|z| and
min <= *(y) > min,z)—1 ||x|| To show the first of these claims note that by definition

max v*(y) = max max |y*zr| = max max y'x max ||x]| . 2.45
lyll*=1 (v) ||y||*=1V(l‘):1’ = v(z)=1 ||ly||*= lyal = u(x):1H I ( )

To show the second claim, we define & = max{3|v(fz) < 1 for all ||z|]| = 1}. Then we
have o = min, ()1 ||u|| . Now consider miny,-—; v*(y) = miny,»—; max, )< |y*z|. Let us
choose a special x in the previous formula. For this, let z be a dual vector of y which
satisfies ||z]| = 1 and y*z = ||y||" . By definition of o we have v(az) < 1. Hence the special
choice x = az yields

min v* 1Y) = min max > mln aly 'zl =a= min ||u 2.46
it W) = min, mex lue] 2 min, oy’ 2] Join, [luf|- (2.46)

Combining (245), [246) and (2:38) we get

maxX,||*=1 v*(y) maXy(z)<1 |||

ecc(v', ||-]I") = — , = ecc(||-|| ,v) = ecc(v, |||])-
(1) = o < S (4], v) = eec( )
Hence equality follows in ([2.44)). O
Now, if H | = || |, is given then the dual norm of a transient norm v satisfies by Proposi-
tion [2.66| ecc(v*, ||-||,) = ecc(v, ||-||,). Hence we can expect that v* is also a transient norm,

but now for A*. This is indeed true as the following corollary shows.

Corollary 2.67. Suppose that ||| = ||-||5, i.e., all eccentricities are measured with respect
to the Euclidean norm. Then the dual of a transient norm v(-) of A is a transient norm

of A*.
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Proof. By Proposition we have ecc(v, ||||,) = ece(v*, ||-]|,). Part 1 of Theorem [2.64]
shows that pf(A*) = pu,(A) < 0. The transient amplification satisfies

My(A) = sup HeAtH2 = sup ||€A*t , = Mo(A").
>0 >0
Hence v* is a transient norm of A*. O
Suppose that A € K™*" is stable and let us consider the norm ||-|| , := ((||||")a+)*, that
is, we start with the dual norm of ||-|| and construct the Feller norm with respect to A*.

This is a transient norm for A*, hence by Corollary [2.67|its dual ||-|| , is a transient norm.
This provides a second method of creating transient norms besides |[|-|| , itself. Let us now
analyse this alternative method for the construction of transient norms. The following

proposition shows how the unit ball By of m 4 1s obtained from the trajectories of the
system = = Ax.

Proposition 2.68. Suppose that A € K™ is a_stable matriz. Let B be the closed unit
ball of ||-||. The closed unit ball By of the norm ||-|| 4 := ((||-||")a=)* is given by

B, = conv {eAtx }t >0, z € B} =conv UeAtIB%, (2.47)
>0
where conv_ denotes the closed convexr hull and B is the closed unit ball of ||-|.

Proof. Recall that the dual set of a convex set K C K" is given by
K'={yeK"|Vx € K: Re(y,x),<1}.

Hence the dual of the unit ball B is the unit ball B* of the dual norm. For a fixed ¢t > 0
the dual set of eA'B is therefore given by e 4*B* as & € B, y € e 4B* satisfy
Re (y,z), = Re <eA*ty,e_Atx>2 < 1 by duality of B and B*. The closed unit ball of the
norm (||-[|") 4+ is given by B%. = (,50¢ ' 'B*, see Lemma . Its dual set can now be
computed using [120, Corollary 16.5.2], which shows that the dual of a closed convex hull
of the union of convex sets C; is given by the intersection of the dual convex sets C}, and
therefore

B =()e "B = (m U (e—A*t]B%*)*> = (m U e"“lB%) = (@A>*.

£>0 t>0 t>0

Hence the unit ball of m 4 1s given by ([2.47)). O

Let us compare the unit balls for both transient norms ||-|| , and m 4 They are given by
BA:{IL‘EB‘BAthBfOI alltZO}, @A:conv {eAt:L“ZL‘EB,tZO} (2.48)

hence the first unit ball consists of all initial vectors for which the trajectory remains
entirely in B while the latter unit ball is the smallest ball containing all trajectories starting
in B, i.e., the first is the largest A-invariant ball contained in B, while the latter is the
smallest A-invariant ball containing B. It is easy to see that the following inclusions hold,
BsCBCB,4.
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15 L L L
—1.5 - —0.5 0 0.5 1 1.5

Figure 2.8: Unit balls of transient norms.

Ezample 2.69. Consider the stable matrix A = (> %)) . The unit ball for its Feller norm,

B4, and the unit ball of the transient norm, B4, when starting from a Euclidean norm are
shown in Figure Both norms form Liapunov norms for & = Az since their unit balls
are invariant under the flow of A. Note that parts of the unit ball B4 and of the unit ball
B4 consist of trajectories of # = Ax. Hence, these norms are not analytic as they contain
segments of the unit circle and of trajectories as parts of their boundaries. |

2.4.2 Common Liapunov Norms

We already noted in Lemma[2.44]that if j(4) < —§ < 0 then u(A+A) < 0 for all A € K™,
|A|l < 6. This implies that the norm ||-|| is a Liapunov function for all perturbed systems
= (A+ A)z as long as the norm of a perturbation is bounded by 4. To generalize this
concept, we introduce linear time-invariant differential inclusions, see Smirnov [126] and
Vinter [144, Chapter 2]. We consider a set of matrices A C K"*". The differential inclusion
generated by this set is written formally as

i€ Az (2.49)

An absolute continuous function x : Ry — K" is called a solution of if there exists a
locally integrable function v € Lj (R, ,K") with v(t) € {Az(t) | A € A} almost everywhere
in R, such that x(t) = z(to) + ftz v(s)ds for t,tg € R,.

A linear differential inclusion is exponentially stable if there exist constants M > 1 and

B < 0 such that ||z(t)| < MePt||z(0)| for all t € R, and all solutions z(-).



46 CHAPTER 2. CONTRACTIONS AND LIAPUNOV NORMS

It is well-known that the closure of the solution set of (with respect to the norm
1 flloe = supesq || f(t)]|) coincides with the solution set of the differential inclusion & €
(conv A)z (Theorem of Filippov-Wazewski).

We will now investigate under which condition we can switch between the different system
matrices in A without loosing stability, or in other words, under which conditions the
differential inclusion & € Ax is stable. If the Liapunov function is a Liapunov norm, we
can answer this question affirmatively. Before we present a proof of this fact, let us extend
the inequalities of Proposition (1) to time-varying differential equations. The following
theorem allows us to compute that solutions of the differential equation (2.49) exist on R,
if sup 44 p(A) is finite.

Theorem 2.70 (Wazewski inequalities). Consider the differential equation ©(t) = A(t)x(t)
ont € Ry where A(t) : Ry — K™ is measurable matriz-valued function. If p is the initial

growth rate associated with a vector norm ||-|| on K" and sup,sq u(A(t)) is finite, we have
for all t € RY and all initial values x(0) = xy € K"

el A | < la(t, wo) | < i HAO . (2:50)
Proof. Suppose that x(t) is a solution of x(t) = :1:(0)4—]8f A(s)x(s)ds with 2(0) = zo and life
span Iyax = [0, tmax). Then z is absolutely continuous on Iy, hence v(t) = &(t) = A(t)z(t)

is a locally integrable function. Starting with the integral formulation of a solution, we
obtain for t € I« and for small enough A > 0 that

h h
z(t+h)=x(t) + / v(t+0)do = x(t) + / A(t+ 0)x(t + 0)do
0 0
Hence taking norms,
[t +h)l| =

x(t)+/0hA(t+9)x(t+9)d0H _ x(t)+/OhA(tJr@)(a:(t)JrO(h))dGH

< ”1+ /OhA(tJrQ)d@‘ le ()] + O(h),

la(t + ) = lae)] < (H” / hA<t+e>deH ~1) o) + 01,

As A is a measurable function, limy\ o foh A(t+60)df = A(t) almost everywhere. Exploiting
the monotonicity of A~ (||I + hA(t)]| — 1) as b\, 0 we get

2@ < p(A®) lz@))]  ae.

Analogously, the left derivative of ||(t)|| satisfies

e = —p(-A@) 2Ol ac
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Figure 2.9: Vectorfields of ©# = Ayx and © = Asx.

Using integrating factors we obtain for t € [,

# [efo u(—A(0))do Hx(t)H < 0) dtiJr [6_ Jo 1(A(0))do Hiﬁ(t)H > O,
from which (2.50)) follows for all ¢t € Iyax. As sup;squ(A(t)) < 0o, we have Ina = Ry,
whence ([2.50]) holds on R. [
Corollary 2.71. Given a closed set of matrices A C K™™ and suppose that there exists
a vector norm ||-|| such that the associated initial growth rate satisfies u(A) < 0 for all
A € A. Then the differential inclusion
& € (conv A)z (2.51)

is exponentially stable and all solutions x satisfy the contraction property ||z(t)|| < ||z(0)]|
fort > 0.

Proof. As sup 4c 4 pt(A) is bounded, a solution z(t) of exists on R;. Then we find an
integrable function v(-) such that z(¢) = z(0) + f(f v(0)dh. We find a measurable selection
A(t) € conv A such that v(t) = A(t)x(t) for almost all t > 0, see [I144, Theorem 2.3.11]. By
Theorem any solution is exponentially bounded with a negative decay rate, since by
convexity p(A(t)) < 0 holds almost everywhere on R, and therefore fot w(A(9)dd < 0. O

Ezample 2.72. Consider the two matrices A; = (§ %) and Ay = (' {). Then one can
easily see that any solution x(t,z¢) of the differential inclusion & € {A;, A;}z satisfies
|z(t;2°)| < /2| 2°|| with respect to the Euclidean norm, see Figure A common
Liapunov norm is given by the maximum norm ||z|| = max; |z;] . |
Remark 2.73. The convex hull of a set of exponentially stable matrices does not necessarily
contain only exponentially stable matrices. In particular, if A € K"*" is an exponentially
stable matrix with ji5(A) > 0 then conv{A, A*} contains the instable matrix (A + A*).



48 CHAPTER 2. CONTRACTIONS AND LIAPUNOV NORMS

The following result which extends Corollary can be found in Molchanov and Pyat-
nitskij [107].

Theorem 2.74. The differential inclusion (2.49)) is exponentially stable if and only if there
exists a common Liapunov norm for A C K"*". A suitable Liapunov norm is given by
v(z) = max{’<x,yi>2| }2 =1,... ,m}

for a set of vectors y' € K", i = 1,...,m with span{y’|i = 1,...m} = K" such that there
exists v > 0 with

sup pu(z, A) < —v||zll, for allz € K".

AeA

2.5 Notes and References

Most of the material on semigroup theory used here can be found in the extensive literature
on one-parameter semigroups, see e.g. [38, 113, [59]. The asymptotic growth rate is discussed
in all of these references. Theorem is a consequence of the following theorem.

Theorem 2.75 (Priiss). Let X be a Hilbert space and A a closed linear operator on X . If
A is the generator of a strongly continuous semigroup (T'(t))icr, then

wo(T') = lim . (A).

e—0

In this formulation, the result is due to Trefethen [I37]. Priiss [I18] uses the following
characterization of the asymptotic growth bound,

wo(T) = inf {w > a(A)

sup ||(AI—A)7Y < oo},
Re A>w

hence for each w > wy the resolvent is uniformly bounded on Cs, = {z € C|Rez > w}.
Note that Theorem does not hold in arbitrary Banach spaces, see the comments on [38]
Theorem V.1.11].

The discussion of the initial growth rate is not a standard topic, see [31, Exercises 1.9.17—
21]. The concept of the initial growth rate originates with works of Dahlquist [30] and
Lozinskii [I00], where it is coined logarithmic norm or logarithmic derivative but ideas
for the spectral norm can already be found in Wazewski [145]. Bauer [11] discusses the
relation to generalized fields of values. An interesting result connecting the resolvent with
the numerical range is the following,

Theorem 2.76 ([113, Theorem 1.3.9]). Let A be a closed linear operator with dense domain
in a Banach space X. If X € C, X & W) ((A) then A\I — A is one-to-one and has closed
range. Moreover if So is a component of W) (A)C satisfying o(A) N So # 0, then the
spectrum of A is contained in X5 and

IR(X, A)|| < dist(A, W (A) "
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More properties of the initial growth rate are given in Strom [134]. Vidyasagar [143] uses
the initial growth rate under the name matriz measure and shows Wazewski’s inequalities
for an arbitrary norm. For an application of the initial growth rate to DAE systems, see
Higueras and Séderlind [58]. The description of the initial growth rate via the dual norm
is new, although a description of dissipative operators in terms of dual vectors is given in
Engel and Nagel [38]. The related concept of semi-scalar products is used in Yosida [I51] to
characterize contraction semigroups. If A is a dissipative operator then —A is sometimes
called accretive for which characterizations are available in Kato [77].

The book of Arendt et al. [4] is devoted to the study of Laplace transformations and offers
lots of additional material. For example, Theorem is only a special case of the Post-
Widder inversion formula. The notion of a Liapunov norm is introduced in [83]. For a
discussion of dual vectors in finite dimensions see Horn and Johnson [70]. The generalized
numerical ranges are introduced in [I1]. For a relation between the Gershgorin set and the
spectral numerical range W(-) see [71].

The transient amplification My(A) has been introduced in Pritchard [I17]. This article
contains the ideas of many topics we discuss in the following chapters.

As already mentioned, we have traced back the usage of the transient norm ||z||, to
Feller [41]. However, as Daleckii and Krein [31), pp. 29, 68] note, the family of Liapunov

norms
%) » 1/p
||x||A,p=(/0 Hﬁ%ﬂ) e

has been introduced in lectures given by Krein in 1947-1948, but these ideas were published
as late as 1964 in [87]. Here the Feller norm is just a special case, [|-[| , = |||, ., - The dual

concept, the transient norm ||-|| ,, remains as of now unnamed. The notion of eccentricity
for ellipses is found in classical geometry. For an application to stability issues, see for
example Sarybekov [123], where the condition number of a quadratic Liapunov matrix is
introduced as quality of stability of the associated system matrix. Wirth [I50] introduces
the concept of eccentricity for general norms.

For a discussion of differential inclusions see [6, 126]. A proof of the Wazewski inequali-
ties is found in Vidyasagar [142, Theorem 3.5.1] and Gil’ [46], Corollary 4.2.5], see
also the original article of Wazewski [I45]. Note that the estimates for linear systems ob-
tained from Theorem perform better than estimates based upon Gronwall’s Lemma
as the latter works with || A|| which is always larger than p(A).

This thesis only discusses continuous-time linear dynamical systems. For results on discrete-
time systems, see Varga [140] and Higham [56].
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Chapter 3

Bounds for the Transient
Amplification

The matrix exponential of A € K"*" carries all the information of the solutions of the
linear time-invariant differential equation & = Az, information on both the short-term or
transient behaviour and on the long-term or asymptotic behaviour. In this chapter we
introduce a concept of stability that takes transient effects into account as we do not only
prescribe a growth rate 3 but also a transient bound M, hence expanding the notion of
exponential stability.

Moreover, we present old and new results for bounding the matrix exponential. We consider
some upper bounds for the norm of the matrix exponential, ||e? H . These bounds presented
here may be roughly grouped into three types:

e bounds using the spectrum of A,
e bounds using quadratic Liapunov functions, and
e bounds using the resolvent of A.

We show that bounds which depend on the spectrum of A are relatively weak when the
matrix under consideration is highly nonnormal. After that we consider some results which
deal with the singular value decompositions of A and of e*. As a third method we consider
quadratic Liapunov functions, where we show how the theory derived in Chapter [2|fits into
the classical results on quadratic Liapunov functions. Finally, we take a look at bounds
obtained from the resolvent.

3.1 (M, [)-Stability

We introduce a stability definition which does not only take asymptotic effects, but also
transient effects into account. One can argue that this is a suitable requirement in the
presence of physical constraints. Moreover, it is important to detect and handle overshoot
phenomena.

o1
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Definition 3.1. Suppose M > 1, g € R are given constants. The system matrix A € K"*"
of a linear time-invariant system

i(t) = Ax(t), t >0, (3.1)
is said to be (M, (3)-stable with respect to the operator norm ||-|| if it satisfies
||eAtH < MePt o for t > 0. (3.2)

It is called strictly (M, 3)-stable, if
HeAtH < Mt fort >0,

and uniformly (M, [3)-stable if there exists 5’ < @ such that (3.2)) holds with 3 replaced by
(. The set of all (M, 3)-stable generators in K"*" is denoted by G(M, ().

In the case M = 1,5 < 0 every matrix A € G(M, ) generates a contraction semigroup.
This has already been studied in Chapter Unlike asymptotic stability or marginal
stability in the sense of Liapunov, these stability notions depend on the chosen norm on
Knxn.

Using a transient norm as defined in Definition [2.60| we get the following description of
(M, B)-stability.

Proposition 3.2. The matriz A € K" is (M, 3)-stable if and only if there exists a
Liapunov norm v for A such that

o (A) <, eccv < M.

Proof. 1If A € §(M, ) then A — BI, is stable and the function v(x) = |[[z|,_5 =
SUP;>o e Pt HeAtxH is finite and defines a norm. The eccentricity of this norm is given
by eccv = sup He(A_ﬁI)tH < M, see (2.42). Moreover u,(A — 3I) < 0 by Corollary [2.62
hence p,(A) < . Hence we have found a suitable norm satisfying the conditions of the
lemma. The converse implication is clear from Corollary O

Let us now discuss uniform (M, (3)-stability. Alternative proofs for the following proposi-
tions can be found in [67].

Proposition 3.3. Given M > 1, § € R. The matriz A € K"*" is uniformly (M, (3)-stable
. . A is strictly (M, 3)-stable with a(A) < 3 for M > 1,
iof and only if { 1(A) < 3 for M —1.

Proof. Let us first study the case M = 1. If u(A) < B then A is uniformly (1, 3)-stable:
It suffices to choose ' = p(A). Conversely, if HeAtH < e’ t >0, and f/ < [ then
w(A) < g < B, see Proposition In case M > 1, uniform (M, [3)-stability implies
strict (M, ()-stability. Clearly, a(A) < u(A) < 3 holds by Proposition [2.40l Conversely, if
A is strictly (M, B)-stable with a(A) < § then we set

M* =inf{M > 1| He(A_BI)tH <M for all t>0}.
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By construction we have M* < M. Let us suppose that M* = M holds. To obtain strict
(M, B)-stability lim,_o ||e“#D!| = M has to hold, i.e., the supremum of ||e(*=#D¢|| is
obtained for ¢ — oo. This contradicts the exponential stability of A — 1. Hence the
maximum of He(A_ﬁ)tH is attained for a finite t* > 0. By continuity of the norm and of
the matrix exponential there exists 3 < ( such that HeAtH < MePt t > 0. Hence A is
uniformly (M, 3)-stable. O
Let us investigate the topological properties of the set of (M, 3)-stable matrices, see [75]
for the used topological notions.

Proposition 3.4. Suppose that M > 1, < 0 are given constants. Then the set G(M, (3)
of complex (M, 3)-stable matrices is closed and its interior is given by

G(M, B) = {A € C™"| A is uniformly (M, 3)-stable } = U (M, ).
B'<B
FEspecially, for A € G(M, ) we have the following perturbation result for all A € C"*"
||6(A+A)t|| < MePteMIAlt t>0. (3.3)

Proof. For every converging sequence Ay € G(M, 3) with limy_., Ax = A, the continuity
of the operator norm and the exponential gives HeAtH = limy_ o0 ||€AktH < MePt for all
t > 0, hence A € G(M, 3) and therefore G(M, 3) is closed. If A is not uniformly (M, (3)-
stable then A belongs to the boundary of G(M, 3) because A+ el & G(M, 3) for all € > 0.
Let us therefore assume that A is uniformly (M, 3)-stable, i.e., there exists 3 < [ with
HeAtH < Meﬁlt,t > 0. By Proposition we find a norm v such that eccv < M and the
associated growth rate satisfies 1, (A) < . Then for A € K"*" we obtain using properties
of the initial growth rate, see Proposition [2.40|

HG(A-FA)tH < eccu - ehv (A+A) < eccu - ok (A)+pw (B))t < eccu - 6(#u(A)+V(A))t7 t>0.

Now by and we can bound the operator norm v(A) by

v(A) < ecc([l-||, v) [JA]] = ece(w, [|-]]) |A[] < M A],
which shows (3.3)). Therefore for every A € K™ with [|A|| < M~!(8 — '), the matrix
A+ Ais (M, §)-stable. Therefore AO is an interior point of §(M, ﬁ).o Thus each uniformly
(M, B)-stable matrix is contained in §(M, [3), and clearly G(M, ') CG(M, ) for f' <. O
If Ae §(M,3) and A € K™ commute then we can improve , namely,

HG(A—FA)tH _ HeAteAtH < HeAtH HeAtH < MePter®t < M@ +HIANE 4>

Here pu(+) is the initial growth rate with respect to ||-|| .

Ezample 3.5. Consider the matrix A = (' % ) studied in Example . We have seen that
a(A) = —1, ua(A) =0, and ||eAtH2 < 1 holds for all ¢ > 0. Hence A is strictly (1,0)-stable.
But it is not uniformly (1, 0)-stable by Proposition [3.3| since p2(A) = 0. Thus A € §(1,0)
lies on the boundary of §(1,0). In particular, for every e > 0 the initial growth rate of
A, = (' 2) is given by pa(A.) = ¢ > 0 which has been computed using Theorem m
Therefore for t > 0 close to 0, HeAEt , % 1. |
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We now have a closer look at the transient growth Mg(A) of A defined in Definition It
is easy to see that Mz(A) = My(A—pI). For astable A € K™*™ the transient growth equals

the eccentricity of the Feller norm associated with A, see Lemma and equation ([2.42)).
Let us first note the following monotonicity property.

Lemma 3.6. Let A € K™*". Then for ' > (> «a(A),
1< Mg(A) < Mg(A) < Q.

Proof. If B > a(A) then A— 1 is exponentially stable, and He(A_M )tH is uniformly bounded
for all £ > 0. Thus Mg(A) = sup; He(A_ﬂf)tH is finite. For g < (3 we have

Mg (A) = sup He(A’ﬁlI)t
0

s (e AP < sup e =
t>0 t>0

as /> (3, and thus e~ @'~ < 1 for all t > 0. O]
Unfortunately, My(A) does not depend continuously on A, as the following example shows.

Example 3.7. Consider the sequence of marginally stable matrices

1 —
Ak:E(l?Q 01> for k—o0, pu>1.

Its transient growth associated with the spectral norm is My(Ag) = u as

Apt . 0 —p!
e = cos(ft)I + sin(f1) o0 )

and therefore sup; HeA’“tﬂz = H(B _%_1)

and My(limg Ag) = My(0) = 1 < p = limg My(Ag). Starting with the Euclidean norm,
the Feller norm associated with Ay is given by |z[|, = va*Pr with P = (/62 0). As
the Feller norm associated with the zero matrix is the Euclidean norm, we also have a
discontinuity with respect to the formation of transient norms. If we consider the norm of
the trajectories over a finite time interval and define the norm v 7(x) = sup,¢jo HeAtH for
some 1" < 0o, then the Feller norm is obtained by limy_. v4 7 = v4. However, for fixed T,
limy oo V4, 7 = |||, - Hence the discontinuity is due to the fact that we consider an infinite
time horizon. This only creates problems if we deal with marginally stable matrices. W

‘ = u. But for & — oo, we have A, — 0
2

One can show that A — My(A) is lower semicontinuous on the set of stable matrices. The
situation changes if we only consider exponentially stable matrices, as then My(A) is finite
and the map A — Mj(A) is continuous.

Theorem 3.8 ([67, Proposition 5.5.5]). The transient growth A +— My(A) is lower semi-
continuous on the set of all stable matrices, and continuous on the set of all exponentially
stable matrices.
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3.2 Bounds from the Spectrum

Strictly speaking, there are no bounds on My(A) which only depend on the spectrum, some
additional information from the eigenvectors is always needed. If an eigenvector basis is
available, then we obtain the following classical bound. Suppose that there exists V' € C**"
such that AV = VA where A = diag()\;), i.e., A is diagonalizable. Then

e = VAV — Myt — V diag (MO V t>0.

If ||-|| is @ matrix norm on C™*™ which satisfies
|IA|l = max |\;| for every diagonal matrix A = diag(\;) (3.4)
(especially, if ||-|| is an operator norm induced from a monotonic norm, see Lemma
then we have
le™[F < IVIFjv= ] et (3:5)
Hence the transient growth with respect to the asymptotic growth rate a(A), Mya)(A) =
Supys || e || is bounded by the condition number (V') := |V || ||V 7}|| of an eigenvec-

tor basis V € C"*". Note that it is not required that V' consists of unit length eigenvectors
of A. By introducing a suitable diagonal scaling matrix D the condition number x(V D)
can be reduced. For a discussion of this topic, see Balakrishnan and Boyd [9] where an
optimization strategy involving linear matrix inequalities (LMI) is presented.

The bound in has the advantage that it is readily computable, but if A is not diag-
onalizable, this bound is of no use. Moreover, as we are mostly interested in nonnormal
matrices, the condition numbers of the eigenvector matrix V' tend to be large. Neverthe-
less, if (A) is negative and of large modulus this upper bound quickly decays and can be
used to identify an interval I = [0, ¢;] which has to contain the maximum of ¢ — HeAtH.

Corollary 3.9. Let A € K™ be stable and AV = VA with A = diag(\;), \; € o(A). If

t = —% then HeAtH <1 fort>t.

Let us generalize the bound to non-diagonalizable matrices where we now fix the
norm to be the spectral norm. Instead of diagonalizing A € C"*" itself we transform a
scalar multiple 6 ' A with § > 0 into Jordan canonical form, whence A = (5V5J5V5’1. Let
us split Js into the diagonal matrix ' A, where diag(A) contains the eigenvalues of A, and
the nilpotent matrix NV = (n;;) which only contains non-zero entries in the first off-diagonal
nii1 € {0,1},i=1,...,n — 1. Then we have A = V5(A + §N)V; . The matrix A + §N
has the same Jordan structure as A. Hence we can choose Vs in such way that the order
of the Jordan blocks stays the same regardless of §. Then N is independent of §. As N is
nilpotent there exists k < n such that N¥~! # 0 and N*¥ = 0. Moreover, NEH2 =1 for all
¢=1,...,k—1. As the matrices A and N commute, we have for all § > 0 that

, S WVl [[V5H 1, fle™ [l fle™,

- (3.6)
< ra(Vp)e®™y “(at)', £ >0.
{=0

e = [l
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Ezample 3.10. Consider the matrix A = (7' 7). Then V; = diag(y/d,1) and x(Vs) =
max(|vy|/d,d/ |vy|). Hence the minimal condition number ko(Vs) = 1 is attained at § = |7|.
Figure [3.1] illustrates some bounds for v = 5. [ ]

Figure 3.1: Growth bounds (3.6) for a non-diagonalizable matrix.

Unfortunately, the computation of a Jordan normal form is numerically intractable so that
bounds of this type are of little practical use. We therefore need a different approach for
non-diagonalizable matrices. Let us assume that the matrix norm is invariant under unitary
transformations. Then we can replace A by its Schur form without loosing information.
The following bound utilizes the upper triangular structure of the Schur form. Let us first
introduce a measure of nonnormality based upon the Schur form.

Definition 3.11. The departure from normality of a matrix A € C™" with respect to a
unitarily invariant norm ||-|| on C**" is defined by

1 3 nxn * .
dep(A):= min{HNH ‘ There exists an unitary U € C"*" such that U"AU = D + N, } '

where D is diagonal and N is strictly upper triangular.

This measure of normality was introduced by Henrici [54]. The following bound can be
found in [I138] without direct reference to the departure from normality.

Proposition 3.12. Let A € C*™ and ||-|| be a monotonic unitarily invariant norm on
C". Then the associated operator norm satisfies for all t > 0,

At tn . tdep
He H < e Z ) (3.7)

k=0

Proof. The result is based on the fact that the matrix exponential of a perturbed matrix
A1+ A; may be interpreted as a solution of the matrix-valued differential equation X (¢) =
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A1 X (t) + A1 X(t) with X(0) = I,,. The variation-of-constants formula then gives
t
e(Aitant _ JAut _|_/ eAl(t—Q)Ale(AH-AU@d& (3.8)
0

This equation can be expanded recursively. But if A; is nilpotent then this process termi-
nates after finitely many steps. As the norm is unitarily invariant, we may assume without
loss of generality that A is given in a Schur form where the strictly upper triangular part
N has the smallest norm with respect to all Schur forms of A. Hence its norm is the
departure of normality of A. Writing A = D + N, we have decomposed A into a diag-
onal and a nilpotent part where D = Diag(A) is the diagonal matrix with the diagonal
entries of A and N = A — Diag(A) is strictly upper triangular. Repeated use of with
Ay =D,A; = N gives
t

e(D+N)t _ 6Dt +/ eD(tfifl)]\[6(D+N)tldt1
0

t t t
_ oDt + / eD(t_tl)NeDtldtl + / 6D(t—tl)N/ 1 6D(t1—t2)Ne(D+N)t2dt2dt1'
0 0 0

Continuing this process we obtain

n—1

ePTNIE — Dt Z Ai + R, where (3.9)

k=1
t t1 tp—1
Ag(t) = /0 /0 /0 Pt NPt N NPty . dty,

t pt tn—
R,(t) = / / / 1eD(t_“)NeD(tl_t?)N...Ne(D+N)t"dtn...dt1.
0 0 0

As all the factors P %) N are strictly upper triangular, the product of n of these terms
is 0, and so R,(t) = 0. By Lemma [1.9] ||e?*|| = e*()".
The norm of the innermost integral of A, is bounded by

tr_ tp_
/ o eD(tk—l—tk)NeDtkdtk < / o e (A) (tr—1—tx) HN” ea(A)tkdtk
0 0

tk—1
— (A (tr-1) ||N||/ dt), = (A (tr—1) ||N|| th1.
0

Hence ||Ag(t)]| < e*@*(k!)~(||N|| t)*. Taking norms in (3.9) therefore gives (3.7)). O

The advantage of this bound is that it equals 1 in t = 0, hence it is better suited for the
approximation of He“‘t” than purely exponential estimates of the form A e, Moreover,
every Schur form of A gives rise to such a bound . However, the computation of the
best bound via the departure from normality may not be tractable for higher dimensions
as all possible Schur forms have to be tested. A simplification occurs when considering
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the Frobenius norm [[Alz = (3_;; |a;;|°)"?. Here the departure from normality is constant
over all Schur forms. Henrici [54] derives the following formula

depp(A 1A D AP
Ai€a(A

which in case of a real spectrum reduces to depp(A) = \/HAHi7 — trace A%

We also note that for A € C**2, the Frobenius-departure from normality coincides with
the spectral departure from normality, depp(A) = dep,(A) as the strictly upper triangular
matrix is of rank 1, and so its Frobenius and spectral norm are equal. However, the bound
in Proposition [3.12 is not valid for the Frobenius norm, as ||| # 1. An estimate of the
At in terms of the Frobenius-departure from normality is found in [46,

spectral norm of e
Corollary 2.1.6].

Ezample 3.13. Let us reconsider the matrices A, discussed in Example m The depar-
ture from normality is given by depy(A4,) = |7 and Proposition 3.12] yields the estimate
|e**]|, < e7"(1 4 |y|t) which coincides with the best bound obtalned from (3.6). Let us
now take a look at the matrix

—4 32 =72
A= -2 6 with a departure from normality dep,(A) = 78.90.
—1
Note that this moderate departure from normality leads to an upper bound in (3.7)) which
is way off, see Figure (note the logarithmic scale). [ |
wooo; /////,,,,\¥‘\\“\‘\\\\\\\ 7
L // ]
100 E 4
= o 1
= -/ ]
[N r/ T
S 10 p =
i 1
1L 3
o : 2 3 4 5

Figure 3.2: Bound based upon the departure of normality.

We assume now that A € C™*™ has n linearly independent eigenvectors and that the
eigenvalue with the largest real part is uniquely determined, i.e.

a(A) =ReA; > Redy > ReA3 > --- > Re,.
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Let us denote the eigenpairs of A by ();,v") where v* € C", ||v’|| = 1 is an eigenvector of A
associated with the eigenvalue );. Then for each initial value 2° = Y7  a,v" the solution
z(t,2°) of & = Az, x(0) = 2° satisfies

n

eAt § CLZ‘UZ

i=1

< ol <|a1| 4 Ze—(MA)—ReAi)t Iai!> — W gy ast — oo.
1=2

n

§ aie)\itvl

=1

|t 2] =

(3.10)

From this calculation we immediately get the following result.

Proposition 3.14. Let A € C™" such that A is diagonalizable with AV = VA, A =
diag(A1, ..., A\y) and the leading eigenvalue Ay with Re Ay = a(A) is uniquely determined.
Then
HeAtH ~ e qup |61TV_11'| , t> 0.
llzll=1

Proof. From (3.10]) we conclude that we have to extract the first coordinate of x € C™ with

respect to the transformation induced by the matrix V' = [v! ... v"]. This projection is
given by m : x = > | v’ — oy, or, equivalently, 71 (z) = e V~'z. Maximization over
all  with ||| = 1 yields that ||e*|| — e*™® sup,_, [e] V2| — 0 as t — oc. O

Clearly, the rate of this approximation is influenced by the difference Re (A; — A\y) > 0,
the larger this value the more dominant the eigenmotion corresponding to «(A) becomes
compared to the eigenmotions of smaller eigenvalues.

Ezample 3.15. Consider the matrix A = () _3) ) which we studied in Example [2.69] Then
V = (§ %) is a matrix consisting of eigenvectors of A. Here SUP|4,=1 ‘elTV_ x| = 26
while the spectral condition number of V' is 33.97. This condition number can be reduced
by renormalizing V', but then still x(V') = 5. Figure |3.3| shows that the norm of the matrix
exponential of A is approximated well by the bound of Proposition for large t. |

T
2.5 norm -

bound _ _ _ |

Figure 3.3: Bound based upon the dominant eigenvalue.
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We have seen in this section that estimates for the norm of the matrix exponential not
only require knowledge of (parts of) the spectrum, but also information about the eigen-
vectors. Moreover, the bounds derived in this section are mostly of interest for asymptotic
approximations.

3.3 Bounds from Singular Value Decompositions

In this section we fix the matrix norm to be the spectral norm. Let us recall the definition
of the singular value decomposition.

Theorem 3.16 (Singular Value Decomposition). If A € K™*" is a matriz of rank r then
there exist unitary or orthogonal matrices (if K = C or K =R, respectively)

U=uy,...,u,] € K™™ and V =[vy,...,0,] € K"

such that

> 0

UAV:(O 0

) where Y. = diag(oy,...,0,) with o1 >09>+-->0.>0.
mXxn

The oy, are called the singular values of A, and u and v are the kth left singular vector
and the kth right singular vector of A, respectively. Here we are only interested in the
case n = m. The singular value decomposition (SVD) allows us to decompose each matrix
A € K™ into a sum of rank-one matrices,

n

A= ZUWWZ, where 01 >09>:--->0,>0 and vjv; =uu; =09;. (3.11)
k=1

Hence Av, = opup and A*uy, = opvy hold for £ = 1,...,n. Moreover, this implies that v

is an eigenvector corresponding to the eigenvalue o of A*A and analogously that uy is an
eigenvector corresponding to the eigenvalue o7 of AA*. The spectral norm of A is given
by ||A|l, = 01(A). The dyadic decomposition can now be used in two possible ways
for obtaining exponential bounds.

e We decompose A and derive results from the Campbell-Baker-Hausdorff Theorem.

e We use a SVD of e and get conditions for local maxima of HeAtH2 :

Before we enter this analysis let us consider the case when A is a scalar multiple of an
idempotent matrix P = P? (especially if A is a rank-one matrix). We need the following
lemma.

Lemma 3.17. Suppose that f : C — C is an entire function defined by its Taylor series

f(s) =312, f(kk)!(o) sk Then the associated matriz-valued function f : C™" — C™" A s

Yoo 12O gk satisfies for idempotent matrices P € C™", P = P% and s € C

f(Ps) = f(O)I = P) + Pf(s).
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Proof. The matrix-valued function s — f(Ps) is defined on C. It is given by

> £(k) > £(k)
f(Ps)=>Y" / k<0) (Ps)f = f(O)I+P) fk—‘(o)sk

k=1 )
= fO) L+ P(f(s) — f(0)) = (I = P)f(0) + Pf(s).

Application of this lemma to the matrix exponential gives the following result.
Proposition 3.18. Let A € C and P € C™" with P = P%. Then
M= (I —-P)+ P, t>0.

If Re A < 0 this implies that
tlim M =]—-P
Every idempotent matrix P defines a projection x — Px from K" onto im P along the
complementary subspace ker P.
The following corollary gathers some facts for rank-one matrices.

Corollary 3.19. Let A=cuv* € C"*" be the SVD of a rank-one matriz. Then A has only
one non-trivial eigenvalue given by \ := trace A=cov*u. Its associated right eigenvector is
giwen by the left singular vector u, and the left eigenvector is given by the right singular
vector v. The matriz exponential of A is given by

6At — (]_ A )+ A ttraceA'

trace A trace A

Proof. The trace is the sum of all eigenvalues. But if there is only one nonzero eigenvalue,
then for n > 2 we have trace A € o(A) = {0,trace A}. Now trace A = o traceuv™ =
o> i u;; = ov*u. The right eigenvector corresponding to A = trace A is given by u, as
Au = (ouv*)u = Au, and, analogously, the left eigenvector is given by v. The spectrum
of P = —2 _ is given by {0,1}, and P is idempotent, P> = g*ﬁ“—”* — vuuw _ P For

trace A ) u v viu vtu
the matrix exponential of A, we have A = (trace A)P and hence by Proposition [3.18]
eAt — ([ . P) + PettraceA_ 0
Hence the matrix exponential e is a continuous deformation from e4? = I, to the pro-
jection onto the complement, lim;_,. e = I — ﬁ, if A is of rank 1.

Corollary 3.20. Suppose that A = ouv* € C"*" is a matriz of rank one where o > 0 and
u,v € C", ||ull, =1 = ||v||, satisfy Rev*u < 0. Then HeAtH2 is a monotonously increasing
function as t — oo and

At - -1
H2 = |v*u|" .

sup ||e
>0
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Proof. We set P = ﬁ. To show that the norm of the matrix exponential of A is convex,

we first show that the function
g(a) =[|Pa+ (I = P)ly=llal + (1 —a)({ = P)ll,, a€R, (3.12)
is convex. Namely, for § € (0,1) and a # b, a,b € R

g(la+(1—-0)b) =||(a+(1—-0)b)I+ (0 +(1—0)—0a—(1—-06)b) (I —P),
= [0 (al + (1 =a)(I = P))+ (1 =0) (0] + (1 =0)(I = P))l
< fg(a) + (1 —0)g(b).

Let us now determine the minimum of g. Note that g(1+b) = ||/ + bP||, > 1 for all b € R.
Let us assume that ||/ + 0P|, < 1 then I — (I 4+ bP) = bP would be invertible, which
contradicts rank P = 1. Hence a local minimum of g is attained in b = 0, as g(1) = [|{|, = 1.
With A = trace A and a = e* we obtain from and Corollary[3.19that ||e?||, = g(e*)
holds by Proposition . The convexity of g implies that ||€AtH2 is a monotone increasing
function for ¢ > 0. By Proposition , lim_.« |le*]|, = || — PJ|, holds. Since P is
idempotent there exists a unitary transformation U such that UPU* = ([ §'). Now by
Corollary (see below) we have ||I — P||, = ||P||,. For the norm of P = “ consider

v*u’?

P*P = \;*UvIQ from which we see that v is an eigenvector for the sole nonzero eigenvalue

[o*u| ™ > (||u]| [|v]|)2 = 1. Hence if Re trace A < 0 then sup, |[e*]|, = lim;—oc |||, =
1= Plly = [o'ul " > 1. s
Hence the transient amplification My(A) is given by the inverse of the cosine of the angle
spanned by the left and right singular vectors, which are also eigenvectors associated with

the nonzero eigenvalue of A, see Corollary This quantity |U*u|_1 is also called the
condition number of the associated eigenvalue, see [50].

3.3.1 Decomposing A

Let us now return to general matrices and consider the spectral norm of the matrix expo-
nential. Given two matrices A € C"*" and B € C"*", [A, B] = AB — BA denotes their Lie
bracket or commutator. We may write the product of the matrix exponential e4* and e
as the matrix exponential of a matrix-valued function C(¢). This result is known as the
Campbell-Baker-Hausdorff formula [124, Theorem 1.IV.7.4]. The first terms of the Taylor
series of C(t) with e©® = eAteB are given by

C(t)=(A+B)t+3]A, Blt*+15([A, [A, B +(B, [B, A]))t*+5;[A, [[A, B], B|lt'+O("). (3.13)
Then we find the following approximation.
Proposition 3.21. Given A € K"*". Then

8 ], = D (A -+ A+ 4, A2

1 [ Ak *17\43 1 g% * 4 5 (3'14)
+ 35 ([A% [A7 A+ [A, [A, AT+ g[A7 [[A7, AL Al + O(2)).
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Proof. The spectral norm of the matrix exponential of A is given by the square root of
the largest eigenvalue of e"*e4. There exists a Hermitian matrix function C(t) such that
eAteAt = ¢ where C(t) is obtained from by replacing A with A* and B with A.
Hence the spectral norm of e?? is given by

Amax(ec(t)> = €I/2Amax(c(t))7

which proves ((3.14)). O

For convenience, let us compute all the Lie brackets in (3.14)),
[A*, A] = A"A — AA",
[A* [A* Al + [A, [A, A¥]] = AA 4+ A*A% — 2A*AA* + A2A* + AA™ — 2AA% A,
[A* [[A*, A], A]] = A A% — 2(A*A)? — A2A* +2(AA%)%
If we now partition A = Ay + A; with Ay = oyuyv] and A; = Zk>1 oruivy where oy, ug, vg

stem from a singular value decomposition (Theorem [3.16)), then [Af, A;] = 0 = [Af, A].
The Lie bracket [A*, A] then simplifies to

[A*, A] = [(Ao + A1)", Ao + A1) = AJAg — AgAf + ATAL — A1 AT = (A5, Ao] + AT, Al
Iteration of this decomposition on the tail A; gives us the following result.

Proposition 3.22. Suppose that A € K"*" has a singular value decomposition given by
A=3T1 owuv;. Then [[e]|, = e#Am=C) where

= Z o (upvi + vpui)t + or (vpvy — upul )t + O(t?).
k=1

Proof. Consider the dyadic decomposition A = ZZ=1 opurvy and set Ay = opugvy, k =
1,...,n. Then

Ad A=A+ 4 =) on(wvy + vgup). (3.15)

k=1 k=1
The Lie bracket [A*, A] now satisfies

[A*, A] = ZAZ,A]C Zak (vpvg — uguy,) (3.16)
k=1

as [A}, A;] = O for k # j. Using these explicit formulas (3.15]) and (3.16)) in Proposition [3.21]
gives the required result. ]

The bounds derived in Propositions and are only valid for small ¢ > 0. Moreover,
the expansion is an extension of the growth bound HeAtH2 < et pregented in
Proposition

However, there seems to be more to this topic. When trying to generalize Corollary
to matrices of full rank, numerical experiments show the following remarkable behaviour.
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Conjecture 3.23. Let A € K™ be a stable matrix with SVD A = """ | o;u;0f. Then
under suitable conditions max;> ||e|| ~ lviug|~" where i € {1,...,n} minimizes |o;v} ] .

There always seems to be an index i € {1,...,n} such that the term |v u;| " is of the right
order of magnitude when compared with My(A). It is not clear how to choose this index
to achieve a good match. The method given in Conjecture works quite well, but may
fail miserably, if the singular vectors become perpendicular. Let us illustrate the problems
related to this conjecture with the following example.

Ezxample 3.24. We consider the following parameterized family of matrices

15 0 0 05 —12
A= 0 =1 0 |+7|00 1 |, 7eR (3.17)
0 0 =05 00 0

The spectrum of A, is constant for all 7. As 7 enters linearly into the departure from
normality dep(A) we expect some interesting transient behaviour. Figure shows some
experiments. The dashed line is the bound predicted by the Conjecture [3.23] while the
dotted lines provide the values |u§vi|71 for all other indices. From these images we deduce
that in this example the approximation performs well for 7 € [0,1.5] and 7 > 5. However,
in the suboptimal regions it seems that some dotted line can take over the role of the
best approximation. Near 7 = 2.18 and 7 = 2.52, |v;‘ui]_1 is infinite, as the left and right
singular values become orthogonal. |

In accordance with the notions for the sensitivity analysis of eigenvectors, [48, Section 7.2.2],
w -1 . :
we may call the term |vfu;|”" the condition of the singular value o;.

3.3.2 Decomposing e4!

Let us now consider singular decompositions of e*'. As oi(e*’) = |||, we can find
conditions for critical points of ¢ +— HeAt”Q. Let us first note the following fact about the

SVD of parameter-dependent matrices.

Theorem 3.25. Let T : [ — K™*™ be an analytical function and I C R an open interval.

Then there exist continuous and piecewise real analytic functionso; : I - Ry, i=1,...,n,
with

o1(t) > o9(t) > -+- > a,(t) >0, i=1,...,n,tel, (3.18)
and piecewise analytic functions u;,v; - I — K", 1 =1,... n with

wi(t) u;(t) = ;5 and v;(t)*v;(t) = 6;; foralli,j=1,....n, t€l,

such that .
T(t) =Y owtyuc(tyor(t)’,  tel. (3.19)
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7=0.15 7=0.5 T=1

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T7=1.5 T=2 T=2.5
10 = 80 L S s S B — =]
0 I
———————————————————————— 60 - B 20 B

Figure 3.4: SVD approximations for sup; HeATt ‘2.
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Moreover for each ty € I, the one-sided limits and derivatives

lim (1), , lim f(0), tli\rgf() , lim f()

exist for all functions f = o;,u;, v, 1=1,...,n.

Proof. In [67, Theorem 4.3.17] (44i) it was shown that there exists an analytical pseudo-SVD
on any open interval I. Those functions differ from the functions defined in the theorem
by relaxing , the pseudo-singular values only need to satisfy ; : I — R without any
restriction on the ordering on the positivity. Enforcing the positivity of o; by replacing
one of the singular vectors by its negative value, and enforcing the ordering by resorting
the indices, we obtain piecewise analytic functions. O

In the following, if we use the term SVD for parameter-dependent functions, we always

associate it with a piecewise analytic dyadic decomposition of the form (3.19). This de-
composition is not necessarily uniquely determined.

Lemma 3.26. For A € K™ [et the SVD of T(t) = e, t > 0, be given by (3.19)). Then
we have

p(t) = pr(t, A) i= ug(6)" (A" + A)ug(t) = vp(t)" (A* + A)vg(t).

Moreover, Y 1, ix(t) = 2Re trace A. For 3 € R, the SVD of S(t) = eA=5Dt is given by
S(t) =, e Plog(t)ur(t)vi(t) and pg(t, A — 5[) pi(t, A) — 2.

Proof. The vectors wuy, vy satisfy the equations T'(t)v(t) = ox(t)ur(t), T(t) ur(t) =
ok(t)vg(t) for all £ = 1,...,n. Moreover, the matrices T'() and A commute for all

t > 0. Hence, if we suppress the dependence on t we conclude from T*AT = T*TA
and T*A*T = A*T*T that

up(A + A%y = o, 20T (A + A*) Ty,
= 0, 2(V;T*T Avy, + vy A*T*Twy,) = vi(A + A%y
As the (ug)k=1..n form an orthonormal basis of K", we obtain for all ¢ > 0
> sl Z (1) (A AYul) = 3 (1) Aug (1) + a0 A (1)
k=1 k=1
= trace A + trace A* = 2Re trace A.

It is easy to see that the dyadic decomposition of S(t) = et is given by S(t) =

S (e7Ptoy(t))uk(t)vr(t)*. Therefore the singular vectors are invariant under scalar shifts
A~ A= Bl and py(t, A—BI) = ug(t)"(A—BI+ A" — B uk(t) = pu(t, A) —20ux () ux(t) =
ur(t, A) — 23 shows the behaviour of y; under scalar shifts of A. O
By definition, we have that Ay (A + A*) < pug(t) < Amax(A+ A*) for all k =1,...,n and
all t > 0.

Let us now show how p(t) can be used for the further analysis.
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Proposition 3.27. Given A € K™". The singular values o (t) of T(t) = et are absolutely
continuous and satisfy for almost all t > 0 the differential equation

402() = (D)o (t). (3.20)

Proof. The functions ox(t), k = 1,...,n, are absolutely continuous on [0, ] for all t > 0, as
they are continuous and piecewise analytic by Theorem [3.25] Again, to save space we drop
the dependence on ¢. Almost everywhere on R, the derivative of 07 = ov;T*us, = vy T*T'vy
is given by

62 = 0;T* Ty, 4 viT* T 4+ vpT* T + v T Ty
= 2Re opviiy + i T*(A* + A)Tv, = v;T*(A* + A) Ty,

since the singular vectors vy, are of unit length, viv, = 1, so that vjvx = 0. Now, o satisfies
the differential equation 40?2 = v;T*(A + A*)Tv; = akuk(A + A*)uy, = oy for almost all
t>0. O

Note that the differential equation (3.20)) is equivalent to

O'k(t) = %O'k(t) = 1/2,Uk(t)ak(t) 320 )

Proposition 3.28. If A (A) denote the eigenvalues of A € K" with real parts decreas-
ingly ordered for k=1,...,n then

1 t
Pr% pr(t) = A(A+ AY), for all ty > 0, tlim ;/ pi(0) dd = 2Re Mg (A).
—> —00 to

Proof. Let us first consider the case t — oo. The following result on the asymptotic
behaviour of singular values of matrix powers is due to Yamamoto, for a proof see 71
Theorem 3.3.21],

}Lrgoak(Bﬂ) Y= N(B), k=1,...,n, (3.21)

where |\;| > |Xs| > --- > |\s| are sorted with respect to the modulus. Setting B = e

(3.21)) gives us

lim ; log o1, (e) = log | Az ()] = Re Ar(A). (3.22)
j—00
For t € Ry witht =j+7,j €N, 7 € [0,1), we obtain oj(e™) < g (e?) ||e*™|| using a

Weyl inequality for singular values given in 71, Theorem 3.3.16 (d)]. As HeAT H is uniformly
bounded for 7 € (—1,1), lim; . HeATHl/j = 1. Hence

lim sup  log o, (e” )<hmsup—log( k(e47) sup ||6ATH>

t—o0 j—o0 T€[0,1)

= lim 1log <0k( A7) sup HeATH> = Re A\ (A),

j—oo T€[0,1)
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Writing t =j — 7, j €N, 7 € [0,1) gives oy(e) > o1.(e) HeAfol, thus

lim inf t logo'k< )>hm1nf log( () inf HeATH_l)

t—o00 j—o0 T7€[0,1)

= lim - log <ak( A7) inf HeAT”_l) = Re A\ (A).

j—o0J r€l0,1)

Therefore ([3.22) is also valid for real ¢, and lim;_. 1 log oy (e") = Re Ay (A), see also [47].

t
Rewriting (3.20) as an integral equation, we obtain o7 (t) = ai(to)efto O for t > o > 0.
The asymptotic growth rate of oy (t) is given by

1 1 1
lim glog or(t) = lim —logoj(t) = lim —/ e (0)do (3.23)

t—00 t—o00 t—oo 2t to

for any ty € Ry and t > 5. By (3.22)), equation (3.23)) can be rewritten as

t

1 1
lim n i (0)do = 2tlim n log 0% (t) = 2Re \x(A).

t—o0 to

Let us now consider ¢ = 0. The function ¢t — e is analytic for all t € R, hence by

Theorem ux(0) and v (0) are well-defined, moreover we have 01(0) = -+ = 0(0) =

-+ =0,(0) = 1. We show that there exists an eigenvector wy, of unit length corresponding
to the kth largest eigenvalue of A + A*, ie., (A + A"wp = M(A + A*)wy, such that
wg, = ug(0). To see this, note that the differential equation is satisfied for the one-
sided derivative —2-02(t) in t = 0 and that the vector uy(t) is by definition an eigenvector
of T(t)T*(t) corresponding to the eigenvalue oZ(t) for ¢ > 0. For small ¢ > 0 we can

approximate o (t) by 1+ u(0)t + O(¢*) and T'(¢) by I + At + O(¢*). Then

TOT*(t)ur(t) = (I+A)T+A ) +O) )ug(t) = (I+(A+AN+O(E))ug(t)
TOT*(t)ur(t) = o (t)ur(t) = (14 pr(0)t + O(t?))ug(t).

Now, consider $T'(t)T*(t)ux(t) = 107(t)u(t). In the limit for ¢ \, 0 we obtain from (3.24)
that the vector wy = wuy(0) satisfies (A + A*)wy = pg(0)wg. Hence, wy is an eigenvector
corresponding to an eigenvalue py,(0) = limy_q px(t) of A+A*. As o2(t) = 14 u(0)t+O(t?)
the g (t) are decreasingly ordered for small enough ¢ > 0 to retain the order of the singular
values. Hence 1 (0) = Ap(A + A*) is an eigenvalue of A + A* with associated eigenvector
uy(0) = wy. The analogous argument for vy also shows that lims o vy (t) = wy. O]

(3.24)

If the limits lim; . py(t) exist, then we have lim; ., px(t) = 2Re A\ (A). Numerical expe-
rients suggest that this is always true, but a rigorous proof of the existence of these limits
is still missing.

For t > 0, the vectors vx(t) and o (t)us(t) of e! are the initial and final vectors of
the trajectory for which the amplification in [0, ¢] corresponds to the associated singular
values o (t). Here we have z(t,v,(t)) = T(t)vi(t) = ok(t)ur(t), and so ||z(t, v(t))], =

k(1) [lur ()], = ow ().
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Especially for the largest singular value, oy (ty) = HeAtO H2 and T'(to)vi(to) = o1(to)ur(to) =
HeAtO H uy(to), so that the solutions x(t, x¢) of & = Az satisfy

2 (to, v1(t0)) ||, = |le™vi(to)||, = o1(to) llua(to)ll, = a1(te) = [le™]|, - (3.25)

Let us take a closer look at the term p4(t) = ui(t)*(A + A*)uy(t). We get from Proposi-
tion and Theorem that 1/2p41(0) equals the initial growth rate of A with respect
to the spectral norm. Moreover, we can use it to detect local extrema of oy ().

Proposition 3.29. If ty > 0 s an isolated local mazimizer for o, : t — He“””2 then
w1(to) = 0 and there is a sign change from py(to—) > 0 to py(to+) < 0. If to > 0 is a local
minimizer for oy then 0 € [u1(to—), pa(to+)]. Here py(to—) and ui(to+) are the left and
right limits of pq(t) in to.

Proof. In a local maximum, the function oy(t) = ||6AtH2 is differentiable. To this end, note
that for two continuously differentiable functions f, ¢ : I — R the function h = max{f, g}
is differentiable in local maxima, as f(t) > g(t) and f = 0 implies o = 0. If f(t) = g(t) in a
local maximum of h, then both f and g attain a local maximum in ¢, and f(t) = 0 = g(¢).
Now o4(t) is the maximum of n continuously differentiable functions by Theorem Its
derivative is given by ¢1(t) = 301 (¢)p1(t), as by Proposition , 2 (t) = 201(t)o1(t) =
o?(t)p1(t). This function is therefore well-defined in local maxima. In particular, for local
maxima attained at ¢y > 0, u1(tg) = 0 since oq(t) > 0. As a necessary condition for isolated
local maxima of oy the sign of p;(t) changes from +1 to —1 when passing through ¢ = t,.
Local minima of o1, however, may not be differentiable. They can only be detected by a
sign change of p(t) from —1 to +1 when ¢ > 0 passes through a local minimum located
at t = 1. O

Ezample 3.30. We compute p;(t) for the matrix A = @2:1 k(l:-gl) (kFLOEES) Figure

shows the norm of e* and the function juy(t). Here the zeros of u; correspond to local
maxima of HeAtH2 which are barely noticeable, while minima coincide with jumps of ;.
In these minima the order of the singular values changes. |

The brute-force computation of My(A), a(A) < 0, requires the knowledge of HeAtH , for
all ¢ from a sufficiently large interval [0, 7]. A rough bound for T' can be obtained from
Corollary [3.9 or from proposition [3.14]

The results obtained in this section show that the singular vectors corresponding to the
largest singular value of e4* provide enough information to compute a derivative of the
singular value function oy(t) = HeAtH ,» and hence to implement a Newton method to
determine local maxima. Moreover, Proposition |3.28| supplies us with an indicator that
the transient phase is over when ;. ~ 2Re A\; holds for all k =1,... n.

Note that the singular vectors of e corresponding to o, (t) are necessarily needed for the
computation of oy (t) = |||,
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Figure 3.5: 111(t) and local maxima of ||e

3.4 Bounds via Liapunov Functions

In this section we connect our previous discussion of the initial growth rate with some
classical results on quadratic Liapunov functions. Let us denote the set of all complex
Hermitian matrices by H™(C) C C™*™ and the set of real symmetric matrices by H"(R) C
R™* ™ Both cases are treated by considering H" = H"(K), K =R or C. Suppose that we
have found a positive definite Hermitian solution P > 0 of the Liapunov equation

PA+ AP = —Q (3.26)

for given A € K™ and @) = 0. We can use our knowledge of the initial growth rate to
derive estimates of HeAt H2 based upon . Let us associate with the matrix A the linear
Liapunov operator L4 : H"® — H", P +— PA + A*P = —(Q and its inverse L' (—Q) = P,
which always exists when A is exponentially stable. The inner product with weight P,
(z,y)p = y* Pz, defines the P-norm ||-||, = \/(-, ") p-

Lemma 3.31. Giwven P >~ 0. If R € C™"*" satisfies P = R*R then the initial growth rate
pp(A) corresponding to the elliptical norm ||-|| is given by

A
up(A) = max Re AT e g, 0 G0,
z#0 <$, $>P z#0 <§U7 Px>2 (327)

= M\nax (RAR™Y) + (RAR™Y)*) .
where @ = —L 4(P).

Proof. By Proposition we have to determine the dual norm of ||-|| , and the associated
dual vectors of z € K". The dual norm of |-||, is given by |||/ -1, see (2.19), and a
unitary dual pair is uniquely determined by (z,y) where ||z||, = 1 and y = Pz. Hence
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pp(A) = maxg»g Ref%jj)? = MaXy£ % Using PA + A*P = —() we can write

Re (z,Az)p = 3(z,(PA+ A*P)z), = —1(z,Qx),. If we set y = Rx where R satisfies
R*R = P (e.g. let R be a Cholesky factor or a symmetric square root of A) then

o (Y, ), a (W, 1),

{wa)g  ((RT)(PA+A*P)R™'yy),  ((RAR™'+ (RT)"A*R")y,y),

(z,z) '
By the Rayleigh-Ritz Theorem [70], maximizing the last quotient over all y # 0 gives the
largest eigenvalue of RAR™! + (RAR™!)* O

From the quotient (3.27)) we obtain an estimate for the initial growth rate in the following
situation.

Corollary 3.32. Given an exponentially stable matrix A € C™*™, a positive definite matrix
P >0 and 8 € R such that PA+ A*P < 2G6P. Then pup(A) < .

(z,Q)
(z,Pz)

matrix pencil, see [44, Chapter X].

The quotient min i z can also be interpreted as the generalized eigenvalue of a Hermitian
Proposition 3.33 ([44, Theorem X.22]). Given a Hermitian matriz pencil (Q,P) €
H"™ x H™ with P = 0. Then the pencil is reqular, i.e., det(Q — AP) % 0 and its character-
istic equation det(Q — AP) = 0 always has n real roots Ay, ..., \,, counting multiplicities.
Moreover, there exist Z € K™™ and A = diag(\;) € R"™" such that QZ = PZA and
Z7*PZ =1,.

We call 0(Q, P) := {\ € C| det(Q —AP) = 0} the spectrum of the Hermitian pencil (Q, P),
its elements are called generalized eigenvalues of (@, P). For these pencils, a counterpart
of the Rayleigh-Ritz Theorem holds true.

Proposition 3.34 ([44, Theorem X.13]). For a Hermitian matriz pencil (Q, P) € H" x H"

with P > 0, the largest and smallest generalized eigenvalues are given by

7*Qu . T Qu
/\maX(Qu P) - I;Igl;%g{ LL'*Pl” Amin(Q) P) o r:zl;l;i{)l ZE*P:L'

(3.28)

Hence the initial growth rate pp(A) associated with the positive definite matrix P € H"
is given by the maximal generalized eigenvalue of the matrix pencil (—(PA 4+ A*P), P).
As this pencil is regular, we can rewrite the spectrum of the pencil as the spectrum of a
matrix, o(—(PA + A*P),P) = o(—(A + P7'A*P)) = o(—(PAP~! + A*)). The matrix
A + P7'A*P is not Hermitian any more. From these remarks about matrix pencils we
extract yet another way of computing the initial growth rate with respect to P, namely,

pp(A) = Ihpax(—(A+ PTTA*P)) = =1\ (A+ PTAP).

By properties of the initial growth rate, up(A) < 0 implies that (€At>t6R+ is a contraction
semigroup in the P-norm since HeAtxH p < etr(At For an estimate with respect to the
spectral norm we have to compute the eccentricity of ||-|| 5.



72 (M, B)-STABILITY

Theorem 3.35. Let A € K™ and (Q € H". Suppose that there exists P = 0 which
solves (3.26)). Then
HeAtH2 < KQ(P)@MP(A)t, t>0.

Here ky(P) denotes the condition number of P defined by ka(P) = || P||, || P, -

Note that we do not assume that A is stable. Hence () is not necessarily positive semidef-
inite, thus up(A) may also be positive.

Proof. In order to apply Corollary we only have to show that the eccentricity of |||,
when compared with [|-||, is given by ry(P)"2. This follows from

Amin(P) (@, )y < {2, 2) p < Aax(P){z,2)y, 1€ C"z#0, (3.29)

where Apin(P) and Apax(P) denote the minimal and maximal eigenvalue of P, respectively.
However, for the eigenvectors corresponding to the maximal and minimal eigenvalues of P,

1
equality holds in either of the two inequalities of (3.29). Hence, ecc |||, = %. The
statement of the theorem then follows from Corollary [2.57]

The following definition determines the set of matrices which satisfy Theorem [3.35|

Definition 3.36. A matrix A € K™ is called quadratically (M, 3)-stable if there exists a
positive definite P € H" with x(P)Y? < M and pup(A) < 3.

If the norm ||-|| under consideration is the spectral norm, we can interpret (3.5)) as a special
case of Theorem [3.35]

Corollary 3.37. Suppose that A € K" " is diagonalizable with an invertible matriz V €
C™ ™ of left eigenvectors satisfying VA = AV*, A = diag(\;), A\; € o(A). Then ||€AtH2 <
Ko (V)e® At ¢ > 0.

Proof. Setting P = VV* gives PA+ A*P = V(A + A)V* = —Q. Hence for y = V*z

_ <I,—Q$> o <y7 (A+A)y> B o
pe(A4) = gumax o gt = fmax = = DA+ D) = a(4).

Moreover, the square root of the condition number of P is given by \/ka(P) = ko(V) =
V|5 [[V~Y]l,. The corollary now follows from Theorem [3.35] O

Example 3.38. Consider the matrix A = (7 3,) which we already studied in Exam-
ple 3.15]  Figure shows an ellipse which is invariant under the flow of z = Ax.
The associated quadratic form is induced by the Hermitian matrix P = (¥ ;%) > 0,
hence the transient growth is bounded by x(P)Y? = g Here the initial growth rate
wup(A) equals 0 as there exist trajectories which enter the ellipse tangentially, and there-

fore Q@ = —(PA+ A*P) = 50( %, 140 is only semidefinite. [
If both P € H™ and Q € H" are positive definite and related via a Liapunov equation
L A(P) = —(@Q then we can compare the initial growth rates induced by the elliptical norms

associated with P and @), respectively.
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Figure 3.6: Flow-invariant ellipse.

Theorem 3.39. Suppose that A € K"*" is an exponentially stable matriz and P > 0 and
Q > 0 solve L4(P) = —Q. Then we have

—pg(—A) < —pup(—A) < pp(A) < pg(A).

Proof. Let us first consider the inequality pp(A) < pg(A). Theorem implies for the
inner product with weight () that

(eMz, eAt;E>Q < eQNQ(A)t(:U,x)Q, (3.30)

where 1g(A) may also be positive. As both P and ) are positive definite, Lemma m
shows that pp(A) = —3ming % < 0 always holds. If therefore pg(A) > 0 then
po(A) > pp(A) is trivially satisfied. Let us therefore assume that pg(A) < 0. Note that

—4{eMz, M), = —2Re (eMx, AcMz) , = (eMw, eAtx>Q, re K" t>0.

By using this equality in the integration of (3.30)) we obtain

o0 o 1
At At . As As 2uq(A)s o 2uq (A)t
e“x, ey, = ePx,e™r) ds < eHe\ids(x, )y, = — e“he T, ).
< >P /t < >Q /t < >Q 2MQ(A) < >Q

This integral is well-defined as pg(A) < 0. Hence for ¢ =0 and all x # 0

1 . -

The lower bound follows analogously by considering

<e_Atx,e_Atx>Q < 62“9(_A)t<:v,a:)Q = <eAtx,eAtx>Q > 6_2“9(_A)t<:v,a:)@. (3.31)
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If pg(—A) > 0 then an integration of (3.31) provides us with (z,x), > m(x,xm.

Hence —pug(—A) < —% Eziii Taking the minimum of this quotient over all = # 0, we have

—(z, )
Ho(=4) < 3 a0 (z,2)p

= —/Lp(—A) < 0.

The case pug(—A) < 01is again trivial, as —pp(—A) = —3 max, 4 22’%3 < 0. The inequality

—up(—A) < pp(A) is found in Proposition [2.40] (i). O
Let us now study the effect of using Theorem [3.39| iteratively.

Theorem 3.40. Let A € K™ be exponentially stable. Consider the Hermitian matrix
sequence (P;)ien C H™ of Liapunov solutions P;A + A*P; = —P,_1/ ||Pi—1||. Then for a
generically chosen initial value Py > 0
lim i (4) = a(4), lim —pn(~4) = ~a(-A4).

Proof. The construction of the matrix sequence (F;) corresponds to an inverse power
method without shifts applied to the linear operator —L 4, see Wilkinson [148] and Stew-
art [I32] for a general discussion. This method converges to some subspace spanned
by eigenvectors which are associated with eigenvalues of A that minimize the distance
to the origin. If such an eigenvalue A\, which located nearest to the origin is uniquely
determined, ie. {A\.} = {A € 0(A)| [\ = minyesa)|N|} then the convergent sub-
space is of dimension 1. Hence the inverse power method converges to an eigenvector
P, of —L 4 corresponding to the eigenvalue .. If A\, is of higher geometric multiplic-
ity then the convergent eigenvalue depends on the choice of the initial value F,. Now,
Py > 0 is positive definite and as —L;l : H% — HT retains the positive-definiteness,
all P, > 0. Thus if the limit P, = lim,_, ., P, exists it is a Hermitian matrix. But Her-
mitian eigenvectors P € H" of L(A) are associated with real eigenvalues A € R as
AP = PA+ A*P = (PA+ A*P)* = AP. The spectrum of the Liapunov operator £ 4
as an operator on K™ is given by o(L4) = {\1 + A2 | A1, A2 € 0(A)}, see [90, Theorem
12.2.1]. As A is exponentially stable, mindist(—o(L4),0) is attained for A\, = —2a(A).
Therefore the inverse power method converges. Let us now study the limit of the spectra
10(P,A+ A*P;) as i — oo. Let us assume that A is given in (complex) Schur form where
the real parts of the eigenvalues are increasingly ordered along the diagonal. If R; is a
Cholesky decomposition of the positive definite Hermitian matrix P, = R} R; then R is an
upper triangular matrix, and hence the product

RAR, i €N, (3.32)

is upper triangular, too. By construction its diagonal coincides with the diagonal of A.
Now P; converges to an eigenvector P, associated with the eigenvalue 2a(A) of L4.
As the diagonal of is constant, it must converge to the diagonal matrix of A,
R;AR;' — diag(Ay, ..., \,). Hence lim;_o 20(PA+ A*P)) = {Re A | A € 0(A)} and espe-
cially lim; oo pp,(A) = a(A), lim; oo —pp, (—A) = —a(—A). O
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Unfortunately, if the optimal eigenvalue A\, = —2a(A) is of simple multiplicity then P, is
of rank one, and x(P;) — oo as i — oo which is unacceptable. Instead, let us now try to
optimize the condition number. We pose the following problem.

Problem 3.41. For a given stable matric A € K"*™ find a positive definite solution P &
H"™ of the Liapunov inequality PA + A*P < 0 with minimal condition number,

k" =1inf{k(P)|La(P) = 0}.

As the condition number only fixes the ratio between the largest and smallest eigenvalue
of P we cannot expect uniqueness (modulo scalar multiples) for dimensions n > 3.

The problem of finding a quadratic Liapunov norm with minimal eccentricity may be recast
as a semidefinite program with linear matrix inequality constraints. This formulation can
be readily used with available numerical solvers.

Problem 3.42. For a given matric A € K™ find a solution (k, P) € Ry x H™ of the
following semidefinite program

Minimize k > 1 under I, < P < kl,, P=P*, PA+ A*P < 0.

The solution set will be empty if A is not stable as the Liapunov inequality is never satisfied
for positive definite P € H". Unfortunately, the numerical treatment of Problem [3.42| runs
into difficulties even for moderate matrix dimensions. We use the following proposition to
show that for the optimal solution pair (P’, Q") of P’ is positive definite and @’ is

only semidefinite which causes numerical problems.

Proposition 3.43. Suppose that A € K"*" is stable and that the Hermitian pairs (P, Q1),

(P2, Q2) satisfy
PA+ AP = —Qy, Py2A+ A*Py = —Q,

’thhP1>‘O, P2>-O, /{(PQ)<H(P1), QltO,Ql"’QQiO Thenm(P1+P2)</£(P1).

Proof. Under the conditions of the proposition, both (P, @) and (P, + P, Q1 + Q)2) are
pairs of a positive definite matrix and a semidefinite matrix that satisfy the Liapunov
equation . We therefore have to show that k(P + P2) < k(P;). As P, and P, are
both positive definite Hermitian matrices we have

)\max(Pl + PQ) < )\max(P1> + )\max<P2)

P+ P) = . 3.33
) = P+ Pa) = Aunl(Pr) + Al ) (3:33)
Now, from x(P,) < k(P;) we obtain
Amax (P Amax (P1) + Amax (P Amax (P’
w(Py) = 2ol 8) A1) F A () B _wp). 33w

)\min<P2) )\min(Pl) + )\min(P2> >\min<P1)

This yields k(P + P5) < k(P;). Therefore P’ = P, + P5 yields a smaller condition number
than P;. ]
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In [82] it was noted that the choice P, = A1, with an appropriate scaling factor A leads to a
condition number (P, + P2) which is less or equal to the condition number x(P;). Suppose
that A4+ A* £ 0 and @ > 0, then for P, = A[,, A > 0, we have Q = —L4(FP2) = —A(A+
A*). Since k(P2) = 1 and x(P;) > 1 Proposition yields that the condition number
estimate of the sum P, + P, is always improved provided Q1 + Q2 = Q1 — A(A+ A*) = 0.
Hence one should choose A to be the smallest positive generalized eigenvalue of the matrix
pencil (@1, A + A*). With this choice, Q' = Q1 — A(A + A*) is singular.

Let us generalize this procedure. We assume that (P, Q1) is a pair of positive definite
Hermitian matrices which satisfy the Lyapunov equation . If Q' € H"™ is some search
direction then we have to determine X" € R such that the conditions of Proposition [3.43]
hold for Q2 = N'@Q)’. We obtain the following update step.

Lemma 3.44. Suppose that A € K" " is stable. Given Hermitian matrices Q)1 and Qo
which satisfy the conditions of Proposz'tz’on we set X to the smallest nonnegative gener-
alized eigenvalue of the matriz pencil (Q1, —(Q14+Q2)), A = min(o (Q1, —(Q1 + Q2))NR,).
Then the positive definite Hermitian matrix

p == P1 + S\PQ
satisfies /4;(15) < k(Py), and yields a positive semidefinite Q= —LA(15) e H".

However, it is unclear how to determine a feasible search direction. Moreover, a different
strategy should be used if @) is singular. Concluding from this lemma an optimal solution
of Problem is attained for a singular ). This may be one of the reasons for the bad
performance of the numerical solvers.

Furthermore, there is a gap between the exponential estimates obtained from quadratic
Liapunov functions and the transient amplification My(A) = sup,, ||e**|| as the following
example shows.

Ezample 3.45. For a given k € N consider the matrix A = (' ®%). The spectral norm of

the matrix exponential for a real 2 x 2 matrix in upper triangular form A = ( >E)1 ) AL FE A,
is given by

]| = 3 e = | (yfeoth(3(h = A2 + (55250 + 1+ (5525 )2)

see Proposition 4.41 For = —1 we get the monotonously increasing function

[eA=ADE| = L(1 — ) (\/coth(25t)2 + R+ V14 k2) V4R

as lim, .. coth(z) = 1. Hence, M = +/1+ k2 is the smallest possible bound for strict
(M, 3)-stability with 5 = —1. Now let us examine which bound can be obtained using
Theorem [3.35] The strict Liapunov inequality PA+ A*P+2P < 0 is unsolvable, but there
exist matrices P > 0 which solve PA+ A*P < —2P. The matrix P = (}} 13 ) is a solution
of this inequality if and only if

kpy —ps =0, kps — pa < 0.
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If we fix p; = 1 then necessarily ps = k and py > k%. With this choice, P is positive definite.
Other solutions are positive scalar multiples of solutions representable in such a manner.
Let us now compute the condition number of P. The condition number for a 2 x 2 real
positive definite symmetric matrix P is given by

Amax(P)  trace P

P pr— p—
AP = 3P~ 2det P

<trace P + +/(trace P)2 — 4 det P) -1, (3.35)

which can be obtained by expressing A\yax(P) and Apin (P) in terms of trace(P) = Apax(P)+
Amin(P) and det(P) = Apax(P)Amin(P). By writing py = k? + o we get

14+ k% +
/ﬂ(a):Ta<(1+k2+a)+\/(1+k2+a)2—4a>—1
B 1+E +a

- (148 +a)+ e+ @12 +4R2) - 1,

which attains its minimum of k? + 2kv/1 + k2 + (1 + k?) at & = 1 + k2. Therefore the best
bound obtainable by Theorem [3.35|is \/r(&) = k + /1 + k2 . [ |

In this example there is a gap of £ between this Liapunov bound and the minimal bound
M. More interestingly, the quotient of both bounds approaches 2. It is an open question
if in general this “quadratic Liapunov performance” quotient is bounded by the dimension
of the space,

sup (inf{@‘P»O,PA—i—A*PjO}) <SupH€AtH)_1 < n.

AeKnxn gtable t>0

3.5 Bounds from the Resolvent

The resolvent of A € C"™™ is given by R(s,A) = (sI, — A)~'. It may be used for an
alternative definition of the matrix exponential via

At : At * . k k k
e’ =lim (I——=) = lim (5R(%,4))", t >0, (3.36)

that is, e4? is defined as the limiting product of implicit Euler steps. This limit is defined
for k large enough such that I — A% is invertible, which is guaranteed for k& > tp(A). Let
us recall the characterization (2.33p) of Corollary [2.52, We rephrase it in the following
proposition.

Proposition 3.46. Suppose that A € K"*" then for each fixed k € N*,

w(A) = gi= 17 = A7 o -
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For an example, see Figure where different resolvent approximations of e indeed have
the same initial growth rate. Note also that the resolvent of A and the matrix exponential
of A are connected via a Laplace transformation, see Corollary We can rewrite the
inverse Laplace transformation in form of a Cauchy integral formula for operators,

e =L [ e R(s, A)ds,
r

where I' is any positively oriented, piecewise smooth simple closed curve encircling the
spectrum of A.

Now consider a full block perturbation structure A = (C™*",||-||), cf. Section [1.3] If the
operator norm ||-|| is induced from a semi-algebraic vector norm (for example, a p-norm
with rational p) then the boundary of the e-pseudospectrum for £ > 0 is piecewise analytic,
see Karow [70, Corollary 3.2.2]. Hence the contour T" of an e-pseudospectrum is rectifiable
and defines a piecewise smooth simple curve encircling the spectrum of A. This contour
may contain several connected components, but this causes no problem for the following
result. Namely, using this contour we obtain for all € > 0

1 1
et < 5 [ RG A s = o Restds, 120,
2T Joo.(a) A) 21 Joo.(A| A)

If the length of the contour is known this provides the basis of further estimates, see
Embree and Trefethen [37]. We now shed some light on the theorems of Hille-Yosida and
Kreiss-Spijker.

3.5.1 Kreiss Matrix and Hille-Yosida Generation Theorems

The Hille-Yosida-Theorem links the (M, 3)-stability of A to properties of the resolvent
R(s, A), see [38] and the discussion in Chapter [2l One may be interested in the transient
amplification only in certain directions of the state space. Hence we use structure matrices
to take this into account. We now present a structured version of the Hille-Yosida Theorem
for the matrix case.

Definition 3.47. Suppose that the structure matrices B € C™** and C' € C7*" are given.
A matrix A € C"*" is said to be structured (M, [3)-stable if > «(A) and

||C’eAtBH < Meﬁt, t>0.
The structured transient bound is given by

Ms(A, B,C) = sup HC’e(A’BI)tBH )

t>0

Note that always Mg(A, B,C) > ||CB]|.
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Theorem 3.48 (Hille-Yosida, structured version). The matrizc A € C"" is structured
(M, 3)-stable for the given structure matrices B € C™* and C € C™™ if and only if for
all k € N. and for Res > f3

|CRs. A B] = (s - 75| < ¢ M (3.37)

Res — B)F

Proof. Let A be structured (M, 3)-stable. Then for ¢ = 0 we have ||C'B|| < M hence (3.37))
holds for £ = 0. Now let k € N* be arbitrary. Using the Laplace transformation we have
for all Res > 3 > a(A) that

1 oo
(sI — A)7F = s / th=lelA=sDt gt
1),

Therefore we obtain for all y € C* that

|C(sI — A)*By|| <

/OO tk—le—Rest HCGAtByH dt
0

M > — —nes
(k_l)l/ th IR |y || dt =
- JO

1
(k—1)!

<

M
m lyll,

where ﬁ fooo th=le=dt = vl’“ follows from repeated partial integration. Hence (3.37))
holds. Conversely, if (3.37)) holds for all £ € N then we use the representation (3.36]). To

this end, fix ¢ > 0 and set s = %—l— (3. Then SSIT_; =1— (A—pI)z, and (3.37) now gives

for all k € N
M>|C Bl|=|C({I—-(A=pD)~- ]| B||—|Ce Bl
S — ﬁ k k—oo
Therefore A is structured (M, [3)-stable. O

For a formulation which also works for operators in Banach spaces, see Theorem [2.6l The
main issue in the proof of the operator-theoretic version is to establish .

In order to use Theorem for the test whether a matrix is structured (M, (3)-stable all
powers of the resolvent have to be checked, so that this test is of little practical use. In
contrast, the Kreiss-Spijker Theorem does not require higher powers of the resolvent to be
known. We also present a structured version.

Theorem 3.49 (Kreiss-Spijker, structured version). Suppose A € C"*" is a stable matriz
and B € C™¢ and C € CT™ are given structure matrices. Define the Kreiss constant

k(A, B,C) = Suppes-o(Re s) ||C(sI — A)™'B||. Then
k(A,B,C) < My(A, B,C) < (en)k(A, B,C), (3.38)

where e = exp(1l) = 2.718 ...
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The main part of this proof is Spijker’s Lemma. We present here a version due to
Aptekarev [3]. We start with some remarks about the Riemannian sphere, defined by
S? = {(z1, 12, 73)" € R®| 23 + 23 + 22 = 1}. The north pole of this sphere is N = (0,0,1)"
and the south pole is S = (0,0,—1)". For each x = (21, 29,23)" € S? there exists a
rotation G € SOz such that Gx = S, i.e., the axis given by (z, —x) becomes vertical. To
see this, consider

1 — 7 _ x1T9

1—x3 11—z T
G=| —mz 1 7 . |, (3.39)
1—z3 1—x3
—I _T2 —xI3

Some computations show that G™! = GT and det(G) = 1, hence G € SO3, and Gx =
0,0,-1)"T = 8. R
The sphere S? can be identified with C = C U {oo} via the stereographic projection

2 S? \{N}: ($1,5E27$3)T = 1_113 (x1 + ixa), p(N) = oo.

Let us study the map p(Gp~1()) : C — C. We want to identify this map with a linear frac-
tional transformation (LFT) u(z) = (z—ig for suitable o, 3,7,0 € C. Note that each LFT is
uniquely determined by specifying the image of three points, see [28, Proposition I11.3.9].
Hence let us determine the LFT p which satisfies p(1) = ¢(Gey), u(i) = ¢(Gey) and

1(0) = p(—Ges). From this equations we obtain after some calculations & = § = 1 — x3
and 3 = —0 = —(z; +i13). Hence pu(z) = % is a LFT which corresponds to a
rotation of the form (3.39)), so that ¢ = ¢(x) is mapped into pu(c) = 0 and ¢(—x) into co.

The map ¢ — p(—¢'(c)) in C is called the antipodal map. Tt is given by ¢ +— —c ! as

(=21, =22, —23)T) = Th (=21 — ima) = —(9((@1,22,23)7))

since the inverse of ﬁ(ml +ix9) for (z1,m2,73)" € S? is given by ﬁ(wl —ixg).

The following lemma provides us with the main tool for the proof of Spijker’s Lemma. A
rational function of degree n is the quotient of two coprime polynomials for which at least
one has the maximal degree n.

Lemma 3.50. Suppose that q is a complex rational function of degree n > 1. Then there
exist linear fractional transformations py and ps, such that

p2 0 q o p(2) = zr(z),

where r is a complex rational function of degree n—1. These LFTs are given by puy(2) = Z=5
and p(z) = %Zg for suitable o, 3, c € C.
Proof. A solution ¢ € C of
_ — 1
ac ™) =0 . (3.40)

always exists as 13.40: contains only rational expressions in ¢. Hence after expanding
the left hand side of :3.40) with powers of ¢ and then expanding with the denominators




3.5. BOUNDS FROM THE RESOLVENT 81

we obtain a non-trivial polynomial equation in ¢. Note that if ¢ solves (3.40) then so

does ¢7!. Thus this equation always has a solution ¢ with |¢| < 1. The case |¢| = 1
is impossible, as this would imply ¢(c)q(c) = —1. For pi(2) = =% we therefore have

1 : 0+ cand co — ¢~ 1. Now by (3.40)), ¢ := qo uy(0) and g o u1(00) are antipodal
points on the Riemannian sphere. By our previous discussion there exists a linear fractional
transformation

az —

o a= ()T B =aC (3.41)

pa(z) =
which maps these antipodal points ¢ and —(~! into 0 and oo, respectively, as we have

— _ Y it
pmoaom(0) = Q) = S 0. pmogom(oe) = m(~C ) = Tt -

Therefore a z term factors out from the rational function pg 0 go u1(2). It remains to show
that the rational function r given by zr(z) = ps 0 g o u1(z) has rank n — 1. Here the linear
fractional transformations do not change the degree of ¢. Hence ps 0 qo pu; is also of degree

n. By factoring out z we have eliminated a pole at co and a root at 0, hence the remaining
rational function r is of degree n — 1. O

Before we proceed let us comment on the definition of the contour integral. If p(t) :
[a,b) — C, a < b, is a parameterized curve with tracep = I' € C = C U {oc} then
folg(s)|ds = f lg(w(s))|1¢'(t)| dt. With the convention a < b this integral is independent
of the orientation of the curve. Let us demonstrate this by integrating the great circle

R =R U {c0},
Jisonas= [ 00— [ ) ar

Here artanh : (—1,1) — R,z +— % 5 log 1+$ is the inverse function of tanh.
Wegert and Trefethen [146] call the followmg theorem “Spijker’s lemma on the Riemannian
sphere”.

Theorem 3.51. Suppose that q is a complex rational function of degree n. Then

_ G . _ [ -
Ln(q).—2/gl+|q(8)|2d < 27n, S={e’eC|0¢€[-mn}.

Proof. Let n > 1. By Lemma there exist two linear fractional transformations p; and
o such that pg o g o uy(z) = zr(z) holds. Then we have L,(q) = L,(u2 © g o p1) since
L.(Gou) = Ly(q) and L,(us o §) = L,(q) for any rational functions ¢, ¢ of degree n. To
show the first fact L, (go p1)+ L,(g), note that p; given by z + {== maps the unit sphere
S into itself, and p; is self-inverse with pq o p1(2) = z. To this end note that for z € S,

c—z Cc—Z 12|* — 2 — ez + |¢)?

2
z)|" = B
’,ul( )‘ 1—¢2z 1—cz 1—EZ_CZ+|C|2|Z’2

Y
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and for z € C,

piop(z) = (c— ) (1 -2 )_1: (c—ctz—c+z)(l—cz—cc+ecz) =15z =2z,

cz

Hence, instead of parameterizing S via t— e%, t € [—m,m] we can use t+ puy(e®), t € [—m,7].

Y B[V 0 BN P AT ) RS
LalGom) =2 | Tt Q/W T+l omie) 1 maleldt

- ~ ) ei ™ ~ eit . R
:2/ |q (A )| | ezt /( ),u1< zt ‘dt / |q (A )| ‘Z€t|dt:L2(q)7

o L4 |q(e)] = 1+ q(e)]

since iy (2)py (11(2)) = (propr) (2) = 1. The second fact L, (puz0q) = L,(q) can be verified
using the following formulas derived from (3.41)),

1 - 1+ |z
Gerap ™ 1O = GG vy

w(z) =

from which we obtain

Lo(pod) =2 [ s ))cj’(s)lds:z/w@(z)m

s 1+ |ua(q(s))I”

We therefore have

B r(s) + s'( J )] T Y g
Ln(q(s)) = / 1+ |r(s) 5= 2/S <| | 1+ [r(s)? T IT(S)IQ) !

[r(s)]
< Ln_l(r) + Q/Swds < Ly 1(r(s)) + 2m,

because |s| = 1 for s € S and ;%5 = (¢ + 2)~" < § for all z > 0. Now, Ly = 0 and

therefore an induction over n proves the theorem. ]

The standard formulation of Spijker’s Lemma is now a corollary.

Corollary 3.52. Suppose that r is a complex rational function of degree n. Then
/|r )| ds < 27msup|r( )| - (3.42)
Proof. Consider the polynomial ¢(z) = ||7|| ) 7(z) where ||r||_, = sup,cs |r(2)|. Then

2
/|q )| ds < / lg'(5) ————ds since ————— >1las |[¢(z)| < 1forall z€S. (3.43)
L+ lg(s)” 1+IQ(2)|

By Theorem [3.51{ we have [ |¢'(s)|ds < 2 fs T ( ‘2 ds < 2mn, and a multiplication with

lIr]l . gives (3.42). O
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But as the Kreiss Theorem in its classical form (“Ein Satz iiber Matrizen” in [88]) is only
for matrix powers, we need the following reformulation of Spijker’s Lemma for the matrix
exponential case.

Corollary 3.53. LetAr(s) be a complex rational function of degree n > 1. For a given
acRsetly, ={2€Clz=a+iw}. Ifsup,, |r(z)] < oo then

17'(s)] ds < 27n sup |r(z)]. (3.44)

Ta z€lq
Proof. The linear fractional transformation given by u(z) = W maps the unit
circle S onto T',,. We set € : [—m,71] — S, ¢t — €. Define v : [—m, 7| — Ty, t — po &(t)

(here y(£m) = o0). By assumption, r(s) = ’% is a proper rational function of degree

n. Then the degree of the numerator is deg(p’'q — pqg’) < 2n — 2 as the coefficient of the
leading power cancels out. Therefore the degrees of the numerator and denominator of r’
differ by at least 2. Hence the integral in the left hand side of (3.44)) is well-defined. Now

o u(s) = (rou)(s)u'(s)~!. Setting s = v(t) gives

™ m

L= [ W= [ iorwlold = [ 1o ool ar

—T

= [ lre @) o €)™ 1w o) € o) d

—T

= [ ool = [ 1oy (slas

—T

Now, we can apply Corollary to the rational function r o u which is also of degree n.
Hence

L < 2mnsup |ro u(z)| = 2mn sup |r(z)|.
z€S z€ly

O

We now have a suitable version of Spijker’s Lemma in form of Corollary available.
Hence let us proceed with the proof of Theorem |3.49|

Proof (of Theorem [3.49)). The lower bound in ([3.38)),

k(A,B,C) = sup Res HC(SI — A)_lBH < sup HC’eAtBH = My(A, B,C),
>0

Res>0

is a direct consequence of Theorem for k =1 and # = 0. The upper bound in (3.38))
is obtained by representing the matrix exponential as the Cauchy integral

1
eM=_— [ (s, — A)ds, (3.45)
211 T
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where I' is any positively oriented simple smooth curve encircling the eigenvalues of A.
Let us assume that My(A, B, C) is attained at a finite time ;. Then there exists a pair of
vectors (x,y) € C* x C? such that

My(A, B,C) = maxHC’eAtBH = max

t>0

fﬁlgx|

Atong| , yllce =1 =2
Inserting (3.45)) with ¢ = ¢, into this equation gives

My(A, B,C) =5 / stoy*C(sI — A)"'Bx|ds= ds.
r

L[ e [ et

Here v(s) = y*C(sI — A)~' Bz is a scalar rational function of degree < n. For a fixed ¢ let
the path of integration be given by I' = {z € C|Rez = t~'} which we interpret as a closed

ds= 5= Sup
>0

curve I'U {oo} in C. On this contour we have e'Res = ¢, Therefore the partial integration
[oety(s)ds = — [ 17/ (s)ds gives
y*CeAtB:L“ ’/ ' (s)| ds < ﬂ / 17/ (s)] ds.

Applying Corollary we obtain

A By| < Zen Sup 1v(s)| = ((3 +iw)] — A)~'Bx|.

weR

Maximization over all t > 0 yields for s = t~! + 4w

My(A,B,C) < sup—supHC T4iw)l — A)7'B||

t>0 we

=en sup Res||C(sI — A)"'B|| = enk(4A, B,0).

Res>0

This proves the upper bound in ([3.38)). [

With the formula presented in Theorem [1.12]it is easy to see that we can express the Kreiss
constant via properties of spectral value sets for full block perturbations.

Corollary 3.54. The Kreiss constant can be expressed in terms of the stability radius,

k(A,B,C) =supyr(A—~I,, B,C)™ !, (3.46)

¥>0

and in terms of the pseudospectral abscissa,

k(A,B,C) =supe 'a.(4, B,C). (3.47)

e>0
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Proof. For full block perturbation structures Theorem provides us with the following
formula for the spectral value set of A with respect to the level € > 0,

0.(A,B,C)=0(A)U{s e C\c(A) | HC’(S[ —A)7'B|| >}
The associated spectral abscissa is given by
a-(A,B,C) =sup{Res|||C(s] — A)7'B|| > e '} =sup{Res||C(s] — A)"'B|| ="}

and the stability radius satisfies
-1
r(A,B,C) = (sup |C(iw — A)_lBH) .
weR

The Kreiss constant is given by k(A, B, () = Supg, 4o Re s ||C(sI — A)7'B||. We can split
s € p(A) into real and imaginary part, s = v + iw, with v,w € R. Then

k(A, B,C) = sup~ysup ||C(iw[ — (A - 7]))_1BH = sup~ (r(A, B,C)) ™"

>0 weR v>0

which shows (3.46)). For (3.47), we consider s — Res ||C(sI — A)~'B|| on the contours of
Jdo.(A, B,C)NC;. We have

k(A, B,C) = sup sup Res||C(sI — A)7'B||
e>0 s€do.(A,B,C)NC4

=supe sup Res =supe 'a.(A, B,C),
>0 {s€C. |[|C(sI-A)~1 Bl ===} e>0
so that (3.47)) is obtained. O

Thus if A is a stable matrix and for small € > 0 the spectral value sets o.(A4, B,C) move
deeply into the right half-plane, then there are some trajectories of the system & = Ax
with large transient excursions.

Let us collect the set of points where the pseudospectral abscissa is attained.

Definition 3.55. Given A € C™" and structure matrices B € C*", C' € C?", the set of
points

F(A,B,C) = J{z € 90.(A,B,C) |Rez = ac(A, B,C)}

e>0

is called the front locus of A with respect to the structure matrices B and C'.

Note that the Kreiss constant can be obtained by maximizing Re z ||C'(2] — A)~'B|| over
all z € F(A, B,C) N C, instead of over the half-plane {z € C|Rez > 0}.
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3.5.2 Calculating the Front Locus

We have seen in the previous subsection that the Kreiss constant k(A) may be obtained by
maximizing the quotient a.(A, B,C)/e. Let us now consider the unstructured case B = I
and C' = [ and fix the spectral norm ||-|| = ||-||,. The additional information of computing
the front locus F(A) = F(A, I, I) comes nearly for free when computing the spectral value
sets of A.

Proposition 3.56. Suppose that s € F(A) is a point in the front locus of A € C"*". If
u,v : C— C™ are the left and right singular vectors corresponding to the smallest singular
value o, of sI — A then Imu(s)*v(s) = 0. If we define F* = {s € C|Imu(s)*v(s) < 0}
then § C 0F*NCy,.

Proof. Let us consider the function s — ||(sI — A)~!|| along lines parallel to the imaginary
axis, i.e., with Re s fixed. Let u(w) and v(w) be the singular vectors corresponding to the
minimal singular value of the function w — (a+iw)I — A. By Theorem [3.16] u(-) and v(-)
are piecewise analytic. For a given real part a > 0 we consider the function

fotwe ||[((a+iw)] = A)7H| = o ((o +iw)] — A) = u(w)*(iwl — (A —al))v(w).

Let so = o+ iwy € F. Then there exists g > 0 such that sy € do.,(A) and a,(A4) =
Re sy = a. Hence we obtain from Theorem that for all ¢ € C with Re{ > 0,

O'n((SO + g)] - A) 7( £o-

Thus f,(-) attains a local minimum in wy. The function f,, is differentiable in local minima,
which can be shown analogously to the differentiability of ¢y in local maxima, see the proof
of Proposition for details. Now the derivative f!(w) := % fa(w) is given by

fr(w) =Re (v () ((a+iw)] — A)v(w) + iu(w) v(w) + w(w) ((a + iw)] — A)v'(w))
= Reiu(w)*v(w) = Imu(w) v(w),
because v/ (w)*u(w) = 0 = v(w)*'(w) since u(w), v(w) are both of unit length. Thus a
necessary condition for local minima of f, is given by Imu*v = 0. Clearly, the front locus
satisfies F C {s € C, |Imu(s)*v(s) = 0}. Now inner points of F* for which Im u}v, = 0
correspond to a saddle-point of f, as no sign change occurs in the derivative. ]

Ezample 3.57. Figure [3.7 shows the spectral value sets and the set F* for the matrix

-04 -1 -4
2 —-04 4
—-16 1
—-04

A:

Here J* consists of three connected components, hence the gap for Res = 0.8 is not an
artefact of the computational grid. Note that the real axis is part of the set F*. |
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Figure 3.7: Pseudospectra and J*.

We now present a fast method which calculates the minimal singular vectors of the matrix
sI — A. The following lemma shows how the singular values can be obtained from the
eigenvalues of an Hermitian matrix.

Lemma 3.58 ([91, p. 190]). Let A be a matriz in C**™. Then the spectrum of H=( . 4)€
C?x2n s given by o(H) = {Z+op(A) |k = 1,...,n} where op(A) > 0 is the kth singular
value of A.

Sophisticated algorithms to deal with such Hamiltonian eigenvalue problems are available
in van Loan [I39] and Benner, Mehrmann and Xu [112].

Proof. Let (:j) € C?" be an eigenvector corresponding to an eigenvalue \ of H. Since
H € H", its spectrum is real, hence A € R. Now H(Z) = )\(Z) is equivalent to A*u = v,
Av = Mu. This implies that AA*u = NMAv = N2Au and A*Av = AA*u = A\?u hence |)] is a
singular value of A. If (X, (%)) is an eigenpair of H then it is easy to verify that (=X, (*))
is also an eigenpair of H. Therefore o(H) = {£o(A)}. O

We will present a simple analysis to show that the term Im u*v is available with virtually
no additional costs when computing the pseudospectra of A. In particular, if A is given
in complex Schur form then B = sI — A is an upper triangular matrix for all s € C. For
simplicity, let us assume that o,(B) # 0, that is, s € 0(A), and that 0,(B) < 0,_1(B).

The inverse power iteration ( 2 ﬁ)(:ﬁ) =Ml ! (%) can be written as

n —i/
@t = By, P = B, Oj+1 = (Z(ﬁ?_l)Q + (%H)z) ’ (3.48)
k=1 '

i+1 _ ~j+1 i+1 _ ~jt1
W =T, v =007
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Here @/t = B¢/ and #/*! = B~'w/ can be solved by computationally inexpensive
forward and backward substitutionsﬂ Now, if the initial values u’ and v° are chosen
in such way that (;j;’) is not contained in a non-trivial H-invariant subspace then the
sequence (0;);en defined in satisfies o; — 0, (B) for i — co. However the “dominant”
eigenspace of H = (2. B) (i.e., the one associated with eigenvalues which has the smallest
distance to 0) is not uniquely determined since by Lemma the minimal distance to 0
is attained for both o,(B) and —0,(B). Therefore the vectors u’ and v’ will not converge
although o; converges to ¢, (B). But if this minimal singular value is of multiplicity one,
i.e., 0,(B) # 0,-1(B), then this sequence of vectors will approach an oscillation between
two vectors contained in the subspace spanned by the two eigenvectors of H which are
associated with eigenvalues \;, Ay that satisfy |\;| = 0,(A), ¢ = 1,2. This cycle is given by
{a(®)+6("), (%) +a(™)} where (¥) is an eigenvector of H with H (%) = 0,,(A) (%), and
a, 8 € C are constants depending on the initial values u°, v°. In particular, if H (Z“) = )\(Z)
then H (fy) = —)\(fv) and therefore we get

(a+B)u u u u u (a— Bu
H =H =\ - =A :
((a — B )T b —v “\v b —v (a+ B
As the sequence ((3.48)) is renormalized with A = 0,,(A) we obtain a cycle between these two
elements. To get an approximation of the eigenvector (z) we add two subsequent terms of

(3-48), so
u (a+ Bu (a — B)u u/ u?
2 = ~ | . 3.49
Oc(v) ((Oz - ﬁ)v) + ((a + ﬁ)v i+l + v ( )
Furthermore, we are only interested in the sign of Imu*v and therefore a renormalization

of the u- and v-components in step ([3.49)) is not necessary. Collecting these ideas we obtain
the following outline of an algorithm.

Algorithm 3.59. We determine the pseudospectra and front locus of A € C™**™.
Initialize Replace A by its (complex) Schur form, hence making it upper triangular.

Create a grid G C C. Allocate storage for grid-sized real matrices P and F'.
Main Loop For each grid point z € G set A, = zI — A. Choose initial values u°,v° €

C™ and iterate

~i s g1 <5 oa-1, 51
o =A"vT v=Aw,
_1/2
) 12
oy = (I + 1#]") ™
J— 5.5 J — 5.5
u = o;u’, V7 = 0,07,

until o, converges. Set u=1u/ +uw/ ™ v=1v/ + /7! and store o; and
Imu*v into P and F', respectively.
End Return the pseudospectra P and F' of A.

LA solver for general triangular matrices is provided by the LAPACK function family xGETRS, see [I].
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The matrix P produced by the above algorithm contains the minimal singular values
evaluated for each grid point z, ||(2/ — A)~*||™" while the front locus F(A) is part of the
zero-contour of the height field of the matrix F. If 2 = Gj; is a grid point contained in

3.6 Notes and References

The notion of (M, 3)-stability is somehow a hybrid between the concept of exponential
stability and the notion of practical stability which has been introduced by LaSalle and
Lefschetz [93]. A nonlinear differential system @ = f(t, z), f(to) = zo, f(¢,0) = 0 is called
practically stable (see Lakshmikantham et al. [89]) in x, = 0 for constants 0 < m < M if
||| < m implies ||z(;to, x0)|| < M, t > to. Hence if & = Az is uniformly (M, 5 = 0)-
stable then it is practically stable for m =1 and M.

Topological properties of the set of (M, 3)-stable matrices are studied in Hinrichsen and
Pritchard [67]. Generators of type G(M, 3) have been discussed in Kato [77]. Classical
bounds for the matrix exponential can be found in Moler and van Loan [108], which
are mostly based upon an eigenvalue/eigenvector analysis. For an account on how to
compute the matrix exponential via a scaling and squaring technique combined with a Padé
approximation, see Higham [57] who suggests an algorithm that uses fewer multiplications
than MATLAB’s expm while improving the precision. Most of the computations of matrix
exponentials presented in this thesis are obtained from an algorithm presented by Golub
and van Loan [48, Algorithm 11.3.1].

The bounds presented in this section mostly concentrate on obtaining estimates for M
and . The bound based upon knowledge of the eigenvalues and eigenvectors is
mathematical folk tradition. However, as we have seen in Proposition the asymptotic
behaviour is not governed by x(V), but by sup,_; ‘elTV_la:‘. The bound for Jordan
canonical forms in (3.6 is inspired by Higham [56] where analogous bounds are derived for
matrix powers.

Although the spectral norm of a matrix is directly related to its SVD, estimates based on
the SVD are to the best of the author’s knowledge not found in the literature.

Bounds based on quadratic Liapunov functions enjoy a certain popularity, see Veseli¢ [141].
This article also features bounds which are also valid for semigroups on Banach spaces
and the underlying idea for the proof of Proposition Transient estimates based upon
quadratic Liapunov functions have been discussed in Hinrichsen, Plischke and Pritchard [62],
where the problem of finding a Liapunov matrix with smallest condition number is also
addressed. The notion of quadratic (M, ()-stability has been used in Boyd et al. [22] where
optimization problems involving quadratic Liapunov matrices are mentioned. However, as
Lemma [3.44] shows, the minimal condition number is always attained at the boundary of a
Liapunov cone, which poses numerical problems for the solution. For convergence issues of
the inverse power method see Wilkinson [148]. For a recent discussion of the initial growth
rate associated with weighted quadratic norms, see Hu and Liu [72].

Bounds based upon the resolvent of A are discussed in Embree and Trefethen [37], see
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also the articles [136, 137] by Trefethen. An account on the history of the Kreiss Matrix
Theorem is found in Wegert and Trefethen [140], see also Spijker [129] and Spijker et
al. [I30] where issues related to the Kreiss Matrix Theorem are discussed. A version of the
Kreiss Matrix Theorem for exponentially stable matrices is found in Aupetit and Drissi [7].
The notion of the front locus has been suggested in [62]. For computational issues involving
the pseudospectral abscissa, see Burke, Lewis and Overton [24].



Chapter 4

Examples

This chapter gathers various applications of estimates which have been presented in the
last chapters. The organization is as follows. We first derive some explicit formulas for the
norm of the matrix exponential. Then we take a closer look at transient Feller norms, and
show a formula for an upper exponential estimate of 2 x 2 blocks which differs from the
original by maximally 36%.

After that we compute the quadratic Liapunov matrix associated with a stable 2 x 2 ma-
trix A, that has the smallest condition number under all solutions of a quadratic Liapunov
inequality for A. The geometrical insight gained in this course is used to find joint quadratic
Liapunov functions. We close this chapter with a discussion of dissipativity for polytopic
norms, that comes in handy for a variety of mathematical applications.

4.1 Explicit Formulas

We will start off with the calculation of the exact transient growth for 2 x 2 block upper
triangular matrices with respect to the spectral norm. These results can be used to judge
the quality of the estimates.

Lemma 4.1. Suppose that B € C™*™ and «, 3 € C. Then the spectral norm of

A= <Oé(§n ﬁ?m) e C(n+m)><(n+m) (41)

1S given by

41 = 5 (Ve + 192 + 1817+ /tal = 802 + 1517

Remark 4.2. A matrix A with a Schur form (4.1)) has a minimal polynomial given by
ma(s) = s> — (o + B)s + aff. Hence it satisfies the quadratic matrix polynomial equation
A% — (a+ B)A+ (af) = 0.

91
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Proof. For any eigenpair (X, (%)) of A*A we have

o) ()0 e

If o = 0 then (B*B+|6]> I)v = Av. Hence ||A|| = 1/|8|> + || B||* which proves the assertion.

If @ #0and u = 0 or v = 0 then we obtain A = |3|> or A = |a|*, respectively. When
we assume that both u,v # 0 and furthermore A, & # 0 then the following two equations

follow from (4.2]),
Q

Bu = /\_—u, B'u= () —181*)v. (4.3)

The product of both constants appearing in (4.3)) is an eigenvalue of B*B,
it = A A = |al)(A = |8°) € o(B*B).

Rearranging the term yields two solutions for A depending on u? € o(B*B) given by

As() = 5 (Il + 18 42l 15 4202~ 4ol

In particular, the maximal eigenvalue of A*A corresponds to A, (u?) where p? = ||B||*,
hence

JA] = A (1BI?)2 = (\/(Ia|+lﬁl) F 1B+ /(o] — 1812 +||B||)

]

As a direct consequence of the unitary invariance of the spectral norm we obtain the
following result.

Corollary 4.3. Giwven B € C™*", scalars o and 3, and unitary matrices U € C™*™ V €

C™ ™. Then the spectral norm of (*{" ﬁ].?n) equals the norm of (°fr ({ﬁ:)

Now we consider the matrix exponential for matrices given by (4.1} ‘

Proposition 4.4. Suppose that A = (% B%) where a, B € R are real scalars and B € C™*".

Then

e (4.4)

ey %|eat_eﬁt‘<\/coth(o‘ a=Byy2 iﬁ +\/1 iﬂ) if o # B,
= ' (VI (IBIER + 18] 14) ifa=p.

Dct e tfeﬁt
Proof. Suppose that o # 3. Then e4t = ( I ==5 ) . By Lemma the norm of the

0 ePtI

matrix exponential is given by

||€AtH — % (\/(eat + ef)2 442 + \/(eat — eBt)2 +72> ’
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Figure 4.1: Feller norm for a rectangular unit box.

eat_eﬁt

a—f3

L m eot + e\ ? 1B\ 1B\
_5‘6 e”| \/<€at_€ﬁt *la-5) * 1+ P

Now, as coth(x) = zzzf} the first part of Propositionis proved. In case o = ( a limiting

argument shows that e = (eogl tstf ) . Therefore Lemma H gives

| B|| . Factoring out (e®* — )2 gives

where v =

1
e[} = 5 v/(@ea)? + (teat [BI)? + |t] 5 || B

which proves the second case in (4.4)). O

To find the maximum of sup;>q ||6AtH one has to find the critical values of (4.4) which is
not pursued here.

4.2 Construction of Transient Norms

In Definition we introduced the Feller norm ||z||, = sup,s,|/e*z|| as a norm for
which the transient growth My(A) is given by the eccentricity of ||| ,. We will now show
that this norm can be used to derive good estimates for the transient growth in the case
of real 2 x 2 matrices. For a given vector norm v on R? we denote its unit sphere by
S, = {z € R?|v(z) = 1} and its closed unit ball by B, = {z € R*|v(z) < 1}. We have
demonstrated in Lemma and in how to construct transient norms for a stable
matrix A.

Example 4.5. Consider the linear system
. -1 -1
&= Az, where A= ( 1 _1) . (4.5)

It is easy to see that this system is contracting with respect to the maximum norm. For
all z on the boundary of the unit square (which is this case a unit box), the vectorfield
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(x,& = Az) never points outside this box, as can be seen by checking the signs of the
coefficients &1 resp. @5. The dashed lines in Figure |4.1| show the unit box of the maximum
norm, and a few trajectories illustrate that this box is indeed invariant under . If we
deform the norm (by introducing a diagonal weighting matrix) and choose a wider unit
box, then with respect to this new norm, system is not a contraction anymore as
trajectories starting in the vertices now point outside the box. For example consider the
rectangle R := [—a, a] x [1, 1] as the unit sphere of a suitable norm v where o = v/2e7 > 1.
To construct the unit ball of a Feller norm we have to identify those points in the unit
ball B, of v which are invariant under the flow of (£.5). The trajectory z(t,z") of
starting in 2° = (a,0)7 is given by x(t,2°) = ae " (cos(t),sin(t)) . This curve remains
entirely inside the box R, only touching the border in (1,1)". If we now clip away the
area above the curve segment given by ¢ € [0, %] and its symmetric part in the lower
left corner, the remaining curve is the boundary of a convex and symmetric set A which
contains a neighbourhood of the origin, so that the corresponding Minkowski function
va(r) = inf{y > 0|y 'z € A} is a norm. Moreover, all points in this set are backwards-
stable under # = Ax. The thick lines in Figure mark its unit circle. This norm is the
Feller norm v4 of A associated with v.

In Proposition we introduced another method of constructing Liapunov norms, which
we now illustrate in Figure 4.2 Instead of constructing a backwards-stable set, we now
create a unit ball which is forward-stable under the flow of & = Ax. This is done by
following all trajectories starting in R and then taking the convex closure of all these sets.
Figure (4.2 shows how the flow acts on the unit square R. The dashed lines denote some
snapshots e0R of the unit box for ¢, € {0, %1, %, %} The transient norm ball is then given
by conv |, e R. [ ]

2

Figure 4.2: Dual transient norm for a rectangular unit box.

4.2.1 DMarginally Stable Matrices

We now study Feller norms on R? when the underlying norm is the Euclidean norm. As
the Euclidean norm is invariant under unitary transformations we only need to consider
Schur forms. We discuss the following cases of real Schur forms of stable 2 x 2 matrices.
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1. The matrix A is 0. Then HeAtxH = ||z|| for all ¢ > 0 and all x € R?, hence this case

is of no further interest.

The matrix A has two purely imaginary eigenvalues, A = (2 g ) with af < 0.

The matrix A is marginally stable, hence A = (§¢) with A < 0.

The matrix A is exponentially stable with real spectrum, A = (’})1 /\0‘2 ) and A, Ay < 0.

vk W

The matrix A is exponentially stable with a pair of complex conjugate eigenvalues,
A= (if) where A < 0 and af < 0.

If A € R?*? has two purely imaginary eigenvalues the real Schur form of A is given by

A = (25) where a3 < 0. Then for P = ('3" |2\) the matrix equation PA + AT P equals

zero, the solutions of # = Az are contained in the level sets of z + " Pz =: ||z||3 which
shows that ||| » is invariant under application of the Feller norm generation process.
Moreover, the Feller norm with respect to the Euclidean norm is also a scalar multiple
of this P-norm. Assume that wlog. |a] < |3|. Then xy = ((1)) corresponds to the larger
principal axis of the ellipsoid. The solution ez, is entirely contained in the Euclidean
unit ball. Hence the Feller norm has the same unit ball as the norm induced from the inner
product weighted with P

[2ll4 =7 [zl p = v/ {z, Px),
where v = |a| ™ denotes a suitable scaling factor such that 1 = ||zo||, = 7 ||zollp. The
eccentricity of ||-|| , is then given by

ecc |||l 4 = ‘g} forA:(g g) and af < 0,|5] > |a].

Consider now a real 2 x 2 marginally stable matrix of the form A = (J¢) with A < 0.
Then the Feller norm induced by A is of the form

]l 4 = max{{lz[[, M (v, z)[}, (4.6)

where v = (A% + a?)77*(\, —a)T and some suitable constant M > 1, see Figure [£.3] We
will determine the exact value for M by the following geometrical argument. The vector v
is the left eigenvector corresponding to 0. Hence, it is orthogonal to the A-eigenvector of A.
Figure [4.3| shows the unit ball of this norm. One can easily see that A is dissipative with
respect to ||-|| . The eccentricity of ||-|| , is then given by the inverse of the cosine of the

angle spanned by the left and right eigenvalue of 0, namely ecc ||-|| , = |<v, (é)ﬂ_l which

evaluates to
2 2
Mo YA A (8 ‘;‘),A<o.

We have obtained the result on the transient bound My(A) = |(v, ((1))>‘_1 already as part
of Corollary [3.20}

In the following example we will derive the transient amplification My(A) by analytical
means instead of using geometrical considerations.
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Figure 4.3: The unit ball of the transient norm for a marginally stable 2 x 2 matrix.

Example 4.6. Consider the matrix A = (§ ¥ ) for A > 0 and k£ > 0. By Proposition 4.4] we
get the following function for the spectral norm of the matrix exponential,

[ = 5(1 —e) (\/Coth(k/mf)2 +k24+V1+ k:?) 2 V11 k2

as lim,_, coth(z) = 1. Moreover, this function is monotonously increasing. Thus, My(A) =
V1+ k% =sup;s HeAtH is the transient amplification for a marginally stable matrix of the
given structure. |

4.2.2 Exponentially Stable Matrices

Let us now study the case where A € R?*? is an exponentially stable matrix with real
spectrum. Then the line segment which appears in the unit ball of the Feller norm in the
marginally stable case is now given as part of a trajectory which touches the Euclidean
unit circle tangentially in a point z, ||z|| = 1. (The other crossing point with the unit
circle is traversal). In = the norm of the solution attains a local maximum. Therefore from
4 ||eAtaz:H2 = 0 it follows that " (A + AT)z = 0 has to hold. Following the trajectory
backwards in time, it has to attain its minimum norm in y before leaving the unit ball, see
Figure For this minimum, we again have y' (A + AT)y = 0.

By replacing the trajectory segment between z and y by a line (dotted in Figure , we
obtain an upper bound on the eccentricity of the transient norm. The points x and y can
be computed explicitly, so that we obtain the following bound.

Proposition 4.7. Suppose that A € R**? is given and let ||-||, denote the associated
transient norm. If A is exponentially stable, but not dissipative then

ecc |-, < [z,
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where x and y are linear independent unit vectors satisfying

e (A+ ANz =0=y"(A+ AN)y.

05

-0.5-

Figure 4.4: The unit ball of the Feller norm for a stable 2 x 2 matrix.

For an exponentially stable, but not dissipative matrix A = (’\01 x, ) We obtain by Proposi-
tion .7 the estimate

\/()\1 — )\2)2 + o?
—(M+X)
since the vectors x and y are given by normalized multiples of (o 4= v/aZ — 4\ Ay, —2X;) .

Using the fact that A is dissipative if and only if 4\;\s > o? we have for any real expo-
nentially stable upper triangular 2 x 2 matrix that

ecc||-fl4 <

A Ao)? 24NN
eCCH‘”AS \/( 1+ 2) —i—max{O,oz 1 2} for A — (/\1 a

_<)\1 + )\2) 0 )\2> ,)\1; )\2 < 0. (47)

The last case of a stable Schur form belongs to those matrices which have a pair of conju-
gated eigenvalues located in the left half-plane. Their real Schur form is given by A = ( 3 f)
where A\ < 0 and a3 < 0. A stable matrix A € R?*? is dissipative if A + AT < 0 which is
equivalent to det(A+ A") > 0. Hence, the Feller norm will differ from the Euclidean norm
if 2|A\| < |8+ a]. Carrying out the same calculations as for Proposition (which only

depend on A + AT) gives the following upper bound for the transient excursion

ece |, < \/max{ll)\z,)\(;z + 5)%} for A = (2 f) A <0, aB < 0. (4.8)

Rewriting the bound (4.8)) in terms of determinants and traces of A and A+ A" we get

det(A+ AT) - T
M, =4/1— ———— f A+ A 4.
4 \/ trace(A) if det(A+A") <0, (4.9)
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which is also valid for the real case, cf. (4.7)). Hence stable matrices of the form

a ob+ (1 —1)c
((1—0)1)—}—7’0 d ) for all 7,0 € R
have the common upper transient bound M, = % if 4ad < (b+ )2

Let us now return to matrices with real spectrum. We already know that the bound (|4.7))
is exact in the limiting cases A\; = 0 and |a| = 2v/A;\y. Therefore it is reasonable to ask
for the quality of this bound.

Theorem 4.8. Given a stable matriz A = (’\01 ) € R2*2 with 4\ Xy < a?. Then for
My = sup;s ||| and My = /(A — X2)? + a2/ | A1 + Xo| the following estimate holds

1< My e
0

Proof. The norm of the matrix exponential is given by Proposition

Ao )2 o \? 0 )2
||€AtH _ %|€)\1t_e)\2t| (\/COth (%t) + <>\1_>\2> +\/1+ <)\1_>\2> ) ,
1 (VIF @ +lalt), A==

A lower bound for ||€AtH is given by

o) 2 fRER (=) A A,
o |O€‘t€/\t7 lf)\:)\l :)\2.
It attains a critical value at ty = /\1+)\2 log i—f, respectively at ty = —%. Let us now concen-

trate on the case A\; # Ag. Then
HeAtO” _ % ((_)\2))\2(_)\1)_>\1)l/(>\1—>\2) (\/()\1 + )+ a?+ \/()\1 ) +a2) '

Hence My > max(1, ||e*®]|). Now, M, /My < M, /||| and for this quotient,
A2
M+ —9 1 )\2 & A1—A2 ()\1 + )\2)2 + 062 i 1
lee] RYWARY (A — X2)2 + 0
—1 -1
Ao Ao >‘1 >‘2 Ag | A2 >\2 Ao >\1 >\2
1 . (41
(( i )\1> ()\1> ) <(/\1) i ()\1) > (410

To complete the proof, let us use the following inequality. For a,b € R, ab > 0, a # b we

have , .
e =
(9) i (9) >2 (4.11)
a a e
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To prove this, we assume b > a > 0 and set b = a+¢, 3 = £. Then the LHS of (4.11)) gives

(2) <%+1> > 9 (1+2): —2 (1+%)ﬂ > 2exp(—1).

Now using (4.11]) in (4.10) shows that M, /My < e/2 when \; # As.
For the remaining case A = A\; = Ay we have

My = [le* || = £ (y/4+ (37 +13]).

As M, = —|a] (20)

M+ laf e <€
\/ A2 +a?+a| T 2
Hence, the bound ]]\\44—’(: < 5 holds for all stable upper triangular matrices. ]

Hence the bound M, of (4.9) satisfies M < M, < 1.36M.

We have the following generalization to higher dimensions.

Corollary 4.9. Suppose that B € R™™ and o, 3 < 0. Then for

Cfal, BY. p yla—pp+| B
A= ( 0 ﬁLn) : igg”e H < max ot

Y

Proof. The spectral norm of the matrix ( § 5,) is given by

(s 5])” 5 (Vi a2+ 181 + - or 41817

as we have seen in Lemma {4.1] The matrix exponential retains the blockdiagonal structure
so everything works out as in the two-dimensional case. ]

4.3 Liapunov Matrices of Minimal Condition Number

In this section we continue to study solutions of the Liapunov equation
La(P):=PA+A"P=-Q =0, (4.12)

where we assume that A € R?*? is an exponentially stable matrix. As we have seen in

Theorem the condition number x(P) of a solution P € H?* of measures the
eccentricity of the quadratic Liapunov function z + 2" Pz compared to = — z'x and
therefore gives rise to an upper bound of the matrix exponential. Again, as in Section
we are interested in a solution P for which the spectral condition number

Amax (P)

mln(P>’ P=-L; (Q>7

K(P)=||P|||P7Y] =
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attains a minimum under all positive semidefinite () = 0. If the matrix A is dissipative
with respect to the spectral norm, A+ A" < 0, then P = I satisfies . Therefore the
optimal condition number in case of a dissipative matrix is K, = 1. So let us now study
stable matrices A € R?*2 for which A + AT is indefinite.

For a 2 x 2 regular triangular real matrix A the optimal solution for a real upper triangular
matrix A = (’\01 X ) where \; < 0, A\; # \s and ¢ € R, may be found by direct computation.
Then for A+ AT being indefinite, Q is given by a rank 1 matrix.

Proposition 4.10. Let A = ( 0 /\”) € R2, be an exponentially stable matriz with p*> >
AX1 A2, A1 # Ag. Then k(P) is minimal under all solutions L 4(P) = —Q of (4.12] - ) with
P =0, Q =0 if and only if Q satisfies Q = cc' where c is given by ¢ = (\; — Ao, pp — v) T

(or multiples thereof ) with v = sgn(pu) \/i—f (A1 — A9)2 + p?).

Proof. As a consequence of Proposition the optimal solution is found under those
Hermitian pairs (P, Q) for which @ is only semidefinite which gives in the 2 x 2 case a
matrix of rank one. Hence we are looking for a right hand side Q = cc', ¢ € R?, of the
Liapunov equation. These matrices can be conveniently parameterized by setting

O(0) = (&it; (M gﬁ)e) = (40T (4.13)

Then the Liapunov matrix P() = (5 73) = —L,1(Q()) is given by the components

(A1 + Xo)? A+ Xy 1 ) AL+ A
— —_——, _= —_ 0’ — 0 - 2 0 .
N Y p3 2 H P2 2)\2 + —)\1 H
Now, the spectral condition number of a symmetric 2 x 2 matrix satisfies k(P) = ﬁw—‘llpll

and we have

+ 1
1P = B2 4 0\ (o = o + 493, det(P) = pipa =} trace P = pi +pa.
For critical values, Lk (P(f)) = 0 has to hold, hence we are searching for solutions of

(trace P(6) — | PI)) & | P(0)I| = | P(O)I] 5 (trace P(9) — || P]]). (4.14)

Now, setting || P()|| = 3(trace P(6)++/A(0)) with A(0) = (p1—p2)>+4p3, equation (4.14)
simplifies to

A(6) L trace P(0) = trace P(0)-L/A(6).
The chain rule for £/A(6) gives
2A(6)-L trace P(0) = trace P(6) L A(6). (4.15)
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The following critical points of (4.15) can be found with the help of a computer algebra
system

At At A Ao 9 9
=T =T (R (- P ).

The value 6, corresponds to a +oo-pole of k as ¢ = (A; + Mg, 01) " is a left eigenvector of
A, hence (A4, c) is not observable and therefore £'(—cc") is not positive definite. Both
other critical values give rise to a local minimum. The global minimum is attained when

choosing 6;,i € {2,3} to be of smallest modulus. Then ¢ of (4.13)) is given by

A+ A !
= (MHr T ) L where v = sgn(u)y/32 (O = N2+ )
AL — Ao 1
By scaling ¢ by the factor ﬁ we obtain the required result. ]

The following considerations are helpful in understanding the result of Proposition 4.10
Let us only consider a subset of the cone of positive semidefinite symmetric 2 x 2 matrices
H?% given by positive semidefinite matrices H with trace H = 2. Clearly, this set is a basis
of the cone. Then each H from this set can be written as H = (1;‘1 lfa) for a? + 3% < 1.
The semidefinite matrices are given by a? + 32 = 1, and the positive definite ones by
o 4+ % < 1. In the equivalence class H? /{trace = 2}, addition and inversion follow the
rules
(@, 8) + (7,6) = (252, 42) and  (a,0)" = (—a, —f),

where we identify the pair (o, ) with the matrix ( 1;“ 2 o) - The visualization of the image

of the positive definite cone under the inverse Liapunov operator L' is accomplished
casily. We will call the set {H € H2(R)| trace(H) = 2, HA+ ATH =< 0} the Liapunov
cone of A. Figure shows the Liapunov cones for A = (7 *%)) and A = (°23),
respectively. Neither cone includes the origin whence (A + A") > 0 for both matrices,

1 1

0.5

0.5

-0.5 -0.5

Figure 4.5: Real Liapunov cones.

i.e., they do not generate contractions. The asterisks in Figure mark the positions of
the Hermitian matrices P of smallest condition. They are oriented towards the center of
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the Hermitian cone because the spectral condition number x depends monotonically on
the radius r = y/«a? + 2. Moreover, the points of the Liapunov cone touching the outer
circle of semidefinite matrices correspond to left eigenvectors v; of A which form symmetric
eigenvalues v;v; of the inverse Liapunov operator. The matrix A for the right picture of
Figure contains only complex eigenvalues and therefore the Liapunov cone does not
touch the outer boundary given by real semidefinite matrices. By inspection, we see that
the sum of the symmetric eigenvalues of le, i.e., the midpoint between the tangent points
(given by symmetric eigenvectors of £3') which is marked by a box, is aligned with the
optimally conditioned matrix and the center of the cone. Here the center is identified with
the identity matrix I5. Hence we obtain the following alternative way of obtaining the
formula of Proposition [4.10]

Corollary 4.11. Let A € R?*? be a stable matriz. If v;,i = 1,2, are the left eigenvectors
of A corresponding to the eigenvalues \; then by setting Py = viv] + vovy we obtain the
quadratic Liapunov matriz of minimal condition by P = Py + Aol where Ay = min{\ €
o(Qo, A+AT) | X > 0} is the smallest positive eigenvalue of the matrix pencil Qo—\(A+AT)

and QO = _(POA + ATPO) = —2Re ()\1'(]1'U£r + 5\21}2@;).

Ezample 4.12. Consider the matrix A = (77 ;). By Proposition the quadratic
Liapunov matrix solution of minimal eccentricity satisfies Q = cc” where ¢ = (15, —42) as
v = 2v/15% + 362 = 78. The RHS Q of the Liapunov equation is given by @ = ( _52%, ~#60")
with @ = 70 in (4.13)). Therefore P = (%" ,2.) and its quadratic condition number is
optimal and given by k(P) = 525 = 22 Ags the associated eccentricity is given by the
square root of k(P) we obtain the growth bound HeAtH , < /3. Some trajectories of the
system and an optimal ellipse {x € R?|(z, Px), = const} are depicted in Figure
cf. Example [3.38]

For the second approach in Corollary [4.11] we set Py = (23 83 ) = 13%(v1v] + vv) ) where
v; are left eigenvectors of A, v; = ((1)),1)2 = 1—13(152). Then the generalized eigenvalues are
given by

o(Qo A+ AT) = o (3 80), (3 %)) ~ {-11.6071, 162.5}.

Now Ay = 162.5, and P = Py + Nl = (%85 ,9.) which differs from the previously
obtained value by the scalar factor 3. Thus this second method leads to the same result
as the formula given in Proposition with k(P) = 2.77778. |

4.3.1 Common Quadratic Liapunov Matrices

The update step for quadratic Liapunov equations described in Proposition [3.43| can also
be used to obtain a common Liapunov matrix for two stable 2 x 2 matrices Ay and A;.
Let us suppose that the Liapunov cones of Ay and A; have a non-empty intersection,
hence there exist common Liapunov matrices for Ay and A;. Like in Corollary let
P, denote the “eigenvector mean” of A;, i = 0,1 where P, = vy (A4;)v](A;) + va(A;)vs(A;)
and v;(A;) are the normed left eigenvectors of A;. These matrices are located near the
centers of the corresponding Liapunov cones. If a part of the line segment between P;
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and P, in H?/{trace = 2} is contained in the intersection of the Liapunov cones, we
can detect this using the update mechanism of Proposition [3.43] By construction, both
Qo = —(PyAo + Ay P) and Q; := —(P1A; + A Pp) are positive semidefinite. Now let us
set R; = BA_;+ Al P, i =0,1. If there exists a negative definite R; then we have found
the common Liapunov matrix P;. If R; is indefinite we construct an interval of Liapunov
matrices

Pi=P+ )P, X\e[0,min{c(Q;R)NR.Y, i=0,1,

using Lemma [3.44] If these intervals overlap (with respect to H?/{trace = 2}) then all
matrices from the intersection of the intervals are common quadratic Liapunov functions
for Ag and A;. In particular, the intersection of the intervals is non-empty if

AT > 1 for Al =min{o(Q;,R;)) "R}, i=0,1. (4.16)

To this end, note that in H? /{trace = 2} the Hermitian matrices Pf = Py + A\jP; and
P} = P, + APy are contained in the interval [Py, P;]. Hence we can decide whether
the Liapunov cones generated by A, and A; have a non-empty intersection along this
interval by checking if P} € [Py, Fj]. By this is equivalent to % < A, hence holds.
Unfortunately, this is not a necessary condition for the existence of common quadratic
Liapunov matrices.

Ezample 4.13. Consider the matrices 49 = (% %) and A; = ( 8¢ 2 ). We obtain Py =
(724204574 ) and Pi = (J5eey 03589 ). Then A\j = 1.113 and Af = 0.5451 and Aj\; = 0.6069
so that is not satisfied. However, the left image of Figure shows that both
Liapunov cones have a non-empty intersection. For the matrix pair Ay and Ay = (j’ _51)

| : : . . :
-0.5 0 . -0.5 0

Figure 4.6: Common quadratic Liapunov matrices: Intersecting cones.

we have P = % (_11 _51) and Aj = 0.9521, A5 = 2.672, hence A\]A; = 2.544 > 1. Indeed, the

right image of Figure shows that the Liapunov cones intersect. Now, every Py + APy
with A € [(A5)~, \}] is a common Liapunov matrix for Ay and As. [ ]
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This method of constructing segments of common Liapunov matrices is not restricted to
matrices which are used in Corollary or to dimension 2. We therefore immediately
obtain the following theorem.

Theorem 4.14. Let Ay, Ay € K™" be exponentially stable matrices, and Py, P, € H" (K)
such that L4, (P;) 20,4 =0,1. We define Ry = PyA1 + A{Py and Ry = PiAg+ AoPy. If
Ry or Ry is negative definite then Py, respectively Py, is a common Liapunov matrix of Ay
and Ay. Otherwise consider

)\;k :mm{a(Ql,Rl) HR+}, 1= O,l
If X§AT > 1 then all positive linear combinations of Py and Py which satisfy
O(Py + \Py), 0>0,xe [(A)7", A

are common quadratic Liapunov functions of Ay and A;.

4.4 Dissipativity for Polytopic Norms

We close this example section by a discussion of dissipativity for the class of polytopic
norms.

Definition 4.15. A point z € R” of a closed convex set K C R" is called an extremal point
if for all a, b € K\ {x} the point z is not contained in the interval (a,b) = {ra+(1—7)b|T €
(0,1)} € K. A norm ||-|| in K™ is a polytopic norm if its unit ball B = {x € R"| ||z|| < 1}
has only a finite set of extremal points.

With every polytopic norm we associate the set C' C R™ of extremal points of B. Given a
set of points C' C R" such that B = conv C' is

e balanced, i.e., z € B implies —z € B (hence C' = —C),
e absorbing, i.e., for all x € R™ there exists a > 0 with ax € B (hence span C' = R"),
e its set of extremal points is given by C,

then B is the unit ball of a polytopic norm which we denote by ||-|| . For a polytopic norm
||l the dual norm ||-||7 is also polytopic, as ||y||n = max,ec{|(z,y),|}. In particular, the
set C* of extremal points of the dual norm is constructed from normals to the faces of B.
Hence ||| = [-/|o--

Now, for polytopic norms dissipativity needs only to be tested for pairs of extremal points.

Lemma 4.16. Suppose ||-||, is a polytopic norm with vertex set C. If for all dual pairs
(wi,y;) with x; € C and y; € C* the inequality ijAxi < 0 holds, then A is strictly
dissipative.
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Proof. Suppose that (x,y1), (z,y2) are dual pairs of |||, with z € C and y1,y, € C*. Then
Yo = Ay + (1 — Ny is also a dual vector of o and yg Ar = Ay Az + (1 — \)y, Az < 0. By
induction over the set of dual vectors, the solutions of & = Ax are strictly decaying for every
initial value in C. Now consider a face of {x € R"| ||z|| = 1} given by its normal vector
y € C*. Then all adjacent corners x; € C' form dual pairs (z;,y). Any convex combination
r =Y, Yy, =1 also defines a dual pair (x,y) which satisfies y" Az < 0. As all
possible dual pairs have this structure, A is dissipative. O

Especially, the norms ||-||, and ||-||,, are polytopic, so that the result of Lemma is
also applicable to them. As a consequence from Theorem [2.74] for an exponentially stable
matrix A € K™ one always finds a polytopic norm which is also a strict Liapunov norm.
Now every unit ball B of a norm can be approximated via a polytopic norm ball by choosing
a set of points C' on the unit sphere dB which respects the above-motioned requirements.
This gives an inner approximation Bo C B. The dual polytopic unit ball then becomes an
outer approximation of the original dual norm, By, D B*.

Given a matrix A € R™" one would like to conclude from the dissipativity of A with
respect to the polytopic norm that A is also dissipative with respect to the original norm,
if only the approximation of these two norms is good enough. This problem is still unsolved.

4.5 Notes and References

Explicit formulas for the matrix exponential of 2 x 2 matrices can be found in Engel and
Nagel [38, Example 1.2.7 (iii)]. However, computing a closed formula for the norm is not
carried out in that work.

Exponential bounds based on the Feller norm are to the best of the author’s knowledge
currently not available in the literature. The problem of determining a quadratic Liapunov
norm of minimal eccentricity has been addressed in Khusainov, Komarov and Yun’kova [82]
85] and Sarybekov [123]. Obolenskii [I11] introduces a different condition number x'(A) =

trace(A) . . . . .
YR e’ and shows the existence and uniqueness of an optimal solution which respect to

this new condition number.

The visualization of 2 x 2 Liapunov cones has been used in [123] and Cohen and Lewkovicz
[27]. The construction of common quadratic Liapunov matrices is an active area of research,
see Ando [2] and Mason and Shorten [106].
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Chapter 5

Positive Systems Techniques

A dynamical system is said to be positive if the positive orthant R} = {z € R" | z; > 0} is
invariant under its flow. This invariance is crucial for the property that the state space of
positive systems and of related system-theoretic concepts (like Liapunov functions) can be
restricted to the positive orthant. Positive systems are often encountered in applications
when positivity constraints are given, i.e., modelling populations and concentrations.

A linear system & = Ax, A € R"*" is positive if and only if the off-diagonal entries of A
are all nonnegative [40], such matrices are called Metzler matrices. The matrix exponential
of a Metzler matrix is a nonnegative matrix. One can expect that Metzler matrices exhibit
the worst transient behaviour of all stable matrices, as no cancellation of terms can occur
in the formation of the matrix exponential. In this chapter we will shed some more light
on the transient behaviour of Metzler matrices and their use to derive bounds for arbitrary
matrices. We first study the properties of Metzler matrices, and derive transient bounds
for linear positive systems. To this end, we introduce the concept of a Liapunov vector.
Each Liapunov vector induces a Liapunov norm. We then answer the question how to
optimally choose the Liapunov vector in order to minimize the eccentricity of the induced
Liapunov norm. The next section is devoted to the study of common Liapunov vectors for
a set of Metzler matrices. And finally, we show that the bounds for positive systems may
also be applied to general systems.

5.1 Properties of Metzler Matrices

In this chapter we will use the following notions. A matrix A € R™" is said to be
nonnegative, A > 0, if all of its entries are nonnegative. If all of its entries are positive, it
is called strictly positive. Sometimes we speak of positive matrices, which are nonnegative
and nonzero. The set of all nonnegative matrices is denoted by R*". For A, B € R™*" we
write A > B if A — B > 0. The modulus |A| € R™" of A € K"*" is the componentwise
modulus, [A[;; = [a;j|. Let us recall that p(A) = max{|A| | A € 0(A)} denotes the spectral
radius while a(A) = max{ReA |\ € o(A)} denotes the spectral abscissa. The spectral

107
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radius satisfies the following monotonicity property, see Horn and Johnson [71],
forall Ac K¥™", BeRY": |Al < B = p(A) < p(|A]) < p(B). (5.1)

A matrix M € R™" is called a Metzler matriz if there exists a scalar shift v € R such that
vl + M >0, i.e., all off-diagonal entries are nonnegative. As a consequence, results from
the Perron-Frobenius theory of positive matrices are applicable to Metzler matrices. The
set of all Metzler matrices is denoted by Rf;".

Proposition 5.1 ([68]). Suppose that A € RY" is a Metzler matriz. Then

1. a(A) is an eigenvalue of A and there exists a nonnegative eigenvector x > 0,x # 0,
(called Perron vector) such that Az = a(A)x. If A >0 then a(A) = p(A) > 0.

2. If X # a(A) is any other eigenvalue of A then Re A < a(A).

3. Given 3 € R there exists a nonzero vector x > 0 such that Ax > [x if and only if
a(A) = 6.

4. (tI — A)~! ewists and is nonnegative if and only if t > a(A). Moreover,

afA) <t <ty = 0< (to — A< (b — AL

5. The matriz exponential et € R'*" is nonnegative for all t > 0.

A matrix A € R™" is called resolvent positive if (tI — A)~! exists and is nonnegative for
all £ > a(A). The last item of Proposition [5.1{ shows that every Metzler matrix is resolvent
positive. In fact, A € R"*" is a Metzler matrix if and only if it is resolvent positive [43].

If we additionally assume in Proposition that A is an irreducible Metzler matrix then
we obtain some strict inequalities. Here A is called reducible, if there exists a permutation
matrix P such that A is transformed into upper block-triangular form, P7'AP = (‘%1 ﬁi ).

If A is not reducible, then A is called irreducible.

Corollary 5.2. Suppose that A € RY" is an irreducible Metzler matriz. Then
1. The Perron vector x > 0 is strictly positive.
2. (tI — A)~L exists and is strictly positive if and only if t > a(A).

The relation of a positive system & = Az, A € R on R™ to its restriction on the
positive orthant R’ is of key importance for this chapter. Given two initial vectors zg
and z1 in R™ with zq < x1, the associated solutions of the differential equation & = Ax,
A e Ry, satisty the monotonicity property x(t,zo) < x(t,x;) for all £ > 0. In particular,
— |xo| < 29 < |mo| holds so that

I(t7_|I0|) Sx(t,xo) Sx(t7 |ZE0|), tZO

Thus |z(t, zo)| < z(t, |zo|) for all zy € R™, so that we can restrict the state space of positive
systems to the positive orthant R’} when looking for transient estimates.
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5.2 Transient Bounds for Metzler Matrices

In this section we investigate how to obtain bounds for the transient effects of positive
systems. Let us first gather some ideas based on the following monotonicity property for
positive systems.

Lemma 5.3. If A € Ry[*" is a Metzler matriz and B € R™ is a nonnegative matric then
At < eAtB) fort > 0.

Proof. As B is nonnegative and A is Metzler there exists a shift @ € R such that 0 <
A+al < A+ al + B. Then all powers also satisfy (A + al)* < (A+al + B)*, k € N,
hence it also holds for the matrix exponential that exp(A + al)t < exp(A + ol + B)t,
t > 0. Dividing by e gives the required result. O

Now, if ||-|| is a monotone vector norm on R™ then for Metzler matrices A and B with
A < B, we have 0 < e < B for all t > 0 and the induced operator norm satisfies
HeAtH < ||e?"||, see Lemma If we find an easily obtainable transient estimate for e’
then this bound is also valid for e4*. Such a transient bound is relatively easy to obtain
for a Toeplitz matriz B = (b;;) € R"*™ which is constant along all diagonals, i.e., b;; = b;_;
fori,5 =1,...,n. We will demonstrate this in the following example.

Ezxample 5.4. Let B denote the nxn Ostrowski matrixz associated with the eigenvalue A € R,

Al
=" " | ermn
Lo
0 ... 0 A

As B is a triangular Toeplitz matrix, its matrix exponential T'(t) = P!t > 0 is also a
triangular Toeplitz matrix. Moreover, it is also nonnegative by Proposition [5.1 We now
need a cheap method of estimating ||7°(¢)||,. To this end, recall Lemma from which

we conclude that | T(t)]| = « T((t))T T((]t)
via Gershgorin’s Theorem which implies ||T'(t)|, < max{||T'(¢)||,,||T(¢)] .. }. Since
T(t) is Toeplitz we have ||T'(t)||, = ||7(t)|,, so that the spectral norm is bounded by
|T(t)||- Moreover, T is not only Toeplitz, but also nonnegative and upper triangular,
hence ||T(t)]|,, is the sum of the first row of T'(t). An explicit calculation of the matrix
exponential T'(t) = B! shows that the entries in the first row are constructed from binomial

coefficients, and so the transient behaviour of B is bounded by HeBt H , < eMp(t),t > 0 where

the polynomial p is given by
n—1
n— 1\t
=3 (")

k=0

). An estimate of this eigenvalue can be obtained

By Lemma the transient behaviour of B is an upper bound for all triangular Metzler
matrices A with A < B, HeAtH2 < HeBtH2 < eMp(t), t > 0. [ ]
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We now show that for Metzler matrices the determination of the transient behaviour with
respect to the operator norms HeAtHl and HeAt”OO reduces to solving just one initial value
problem. Therefore the initial growth rates p; and p. are easily obtained by simple matrix
computations.

Lemma 5.5. Given A € Ry[™. Then

p1(A) = max(1'A);, foo(A) = max(Al);,

] 7

where 1 = (1,...,1)T € R" is a vector of ones. Moreover, for the matriz exponential we
have [[e*]|, = [[17e|[, and [ = [le* 1] .

Proof. Direct manipulation of the formulas presented in Theorem yields

pi(A) = max (Re aj; + Z \a,»j|> = max (ajj + Z az-j> = m]aX; a;; = m?X(lTA)j,

i#] i#]

and analogously p.(A) = max;(A1);. The matrix exponential e’ of A € Ry is a
nonnegative matrix for ¢ > 0. Hence HeAtHOO = He‘”l”Oo and He“‘t”1 = ||1Te“”||1 for t > 0.
Choosing an initial value zy = 1 we therefore obtain the co-norm of the matrix exponential
by considering the norm of the solution z(t,1) = e4*1. ]

Let us now derive estimates on the transient growth based on Corollary To take
advantage of the positivity of the system, all vector norms under consideration must be
monotone. Let us therefore introduce positive diagonal weights for the standard norms
|-, ,2 € {1,2,00}. If W = diag(w;) with w € R™, w > 0, is such a positive diagonal weight
and if ||-|| is a monotone vector norm then ||[WW-|| is also a monotone vector norm, and by
Proposition @ its eccentricity is given by ecc(||[W-[|, ||-|) = x(W) = J20:. To obtain a
transient estimate from Corollary [2.57, we need to know the initial growth rate associated
with a weighted norm. The formula has already been derived in Proposition [2.58].

Candidates for diagonal weights are given by Perron vectors.

Theorem 5.6. Suppose A € RY[" is a stable Metzler matriz with Perron vector x > 0 and
left Perron vector y > 0, Ax = a(A)z, y'A = a(A)y". Then

_ 12
e, < mtw) e, e, < (m(290) e o] < wta) e

1

where k(z) = (max; z;)(min; z;) =" is the condition number of a strictly positive vector z > 0.

Proof. Given a Metzler matrix A where the left and right Perron vectors y and x are
strictly positive. Setting W = diag(y;) gives 1" WAW ™1 = yTAW ! = a(A)y" diag(y; ') =
a(A)1T, hence by Proposition the weighted initial growth rate satisfies iy w(A) =
i (WAW™1) = a(A). The condition number of W is given by (W) = x(diag(y)) = x(y).
Hence Corollary [2.57| gives the estimate HeAtHl < n(y)ea(/‘)t,t > 0. Analogously, W~ =
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diag(z;) gives oo w(A) = a(A) with condition number x((z;!);) = x(x). For the spectral
norm, set D = diag(¥). Then DA+ A"D — 2a(A)D is a symmetric Metzler matrix. We
claim that it has the same Perron vector x as A. This may be seen by

(DA+ A'D —2a(A)D)z = (a(A) I+ AT — 2a(A))Dx = (AT — a(A)I)y = 0.

The Perron vector is an eigenvector associated with the spectral abscissa, hence DA +
ATD — 2a(A)D is negative semidefinite. Therefore we have the following inequality with
respect to the Hermitian order relation,

DA+ ATD < 2a(A)D.

Corollary and Theorem then give the transient estimate for the spectral case. [J

The choice of Perron vectors as weights provides an estimate for the optimal decay rate
a(A). This approach is impossible if the Perron vectors contain 0 entries. But weights
which yield a transient estimate can be chosen from a much larger set.

Proposition 5.7. Given a Metzler matriz A € Ry ".

(i) If A is exponentially stable then for every vector b € R there exists a vector w € R’}
such that Aw = —b.

(i1) If there exists w > 0 with Aw < 0 (Aw < 0) then A is (exponentially) stable.

(iii) If the vector w satisfies the conditions of (i) then the norm |Wxl||  with W1 =
diag(w) is a Liapunov norm for @ = Az. Its eccentricity is given by k(w), the
corresponding initial growth rate by pe w(A) = max; (Aw);

Proof. Let us assume that A is exponentially stable. Then Proposition [5.1] shows that

— At € RY™. Hence w = —A™'b is a nonnegative vector, which shows (7). If w > 0 is a

strictly positive vector with b = —Aw > 0 then W = diag(w; ') gives WAW 11 = WAw =

—Wb < 0. By Proposition [2.58 and Lemma the weighted initial growth rate satisfies

froow (A) = fioo(WAW ™) = max(WAW™'1); = max(diag(w; ') Aw),
J J
= max (— diag(w;l)b)j = —min Z—J <0.
J J J
Hence (uii) is proved. Now (%ii) implies the (exponential) stability in (i), as the initial
growth rate is non-positive for b > 0, and it is negative for b > 0. [

A dual result of Proposition [5.7| holds for ||-||,. We list it here for completeness.
Corollary 5.8. Given a Metzler matriz A € Ry[".

(i) If A is exponentially stable then there exists for every b € R, a vector w € R} such
that w'A = —b".
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(ii) If there exists w > 0 with w'A <0 (w'A < 0) then A is (exponentially) stable.

(111) If the vector w satisfies the conditions of (i1) then norm ||Wx|, with W = diag(w)
is a Liapunov norm for & = Ax. Its eccentricity is given by k(w), the corresponding

o _ (ATw);
initial growth rate by py w(A) = max; ~——=.

Proof. We only show (7i) as statements (i) and (7i) follow analogously to the proofs in
Proposition . As w > 0 is a strictly positive vector, W is invertible and 1TWAW ! =
wT AW~ = —pW = < 0. Hence the initial growth rate with respect to ||W-||, is given by

prw (A) = p (WAW ™) = max(1"TWAW ™), = max(w' AW 1),

7 (2
= max(—b' W), = —min &

1 i Wi

Thus |||, is a Liapunov norm for A if b > 0, and a strict Liapunov norm for b > 0. O

Note that we have the following simple formulas if x € R’;, because for positive x and and
positive diagonal weight W = diag(w;) we have

w;

HW‘IJ:”OO = miaxﬂ Wz, = Z(wlxz)

Proposition [5.7] and Corollary [5.8 motivate the following definition.
Definition 5.9. For a given Metzler matrix A € Ry the strictly positive vector w € R

is called a right (or left) Liapunov vector of A if Aw < 0 or w'A < 0, respectively. If the
strict inequality holds, Aw < 0 or w'A < 0, then w is called a strict Liapunov vector.

If there exists a left Liapunov vector v of a given matrix A € RY;" then pu,(A) < 0 for the
vector norm v(z) = ||diag(w)x||, . If v is a strict Liapunov vector of A then A generates a
uniform contraction semigroup.

Lemma 5.10. Suppose that A is an invertible Metzler matriz. There exists z € R, with
A~z <0 if and only there exists a right Liapunov vector of A.

Proof. This becomes obvious by considering the right Liapunov vector w=—A"1zof A. O

For the spectral norm we obtain the following result which extends Theorem |5.6|

Proposition 5.11. Suppose that A is a Metzler matriz. For all strictly positive vectors
v,w > 0 such that A'v < 0 and Aw < 0 the diagonal matriz P = diag(vi/w;) is a quadratic
Liapunov matriz for A which satisfies PA+ ATP < 0.

For the proof of this proposition we need the following lemma.

Lemma 5.12. Suppose that R € RYy[" is a symmetric Metzler matriz. If there exists a
right Liapunov vector v > 0 of R then R is negative semidefinite, R < 0.
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Proof. 1f there exists a right Liapunov vector v > 0 of R then R is a stable matrix by
Proposition (7). As R is symmetric, it is negative semidefinite. ]
Proof (of Proposition [5.11)). First note that for P = diag(vi/w;) the matrix R = PA+ AT P
is a symmetric Metzler matrix, and

Rw = (PA+ ATP)w = PAw+ ATv <0.

Hence w satisfies the condition of Lemma for R= PA+ AT P. Therefore R < 0 and
P is a quadratic Liapunov matrix for A. ]

In [40] it has been shown that

Proposition 5.13. A Metzler matric A € RY™ is stable if and only if there exists a
diagonal quadratic Liapunov function, P = diag(p;) = 0 with PA+ ATP < 0.

Proof. The existence of a diagonal quadratic Liapunov matrix P follows from the existence
of left and right Liapunov vectors by Proposition and Corollary [5.8] Proposition [5.11
shows how to construct the matrix P from these vectors. The converse implication follows
from Liapunov’s direct stability theorem. ]

5.3 Optimal Liapunov Vectors

The last section showed that there is a broad range of Liapunov vectors available for positive
systems. We will now show how to obtain a Liapunov vector for which the condition number
is minimal. This is of interest for bounding the norm of the matrix exponential. To this
end, note that if w € R is a Liapunov vector of a Metzler matrix A with Aw < 0 then its
condition number k(w) = max; w;/ min; w; gives an estimate of the transient growth via

Corollary

HeAtHOO < k(w)et=r@Wt < k(w),

where fi, 18 the initial growth rate with respect to the vector norm ||diag(w;)~'-|| . This
initial growth rate then satisfies fio ., (A) < 0.

Varying the weights w we try to minimize the condition number such that we obtain an
optimal estimate of the transient bound. For this, we pose the following optimization
problem.

Problem 5.14. For a given exponentially stable Metzler matriz A € RY™ find a vector

€ R which s a minimizing argument of

= min [max(—A_lx)i] [min(—A‘lx)i]_l. (5.2)

x>0,27#£0 i i

2>

As is invariant under multiplication with positive scalars, z in (5.2) may be chosen
from a compact basis of the cone R”. If % is a positive vector which minimizes then
the optimal weight @ = —A~'% is a Liapunov vector for A, and the optimal value ¥ is
the condition number x(w) of this Liapunov vector. Let us now characterize the optimal

values of Problem [5.14]
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Proposition 5.15. Suppose that A € RY[" is an exponentially stable Metzler matriz. For
a given weight w € RY with min; w; = 1 we define the index sets

Jw)={ie{l,...,n}|w;, =1}, H(w)={he{l,...,n}|(Aw), = 0}. (5.3)

The strictly positive vector w is an optimal weight of Problem|5.14] satisfying 4 = max; w; if
and only if H(w)U J(w) = {1,...,n}. Moreover, such an optimal weight w always exists.
It is uniquely determined if J(w) = H(w)C.

Proof. Let us first show that the feasible set of Problem [5.14] is non-empty. By Propo-
sition there exists a right Liapunov vector w® of A. Hence the set {x e R} ‘ x # 0}
contains the point 2° = —Aw® and therefore the problem

max; w; . max;(—A "),

4= min _ = 1min - 5.4
Aw<0,w>0 min; w;  z€R? z#0 min;(—A~1x); (54)

is feasible. If A is diagonally dominant then w = 1 satisfies Problem [5.14] with 4 = 1,
J(w) = {1,...,n}. Hence J(w) = {1,...,n} so that H(w) U J(w) = {1,...,n}. Let us
now suppose that w # 1 is a positive vector with min; w; = 1 which corresponds to the
optimal solution 4 = maxw; of Problem [5.14] Then w is also an optimal feasible solution
of the linear programming (LP) problem,

minimize w;, subject to w; > 1, (Aw); <0, i=1,...,n,

for some suitable index 7. Writing y = w — 1 and introducing slack variables z we rewrite
this linear programming problem into standard form,

minimize [e; 0] {y] + 1 subject to [y} >0, [A 1] {y} = —Al.
z z z

If the solution [Z] is optimal then it satisfies the Kuhn-Tucker conditions. For LP problems
these conditions are called complementary slackness and provide a necessary and sufficient
condition for optimal solutions, see [102, Section 4.4]. In this case, the optimal positive
vectors y and z are orthogonal, that is, for each i € {1,... n} either y; > 0 and z; = 0 or
y; = 0 and z; > 0. In terms of w this means that w is an optimal solution if and only if
Hw)U J(w)={1,...,n}.

Let us now show that the optimal solution w of is uniquely determined under the
additional condition that J(w) = H(w)®. To see this, let us assume that w! and w? are two

different optimal weights with min; w? = 1, max; w/ = 4, and J(w’) = H(w’)®, j = 1,2.
and associated index sets J; If J(w') # J(w?) then w' = i (w' + w?) satisfies Aw' < 0
and w’ > 1. Especially, (Aw'); = 0 for i € H(w') = H(w') N H(w?) and w, = 1 for
J(w') = J(w') N J(w?), whence H(w') U J(w') # {1,...,n}. Thus w' is not optimal and
there exists a feasible search direction which decreases the condition number of w’. But as
r(w'") <4, this contradicts the optimality of 4. Therefore J; = J; has to hold. From ([5.3))
and J = H® we get n linear independent equations which are simultaneously satisfied by

w! and w?. But this implies w! = w?, i.e., the optimal weight is unique. O
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The following algorithm solves Problem [5.14]

Algorithm 5.16. Let A € RY" be an exponentially stable Metzler matrix. Let S = —A™!
where S5y € R"™™ denotes the submatrix obtained from S by keeping columns and rows
with indices in the ordered set J = {j1,...,Jm |1 < -+ < jm}and Jx)y = {jr € J| k € K}
denotes the ordered index set obtained from J by keeping the elements indexed by K.
Analogously, the vector x; consists of the elements of x indexed by J. Then the following
algorithm calculates an optimal weight w = Sz for Problem when S = —A~L
Init Set J={1,...,n}.
Loop Solve S(;ny = 1 for y.

If y > 0 then set ; =y, 2;¢; = 0, and return w = Sz.

Otherwise set K = {i|y; <0} and J = Jk).

The algorithm terminates in a finite number of steps, namely if J = {j} then S¢; ;) = s;; >
0as S € RY" and z = sj_jlej. The first iteration of the algorithm is skipped by starting
with the index set J = {i € {1,...,n}|(A1); < 0} since in the first step y; = (—A1);.
Algorithm [5.16| produces an optimal value for Problem [5.14]

Corollary 5.17. The weight w = S calculated by Algorithm |5.16) is an optimal solution
of Problem with 4 = k(W).

Proof. By construction a weight @ = Sz computed by Algorithm satisfies (Aw); =
—2; =0 fori ¢ J = {i|w; = 1}. Hence it is an optimal weight by Proposition and
the optimal condition number is given by 4 = k(w) = max; w;. O

Ezample 5.18. Consider the system @ = Az, A = (3> *})). An optimal right Liapunov
vector is given by w" = (7i2) and an optimal left Liapunov vector is given by w’ = (1%8).
Figureshows the boxes [|z||,, = 1 and ||z||, = 2 in R? shaded in gray. Some trajectories
show that these are not invariant under the flow of £ = Ax. Note that we only have to
check trajectories with initial values in the vertices of these boxes by Lemmal[5.5 Now, the
boxes induced by the optimal weights are both invariant under the flow. The trajectories
enter the optimal boxes tangentially, so that in both cases the associated weighted initial
growth is 0.

For the 1-norm we see that the transient amplification My = 1.5 is bounded by the eccen-
tricity of the norm which is the condition number of the left Liapunov vector, 4 = 1.8.

In contrast, the estimate provided by Theorem [5.6] gives |||, < 1.91e7"!3. For the oo-
norm, the transient amplification is My = 2 which is bounded by the condition number of
the right Liapunov vector, xk = 7.2. Based on the right Perron vector, Theorem gives
|e]], < 9.41e 115 |

Remark 5.19. Problem has the following geometric interpretation. If 4 is defined
by (5.2) then log# is the distance of the polyhedron {z € R"|Az < 0} C R% to the
diagonal R1 is if this distance is measured with respect to Hilbert’s projective metric,

d(x,y) = —log (miin o miin yi) , T,y € Ri (5.5)

T
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Figure 5.1: Liapunov norms induced by optimal weights.

Algorithm [5.16|selects those faces of the polyhedron that have the shortest distance to the
diagonal R1. Passing to a subset of indices is a projection on a lower dimensional subface
for which the procedure of the algorithm is repeated.

The projective metric (5.5)) is also related to the transient behaviour of the spectral norm.

Theorem 5.20. Suppose that A € Ry[™ is an exponentially stable Metzler matriz. Con-
sider the sets

W ={zeR}||zll,=1,AT2<0}, W ={zeR}||z]l,=1,42 <0}

of normed left and right Liapunov vectors. The minimal projective distance of the points
in these sets is given by

d(W!, W) = inf {—log (minﬁ - min %) ‘x cWiye WT} :
tYi L)
This quantity provides an upper bound to the spectral transient excursion through
HeAtHQ < g/2dWE W) for all t > 0. (5.6)
Proof. If z € W* and y € W’ then the matrix P = diag(®i/s;); is a quadratic Liapunov

matrix for A, see Proposition [5.11} Hence Theorem [3.35 implies that

||6AtH2 < xe»\gfl,ljew K (diag(%)i), t>0.

The condition number under the square root is given by

(3 7 7

w(diag(22),) = max(2);/ min(z); = (min(2); -min(22),) (57)

so that the infimum of (5.7)) over all Liapunov vectors is given by W W), Taking square

roots gives (5.6)). ]
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The projective distance d(W‘ W) gives the minimal condition number of a diagonal
quadratic Liapunov matrix. These diagonal matrices are the only ones for which the as-
sociated elliptic norms are monotone, as for a monotone norm the induced operator norm
has to satisfy |WDW/||, = ||D||, = max; |d;| for all diagonal matrices D = diag(d;), see
Lemma [I.9] which is only possible if W itself is diagonal.

We do not provide an algorithm to compute the distance d(W¢, 'W") but let us consider
the following special case.

Corollary 5.21. If W N'W" £ () then A generates a spectral contraction.

Proof. Clearly, if z € WEN'W" then P = I = diag(*i/=;) is a quadratic Liapunov matrix
for A. Hence A is already dissipative with respect to the spectral norm. ]

If the cones generated by the positive linear combinations of the columns of A and AT
have non-empty intersection then there exist strictly positive vectors x, ¥y, z such that x =
Ay = Az, or equivalently, as A is invertible, there exists z > 0 with A7ATz > 0. In the
next section we will generalize this fact about a common Liapunov vector when we replace
Aand AT by A; and A, and look for a common Liapunov function.

5.4 Common Liapunov Vectors

In this section we derive necessary and sufficient conditions for the existence of common
Liapunov vectors for a set of positive systems.

Theorem 5.22. Given a set of square matrices A; € R™*" i € {1,... k}, there exists a
vector w € R with w'A; < 0 for all i € {1,...,k} if and only if [Ay ... Agly 2 0 holds
for all vectors y € R™*, y # 0.

Proof. The proof follows directly from a separation principle for two convex cones, see
[133, Theorem 3.3.4]. Consider the polytopic convex cone, cone(A) = {Az |z > 0} C R™,
generated from the columns of

and the cone given by the (strictly) negative orthant R = {y € R"* |y < 0}. Then either
cone(A) N R"* # () or there exists a separating hyperplane induced by a vector y € R,
such that

Vz € cone(A) : y'z >0, vhe R™ : 4Th < 0. (5.8)

Now, if cone(A) N R™ s non-empty then there exists w € R’} such that Aw € R™. Hence
w'A; <Oforalli=1,...,k On the other hand, if y € R"* satisfies [4; ... A]y > 0 then
(5.8) holds, hence the cones are separated by a hyperplane induced by y € Rﬁk, y#0. O
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Here we do not assume that the matrices are of Metzler type. To turn the following results
into stability characterizations, the matrices must be Metzler to ensure that the strictly
positive vector w > 0 with ATw < 0 give rise to a strict Liapunov function.

For sets of Metzler matrices we introduce the following notion.

Definition 5.23. Let A C R[" be a set of Metzler matrices. The strictly positive vector
w > 0 is called a common (right) Liapunov vector for A if for all A € A, Aw < 0 holds.
The terms common left Liapunov vector, common strict Liapunov vector are defined in
accordance with Definition [5.9

The results of Proposition [5.7]and of Corollary [5.8 also hold for common Liapunov vectors.
Hence these common Liapunov vectors define joint Liapunov norms for sets of Metzler
matrices, see Subsection [2.4.2, Let us now consider two Metzler matrices Ay, Ay € R™*™,

Proposition 5.24. Given Ay, Ay € RY" where Ay is exponentially stable, then there exists
a common strict left Liapunov vector for the pair (A1, As) if and only if there exists z > 0
with 2T A7 Ay > 0.

Proof. To prove the assertion, note that if x € R’} is a common strict left Liapunov vector
of (A, Ay) then

JIT[AI AQ] = $TA1[I A;lAQ] < 0. (59)
Now, setting 2 = —A[  we obtain from (5.9) the inequalities z > 0 and z"A;* Ay > 0. On
the other hand, if the positive vector z satisfies 2 A7 'A; > 0 then 2 = —A] "z defines a
common Liapunov vector. O]

This proposition does not cover the case when there only exists a weak common Liapunov
vector as the following example shows.

Ezample 5.25. Consider the matrices A; = (3% %) and Ay = (3% %4). Then for w =
(3,5)7 we have w' A; = (=5,0) and w' Ay = (0, —3). Now A;'A; = ( %, ”°) has a column
of non-positive values, hence the condition of Proposition cannot be satisfied by any

positive vector. |

Arguing as is the example, we can draw the following conclusion.

Corollary 5.26. Let Ay, Ay € R} where A, is exponentially stable. If A7'Ay contains a
column of negative entries then there does not exist a common strict left Liapunov vector.

Remark 5.27. For an arbitrary matrix A € R"*", the existence of a strictly positive vector
w > 0 with Aw < 0 does not guarantee its stability. We can only conclude that the
trajectories restricted to the positive orthant are bounded. This implies that there does
not exists a positive eigenvector of A which is associated with an eigenvalue of positive
real part. Figure shows some trajectories of A = (! Z}) for which v = (}) satisfies
Av < 0. Here the trajectories enter the triangle depicted in the figure through the segment
{x > 0|v"x = const}. Unfortunately, this triangle is not invariant under the flow of A.
Now, we introduce the Metzler matrix A; = (7* °) for which v is a left Liapunov vector.
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10

-5 0 5 10 15 20
Figure 5.2: Trajectories of a non-positive system with a Liapunov vector.

For all o € R the matrix A + aA;,a > 0 is not of Metzler type. However, for a > o* =1
the matrix A + aA; is exponentially stable. Therefore we can think of A; as a Metzler
direction towards stability. A related result for quadratic Liapunov matrices and rank-one
update matrices is presented in Shorten et al. [125].

Proposition gives a stability criterion only if the matrices Ay, Ay are both of Metzler
type. In this case, the Liapunov vector w defines a linear Liapunov function given by
7 v [|diag(w)al],.

The existence of a common Liapunov vector allows us to conclude that a whole set of
matrices consists of exponentially stable matrices.

Proposition 5.28. Suppose that Ay, Ay € RY[™ are Metzler matrices and that there exists
z € R" which satisfies 2T AT' Ay > 0 and 2T A7' < 0. Then the matrix interval

[[A1, Ao]] :i={7A1 + (1 —7)As |7 € [0,1]} C R{" (5.10)
consists of exponentially stable matrices which all satisfy the same transient bound,
A€ A1, As] HeAtHl < k(AT 2), t > 0.

Proof. The vector w = —A;] 'z is a common strict left Liapunov vector of A; and Aj, i.e.,
w'A; < 0,7 =1,2. But then w is also a Liapunov vector for all convex combinations of
A; and Ay. Hence w' A < 0 for all A € [[A1, Ay]]. By Corollaries and all matrices
A from this matrix interval satisfy the growth estimate |e||, < r(w)er Wt < k(w)

for t > 0 as w induces a Liapunov norm for the whole matrix interval, u,,(A) < 0,
A € [[Aq, Ad]. O

We can generalize Proposition to multiple matrices. If there is no common Liapunov
vector for a set of matrices then there is clearly no Liapunov vector for a larger set.
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Corollary 5.29. There exists a common strict left Liapunov vector for the Metzler matrices
Ay, Ay, ..o Ay where Ay is exponentially stable, if and only if there exists = € RY}, such that
forallt=1,... k:2TA7'A, > 0.

Proof. The condition of the corollary can be rewritten as z"[I, A7 Ay, ..., A7 A] > 0.
Hence z is strictly positive. As A; is an exponentially stable Metzler matrix, A7 < 0.
Setting y = —A7 'z > 0 we obtain y'[A;,... Az] < 0, hence y is a Liapunov vector for
all matrices Ay, ..., A,. Conversely, if y > 0 is a common strict left Liapunov vector for
Ay, ..., Ay, weset z = — Ay > 0 and obtain the required condition z A4, = —yT A4, > 0
forall ¢ =1,... k. ]

Let us now consider the relation between common quadratic and linear Liapunov functions.
By Proposition [5.13] we only have to consider diagonal quadratic Liapunov matrices. Com-
bining Proposition [5.11] and Proposition we obtain the following result which can be
viewed as a corollary to Theorem [2.64]

Corollary 5.30. Suppose that Ay, Ay € RY™ are Metzler matrices and that Ay is expo-
nentially stable. If there exist positive vectors zi,zy > 0 which satisfy z; A7"Ay; < 0 and
Ay ATt zy < 0 then there exists a diagonal common quadratic Liapunov matriz for A, and
Ay given by P = diag(w1/w.) where wy = —Al 21 > 0 and wy = —A; 'z > 0.

Ezxample 5.31. There are pairs of Metzler matrices which do not have a common linear
Liapunov function, but a quadratic one. Consider A; of Example and Az = (3% %).
Then Corollaryshows that there does not exist a left Liapunov vector because A} Az =
(Z218) has a column of negative entries. However, P = (59) is a positive definite matrix

with PA; + A] P <0 for i =1,3. |

Now, let us study the converse question, if the existence of a Liapunov vector implies the
existence of a common diagonal quadratic Liapunov matrix. Unfortunately, this is not true
as the following example shows.

Ezample 5.32. Let us consider the matrices A; = (° %) and Ay = (3' _%;). These two

Metzler matrices have a common right Liapunov vector (?), but no common left Liapunov
vector as A;'A; has a column of negative entries, see Corollary . Hence we cannot
construct a common diagonal quadratic Liapunov matrix based upon Proposition [5.11
Using the visual method developed in Subsection we see that the Liapunov cones
associated with A; and Ay contain a common subset {( 1;” 5 )|a®+5?% < 1}, for example,

11—«
an element is given by a = —0.95 and § = —0.2, but there is no element in this intersection
which corresponds to = 0. Hence there exists no common diagonal quadratic Liapunov
matrix for the matrices 4; and As,. [ |

One can also ask for the existence of common full-block quadratic Liapunov matrices, but
— as already noted — weighting the spectral norm with such non-diagonal matrices destroys
the monotonicity of the norm which is undesirable.

For non-autonomous positive linear systems, the following result is a direct application of

Theorem and Proposition [5.7]
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Theorem 5.33. Consider the time-dependent linear differential equation @(t) = A(t)x(t)
where A : Ry — RY" is locally integrable. Given a strictly positive vector w € R’ we set
b(t) = —A(t)w. Then the solutions x(t,tg, o) satisfy the following growth bound,

o b(s)
— min; [ — )ds
etz < sw)e 0 O g n

If b(t) is nonnegative almost everywhere, the vector w is a common Liapunov vector and

la(t, to, 20)ll., < K(w) 2ol €2 to.

5.5 The Metzler Part of a Matrix

We now want to apply the results obtained for Metzler matrices to arbitrary matrices. Let
us associate a Metzler matrix with every matrix A = (a;;) € K"*", called the Metzler part
of A which is given by

M(A) = Re Diag(A) + |4 — Diag(A)| = (my;),  mi; = {Re W T (5
|a] i # 7,
where Diag(A) = diag(ai1, -+ , @nyn). The following simple lemma is of basic importance.
Lemma 5.34. Let A € K™*", then
(i) The function r — p(A+ rl,) —r is monotonically decreasing on R, and
alA) = rirgo(p(A +rl,) —r). (5.12)

(i) The map r — M.(A) .= |A+rl,| —rl, is componentwise decreasing on Ry and
M(A) = lim [A+rl,| —rL,. (5.13)

Proof. (i). For every A € C we have
0<r<rs = [A+rl—ro=X+r+(—r)|—ro<A+r|—r.  (5.14)

Using [r+ A = ((r + ) (r + 5\))1/2 and /1 + 2z = 1+ 2 + O(2?) the limit is given by

rlilgo(|/\ +r—r)= rlirglo (r\/l + 2Bed 4 |;\—|22> —r=Re), MeC. (5.15)
Now by definition p(A + rl,) — r = max{|A+r| — r| X € 0(A)} and so the monotonicity
property of r — p(A-+rl,)—r follows directly from ([5.14]), while follows from .
(7). Applying and to the diagonal entries of M,.(A) := |A + rI,| —rl, we get
(la;i +r| — r) — Re a;; monotonically as r — oo whereas the off-diagonal entries |a;;|, 7 # j,
of M,(A) remain constant. Hence we obtain ([5.13]). O
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As a consequence we obtain the following monotonicity property for the spectral abscissa
which is a counterpart to (5.1)).

VA€ K™ BeRYX": M(A)<B = a(d) < a(M(A)) < a(B). (5.16)

To this end, note that the spectral abscissa depends continuously on the matrix. By the
previous lemma we have a(A) = lim, o, (p(A+rl,) —r) and a(M(A)) = lim, _ o(]A +
rl,| —rl,). For all » > 0, equation (/5.1 shows

p(A+rl,) —r <p(|A+rl,|) —r

As |A+rl,| > 0, the spectral radius equals the spectral abscissa, p(|A+rl,|) —r =
a(|A+rl,])—r = a|A+rl,|—rl,). Passing to the limit r — oo proves a(A) < a(M(A)).
The second inequality of follows directly from ([5.1]) since we have for any Metzler
matrix B € Ry

ao(B)=a(B+rl,)—r=p(B+rl,)—r, re{t>0|B+tl, >0} 5.17
(B) = of p ,

If A € R™™ is real then it is easy to see that [|Al|; = [[M(A)]]; and ||4] = [[M(A)| .,
moreover the Gershgorin disks of A and M(A) coincide, G(A) = G(M(A)), see Theo-
rem For a matrix A = (a;;) € C™" the radii of the Gershgorin disks R; = ., |ay]
coincide with the radii of M(A), while the centers of the disks may differ only by a
purely imaginary number. Corollary shows that fio(A) = max,cga) Res such that
too(A) = pioo(M(A)). If G(A) C C_ then the matrix A is strictly diagonally dominant and
its Metzler part M(A) is also exponentially stable. We therefore have shown the following
result which shows that the definition of M(A) is reasonable.

Proposition 5.35. Let A be a matriz in K™*™. Then its initial growth with respect to
oo-norm satisfies pis(A) < 0 if and only if the Gershgorin set of A is contained in the left
half-plane, G(A) C C_.

In other words, if the Metzler part of A is strictly diagonally dominant, then A itself is
already exponentially stable. The next results further exploit this idea. We consider the
initial growth rates associated with monotone vector norms.

Lemma 5.36. Given A € K™*" and a monotone vector norm ||-|| on K".Then the associ-
ated initial growth rate satisfies p(A) < u(M(A)).

Proof. Setting r =t~ in (2.25)) and using Lemma [1.9] gives
p(A) = lim (|A+rI|—7) < lim (|[|A+7rI|||—r)= lim (|||[A+7I| =7 +7I| —7)
= lim ([|M(A) + 71| = r) = p(M(A)).

Hence the initial growth rate of A is bounded from above by the initial growth rate of the
Metzler part M(A). O
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Note that all p-norms are monotone. Therefore ps(A) < ps(M(A)). Moreover, for p = 1, 00
we even have equality,

pa(A) = p(M(A)),  poo(A) = poo(M(A)), A€ K™,

which can be directly verified using the formulas of Theorem [2.41]
With every diagonally dominant matrix A we can associate the following diagonally dom-
inant sets.

Proposition 5.37. Given A € K"*". If G(A) C C_ then the sets

Ay = {B e KM ‘ there exists a permutation © with by (=) = @i and Ry (B) < RZ-(A)} ,
Az :={B e K" | M(B) < M(A)}

consist of exponentially stable matrices.

Proof. For every B € A; the associated Gershgorin set satisfies §(B) C G(A), whence
by assumption §(B) C C_. Theorem now implies that B is exponentially stable. If
B = (bjj) € A, then Reb; < Rea; < 0 and R;(B') < R;i(A) for i = 1,...,n. Hence
too(B') < lioo(A) < 0 which shows the exponential stability of B. O

5.6 Transient Bounds for General Matrices

In this section we will first study the relation between the matrix exponential of an arbitrary
matrix A and the matrix exponential of its Metzler part M (A). We have already seen that
the initial growth rates of A and M (A) coincide for the 1- and oo-norms. The rest of this
section deals with perturbation results for arbitrary matrices based upon the Metzler part.
The matrix exponential of the Metzler part provides an upper bound for the matrix expo-
nential of the original matrix A. This fact is established in the following theorem.

Theorem 5.38. For every A € K" and all t > 0, (Wt holds elementwise.

Moreover,

(eM(A)t) — inf ( \A+r1|fr1)t)

i reR i

Proof. For all t > 0 and r € R we obtain

. t>0, q,j=1,....,n

[e.9]

|(A + rI
et |6At’ (A+'I‘I E : 6|A+T1|t.

k=0
The continuity of the matrix exponential and Lemma yield the result

r—00

Moreover, as the limit in (5.13) is monotone, (eM(A)t)ij = inf,ep (e(A+r7I=rDt ) holds

componentwise. O
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Corollary 5.39. Given A € K"*™. Then the following inequality holds elementwise

|(sI — A)7'| < (Res— M(A))™",  Res > a(M(A)) > a(A).

Proof. The matrix A — sl is exponentially stable for Res > a(M(A)) > a(A). Hence the
integral representation of the resolvent (Corollary is well defined and we obtain

|(S] _ A)—l‘ S/ ‘e(A—sI)tl dt S/ 6(M(A)—Resl)tdt _ (Re sl — M(A))_l,
0 0

the absolute value of the resolvent is bounded componentwise by the resolvent of the
Metzler part. O

Hence Metzler matrices A are exponential positive and resolvent positive in the sense that
the matrix exponential e’ and the resolvent (sI — A)~! are nonnegative functions for
t > 0,s > 0. For an operator norm induced by a monotone vector norm the following
inequalities hold for any matrix A € K"*", we obtain from Corollary and Lemma

el < [le* 1] t 20,

1 1 (5.18)
H(SI—A) H < H(Res[— M(A)) ||, Res > a(M(A)).

In particular, the first equation implies that if M (A) is (M, 3)-stable then A is also (M, 3)-
stable. The following corollary is direct consequence of Theorem [5.38| and of Proposi-

tion B.7.

Corollary 5.40. Given A € K"*". If there exists a (strict) Liapunov vector for M(A)
then A is (exponentially) stable.

For a set of arbitrary matrices, we can extend Corollary to a generalization of Corol-
lary [5.29.

Corollary 5.41. Given a finite set of matrices Ay, As, ..., Ax € K"*" such that the Metzler
part M(Ay) is exponentially stable. The differential inclusion

T €conv{A;|i=1,... k}x (5.19)
is exponentially stable if there exists z > 0 with 2" M(A;) Y M(4;) >0 fori=2,... k.

Proof. 1f 2" M(A;)"*M(A;) > 0 holds for all i = 1,..., k then Corollary implies that
there exists a common Liapunov vector w > 0. Therefore w gives a common Liapunov
norm x — ||diag(w)x ||, for all M(A;). Theorem [5.38shows that this norm is also a common
Liapunov norm for the original matrices A;, i = 1,..., k. By Corollary the differential
inclusion ([5.19) is asymptotically stable. O

For a practical use of the results obtained so far, the Metzler part of A should be stable if
A is stable.
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Remark 5.42. Theorem [5.38| and Lemma [5.3[ open the gate to some perturbation results.
Interestingly, adding purely imaginary values to the diagonal elements of a Metzler matrix
A cannot worsen its transient behaviour,

|e(A+iA)t‘ < MAHINE — oA where A = diag(\;), A € R.
Moreover, if the Metzler part M(A) of A € K™*™ is (M, 3)-stable then A itself is (M, 3)-

stable. By Lemma the initial growth rates of A and M (A) satisfy p(A) < u(M(A)).

We have seen in Proposition [5.37] and in Theorem that a Metzler matrix B provides
spectral and exponential bounds for all matrices A with M(A) < B. We want to make this
statement more precise by introducing suitable perturbation structures.

Suppose that P € R*" is a given nonnegative matrix. Then we define the index set

I(P)={(i,j) € {1,...,n}*| py > 0},
and introduce the following sets of complex perturbation matrices

Aypy={AeC”"|Ay=0forall (i,j) ¢ I(P)}, (5.20)
Ap =CP, (5.21)

both with associated norm [|Al|, := max jjerp) p;;' |Ai] . Clearly, Ap C Ajp). These
perturbation structures heavily depend on the coordinate system. The norm has the nice
property that for all 6 > 0,

|Allp <0 <= |A]| <P (5.22)

For a given stable Metzler matrix B € R and a given level 6 > 0 let us consider the set
of all matrices A in C™*™ which can be written as A = B + A where A is a matrix of one
of the perturbation structures (Aypy, |||l p), (Ap, |||l p) with [|Al|, < 6. We can interpret
all these matrices A as perturbations of the Metzler matrix B € Ry[",

B~ B+ A, AeAjpyor Ae Ap, and [|All, < 0. (5.23)

Before we derive explicit formulas for the spectral value sets and the stability radius for
these perturbation structures let us recall the following lemma, see [70, Corollary 8.1.29].

Lemma 5.43. Given P € R*" and a strictly positive vector x € R, if o, f > 0 satisfy
ar < Px < Bz then a < p(P) < f.

The following result provides a detailed perturbation analysis for the situation of Lemmal5.3|

Theorem 5.44. Suppose that P € R*" is a given nonnegative matriz. Then the spectral
value sets of a Metzler matriz B € RY[™ corresponding to the levels 6 > 0 with respect to
the perturbation structures (Aypy, ||-|p) and (Ap, ||-|p) satisfy

os (Bl Ap) =0c(B)U{s € o(B)|p(P(sI—B) ") >d"}, (5.24)
o5 (B|Arp)) Co(B)U{seoB)|p(P|(sI -B)'|)>d"}. (5.25)
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Equality in (5.25)) holds if B is diagonal.
If B is exponentially stable then the associated stability radii satisfy

r(B|Awp) =1 (B|Ap) = p(-PB~")7". (5.26)
Proof. Since Ap C Aj(py the associated spectral value sets satisfy
O’5(B | AP> C 0'5(B ’ A[(p)), 0> 0. (527)

Let us first derive the formula for the stability radius, hence B is an exponentially stable
Metzler matrix. If o5(B|App) C C_ then M(B + A) < B+ |A] < B + 6P for all
A€ Aqpy, ||Allp £ 6, and B + 0P is exponentially stable. Hence there exists a Liapunov
vector v > 0 such that (B + dP)v < 0. Therefore

(B+6P)v= (I +8§PB")(Bv) <0.
As P € R v is also a Liapunov vector for B. Setting w := —Bv > 0 gives
(I —5(-PB Y)w >0, ie.,w>d(—PB Huw.
Now —PB~! € R" and Lemma [5.43] shows that 1 > §p(—PB~!). Thus
r(B|Ayp) =sup{d>0|3veR], (B+dP)v<0} <p(—PB )" (5.28)

Let us now introduce &y = p(—PB~1)~t and Ag = 6P = ﬁ € Ap C Ayp). The
matrix —PB~! is nonnegative, and its Perron vector w satisfies —PB~'w = p(—PB~w.

Multiplying B + Ay with z = B~ w gives
(B + Ag)z = (B+6P)B'w=w—dp(—PB ")w = 0.

Hence 0 € o5,(B|Ap), therefore r(B|Ap) > p(—PB~')~!. Together with and
this gives the formula for the spectral radius .

Let us now derive (5.24). If s € o(B) with p(P(s] — B)™') > §! then there exists an
eigenvector v € C" of P(sI — B)~! such that P(sI — B) 'v = Av with |[A\| > ! > 0. Now
setting w = (sI — B)"'v gives

Pw=M\sI —B)w or (B+iP)w=sw.

Hence w is an eigenvector of the perturbed matrix B + %P corresponding to the eigenvalue
s € C. Now, A = P € Ap has norm ||A||, < d from which s € o5(B|Ap) follows. On
the other hand, if s € o5(B|Ap) \ 0(B) then there exist A € C"*" and v € C" such that
(B — sl + A)v =0 and nA = P for some 7 € C with ||~ < 6. Now

(B—sI+ A= (I—-A(sI—B)")(B-sl)v=0, (5.29)

hence I —A(sI—B) ™! is not invertible, and therefore p(A(sI—B)~') > 1. We conclude from
nA = P that p(A(sI —B)™") = |n| ' p(P(sI — B)™") > 1, and therefore p(P(sI — B)™') >
6! for all s € 05(B| Ap). Thus ((5.24]) holds.
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To show ([5.25)), note that (5.29) holds for an s € o5(A|Ajp)). Hence there exists A €
Ajpy with |A] < 0P such that p(A(s] —B)™') > 1. Taking advantage of the monotonicity
of the spectral radius, we have

1<p(A(sI =B)™") <p(|Al|(sf = B)™"|) <dp (P|(sI — B)™

)

which shows p(P |(sI — B)~!|) > 6! for all s € o5(B | Ay(p)). Therefore the inclusion ([5.25)
holds. Additionally, if B is diagonal then the missing inclusion “D” in follows
from the construction of a suitable perturbation matrix A € App). To this end, if
p:=p(P|(sI — B)™|) > 6! holds for a given s € p(B) then there exists a vector v € R’}
such that P|(sI — B)"!|v = pv with p~! < 4. Let us introduce R = (sI — B)~! and the
vectors w = Rv, w = |R|v. Then the matrix

W, |(s — bj;) 7Y v,
A= (p;: 22} = (p, jj j A
(p]wj >ij (pj (s = bj;) vy J = )

J

satisfies [|Al|, = 1 and ARv = P |R|v. Now B+ A/p has an eigenvector corresponding to
s € C given by # = Rv = (sI — B) v,

<B+%A>:{;:B:c—i—%ARU:B:c+%P‘(s[—B)’l|'U:Bx+v:(B—i—sI—B):c:sx.

Therefore s € 05(B | Aypy). Hence equality holds in (5.25) if B is diagonal. O

Ezample 5.45. Consider the stable Metzler matrix B € R3;® and the nonnegative matrix
P € R¥* given by

—8 10 0 010
B=|1 -8 6|, P=[300
0 2 -10 020

Figure shows the spectral value sets of B corresponding to Ap (solid lines) and an
upper bound of the spectral value sets corresponding to Ajp) (dashed lines and gray-
shaded areas) for the levels § € {5,3,2,1}. Both contours differ substantially around
s = —8.87 while the difference is not apparent for small 6 > 0 near the other eigenvalues
of B. The stability radius of B with respect to both perturbation structures induced by P
is given by r = p(PB~!) = 1.02. And indeed, the contour level for § = 1 is still contained

in C_. |

All of these perturbed matrices satisfy a common transient bound.

Proposition 5.46. Let B € R}[", P € R and 6 > 0. If the vector w > 0 is a Liapunov
vector of B + 6P with v = —(B + dP)w > 0 then for all A € Aypy with ||Allp <9,

leB+21|| < H(w)e—tmini(f,—i) > 0.

0o — )
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—15 —10 —5 O

Figure 5.3: SVS associated with Ap and upper bounds for SVS associated with Ajp).

Proof. As |A| < §P, we obtain using Theorem [5.3§

|e(B+A)t‘ < MBHAN _ (BEM@A)E < (BHAN < (BHP),

Now ||-]|, is monotone, hence Proposition [5.7| implies that

[eBHAN]| < [leBrorr|| < K(w)eftmini(g_i% t>0,

holds for the Liapunov vector w which proves the proposition. O

5.7 Notes and References

Positive systems arise naturally in applications like economics, biology, chemistry, and
numerical analysis. Their study has been an active field of research for many decades,
including works like Varga [140], Berman and Plemmmons [I7], Krause and Nesemann [80],
and Farina and Rinaldi [40]. The study of transient effects, however, has been neglected
in the literature.

For results on Metzler matrices see Fiedler and Ptak [42], Luenberger [101], and Horn and
Johnson [71]. Proofs of Gershgorin’s Disk Theorem can be found in standard references
like Horn and Johnson [70] or Faddeev and Faddeeva [39]. For a more functional analytic
approach than these direct proofs see Bhatia [18].

If w is a left Liapunov vector of A € Ry" then the function z +— w
copositive Liapunov function of A, see Mason and Shorten [106].
Vector-valued Liapunov functions for the stability analysis have been used in Bellman [14]
Willems [149], and Kiendl et al. [83]. In Polanski [116] a polytopic vector norm (polyhedral
Liapunov function) is optimized using a linear programming approach. This can be viewed
as an extension of finding a weight with optimal eccentricity.

Tx is also called a
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The special role of the 1- and co-norms for positive systems was noted by Vidyasagar [142].
The convexity of j is used in Liu and Molchanov [95] to derive a common Liapunov
function for nonlinear systems

i(t) = A(t)z(t) + BN(Cx(t), 1)

where A(t) € conv{Ay,..., A,;} C R™" and the nonlinearity N satisfies a sector condition.
An investigation of the properties of the stability radius for positive systems can be found
in articles of Hinrichsen and Son [69] and Fischer, Hinrichsen and Son [43]. Hinrichsen,
Karow and Pritchard [61] study perturbation structures which resemble (5.20). The results
obtained therein are derived via p-analysis and not directly as in our result of Theorem
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Chapter 6

Differential Delay Systems

This chapter will be devoted to the study of linear differential delay systems of the form

E #(t) = Az (t) + iAkx(t ), >0, (6.1)

k=1

where Ay, € C"*" and 0 < hy < hy < ... h,, = H are given positive delays. For t = 0, ([6.1))
only fixes the one-sided differential ©(0+) = limp\ o 3 (z(h) — 2(0)), which has to satisfy
£(0+) = Aoz (0) + D7~ Apx(—hy). To specify an initial value problem which has a unique
solution, an initial function with values on the interval [—H, 0] has to be prescribed.

We will demonstrate some problems in the following example.

Ezample 6.1. We consider the “hot shower problem”, see Kolmanovskii and Myshkis [84],
t(t) = —ax(t — h), a>0,h>0 t>0, (6.2)

which can be seen as a simple feedback controller where the current

feedback is based on an old state of the system. With a “human

in the loop”, see Figure this corresponds to the problem of %
stabilizing the output of a hot shower using a mixer tab: If the ty
water is too hot, the mixer is turned to cool and vice versa. But
the water currently leaving the shower is not influenced by this de- 9
cision. Depending on the length of the pipes only the temperature
of water arriving sooner or later at the shower is controlled.

To solve we have to prescribe a initial value function on
the interval [—h,0]. Let us use a linear ramp from p(—h) = —1
to ¢(0) = 1. Figure shows two solutions, one with a = 1,
h =1 and the other with & = 1, h = 2. From these pictures we Figure 6.1: Taking a
can expect that the first system is stable, while the latter is not. hot shower.

Asides from the stability question, we want to find bounds on the

transient behaviour of such a delay system. |

The properties of differential delay systems have been studied in, e.g., Bellman and Cooke [15],
Hale and Verduyn Lunel [51], and Curtain and Zwart [29)].

131
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a=1,h=1 a=1,h=2

0 5 10 15 20 0 5 10 15 20 25 30 35 40
Figure 6.2: Stability or instability of the hot shower problem.

In the following we will derive transient estimates for solutions of on the basis of
Liapunov functionals which now operate on solution segments. Before we approach the
construction of such functionals let us formulate a precise notion of solutions for (6.1]) with
respect to a suitable initial value problem. We introduce fundamental matrices and show
how the solutions of can be represented with their help. We show that the solutions
of the delay equation are a semigroup on some suitable Hilbert space.

6.1 Functional Analytic Approach

We study the following initial value problem associated with (6.1),

i(t) = Az (t) ZAk:Et—hk t > to,
(6.3)
l’(to) = Xy,
$(t) :@(t—to), tQ—H§t<t0,

where 7y € C" and ¢ € L*([—H,0],C"). The following proposition shows existence and
uniqueness for such an initial value problem of the delay system.

Proposition 6.2 (|29, Theorem 2.4.1]). For every xy € C" and ¢ € L*([—H,0],C") there
exists a unique function x(-) which is absolutely continuous on bounded intervals of [ty, 00)
and satisfies the differential equation in (6.3) almost everywhere. This function is called
the solution of the initial value problem (6.3)) with respect to the initial data xo and ¢ and
is denoted by x(;to, xo, ). It satisfies

mo ot
x(t; to, o, p) = eAot=to) g 4 Z/ eAO(t_S)Akx(s — hy)ds, t>to. (6.4)

Notice that the system (6.1 is time-invariant so that we fix ¢, = 0, if not noted otherwise.
To keep the notation short we introduce z = (zg,¢) € C" x L*([—H,0],C") and set

x(t, z) = x(t; 0, zg, ).
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Let us denote the space of continuous vector functions on [—H,0] by C' = C([—H,0],C")
which is endowed with the sup-norm, [¢[|, = supgei_u g ()] To include both the
initial value zy and the initial function ¢ mentioned in Proposition [6.2] into a suitable
space, we define M? = M?([—H,0],C") = C" x L*([—H, 0],C") to be the space of pairs of
vectors and L*-integrable functions on [—H, 0]. This space becomes a Hilbert space using
the inner product of the direct sum, see p. [12),

<@ (y) >M2 = {2y + (9 r2mo o = (202 + / 0. 900 (65)

g -H

In the following we discuss the solutions of (6.3)) with respect to initial values z = (¢, ¢) €
M? and with respect to continuous initial values where ¢ € C' and zy = ¢(0). For stability
issues we note the following definition.

Definition 6.3. The delay equation (6.1)) is called exponentially stable if there exist con-
stants M > 1 and 8 < 0 such that for all continuous initial conditions ¢ € C' we have

(£ 0, 0(0), @)l < Me™ [l . >0, (6.6)

The exponential stability of a delay equation (6.1)) can be verified by considering the
associated characteristic equation.

Definition 6.4. The function x : C — C given by x(s) = det(sI — Ag — >, Ape ")
is called the characteristic function of (6.1]), and the equation x(s) = 0 is called the
characteristic equation of (6.1]).

The complex value s is a solution of the characteristic equation x(s) = 0 if and only if
there exists a non-trivial vector zo € C" such that (s — Ag — > -, Age *"*)zy = 0. In
this case a non-trivial solution of is given by e%'zg, t > 0, which corresponds to the
initial segment ez, t € [—H,0]. Here zq # 0 is called an eigenvector of the system ¥ in
(6.1) . The special solution ez is called an eigenmotion of the delay equation .

Proposition 6.5 ([I31]). The delay equation (6.1) is exponentially stable if and only if
{s € C|Res >0, x(s) =0} =0.

Let us now define an equivalent of the matrix exponential for the delay equation (6.1)).
Consider the following initial value problem for a matrix delay equation,

K(t):AOK(t)+ZAkK<t_hk)a t >0,
k=1
K(0)=1,, K(t)=0, for t < 0.

(6.7)

Here the derivative of K in 0 is to be understood as the one-sided derivative, K(0) =
limp o K (t). If K solves then it is easy to see that the columns of K are solutions of
(6.3) corresponding to an initial value z; = (e;,0) € M?, K(t)e; = x(t, z), t > 0, where
e; € C™ is the i-th unit vector, ¢ = 1,...,n. Hence by Proposition this solution K
exists on R, and is uniquely determined.
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Definition 6.6. The matrix function K : R — C"*" which satisfies the initial value
problem (6.7)) is called the fundamental matriz of (6.1).

The following properties hold for the fundamental matrix.

Lemma 6.7 ([R1]). The fundamental matriz K of (6.1)) is a continuous matrixz function
for t > 0. Moreover, it is exponentially bounded. In addition to (6.7) it also satisfies the
following initial value problem where the A, and K terms are exchanged,

K(t)=K(t)Ag+ > K(t—h)A,,  t>0,
k=1
K0)=1,  K()=0, t<0.

We can represent any solution of (6.1]) in closed form using the fundamental matrix. One
can easily verify the following result using (6.1)) and (6.7)).

Corollary 6.8 ([I5, Theorem 6.4]). The solution z(-,z) of (6.3) with 2 = (zo, ) € M?
s given by

x(t,z) = K(t)xo + i : K(t — hy — 0)Agp(6)d6, t > 0. (6.8)

k=1 ~hx

By Proposition there exists a uniquely determined solution of (6.3) for every initial
value z = (z9, @) € M.

Definition 6.9. Let x(-, z) be the solution of (6.3) with initial value z = (g, ¢) € M>.
Then the corresponding solution segment for t > 0 is given by the function

1(2) € L*([-H,0],C"), (24(2))(7) = T €[-H,0].

ot+71), t+7<0,

{x(t+7,z), t+7>0

Figure 6.3: Initial segment and solution segment.

When it is clear from the context we drop the dependence on the initial segment. Figure(6.3
illustrates the definitions in the scalar case. We immediately obtain from the definition the
following “smoothing” property for the solutions of (6.3)).
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Lemma 6.10. If z(t, z) is a solution of for the initial value z = (xq, ) € M? then
the solution segment x(z)(-) : T — x(t + 7, 2) is continuous on [—H,0] for t > H. If the
initial segment @ € C' is already continuous and ¢(0) = xq the solution segment x; € C' is
a continuous function for allt > 0.

More precisely, if ¢ € L? and zy € C" then t — x(t;0, 29, ), t > 0, is by definition an
absolute continuous function; if ¢ is of class C* on [—H, 0] , k € N, then ¢ — z(; 0, ©(0), )
is of class C**! on R, which follows from formula (6.4).

Each continuous segment ¢ € C has an M?-equivalent given by ¢ = (¢(0), ¢). On the
other hand, given an initial segment 2 € M?, the solution segment z;(2) is continuous for
t > H, see Lemmam Hence we have a map M? — C' given by z — zy(2). We may use
this continuous segment as a new initial function.

Lemma 6.11. For a given initial value z € M? the segment b = xy(z) is continuous on

'~

[—H,0]. The associated solution x(-,1) of (6.1) satisfies xsp(2) = 2:(1)).

Let us now show how continuous initial segments fit into an M>-framework.

Proposition 6.12. The map C([—H,0],C") — M?([—H,0],C"), ¢ — ¢ := (p(0), )
defines a continuous dense embedding from C([—H,0],C") into M*([—H,0],C").

Proof. As ||¢|[3 = [le(0)]2+ ¢l < (1+H) ||@|| for all ¢ € C we see that this embed-
ding is continuous. To show that ¢ +— ¢ is dense, we construct for a given (z, f) € M? a

sequence of continuous segments p,, € C' = C([—H, 0], C") with ¢, 2, f and ¢,(0) = .
As C([—H,0],C") is dense in L*([—H,0],C") there exists a sequence of continuous seg-

2
ments f, €C with f, L, f. Moreover, let us define the sequences of continuous functions,

{07 tG[—H,—%], and g (t): 1 te[—H,—l],

Y

I (R P {—nt rel=0

2
Then ¢, = gnfn + (1 — gn)z, is a sequence of continuous functions with ¢, L, f and
©,(0) = x for all n € N. Hence the continuous segments are dense in M?2, [

We can associate a strongly continuous semigroup (7°(t))er, on M? with the solutions
of (6.1), see |29, Theorem 2.4.4]. This solution semigroup is given by

() %mwdz(x@@>
ro o= (7) -2 = (H00) = (M00) 2o @9
Theorem 6.13 (|29, Theorem 2.4.6]). The generator of the semigroup T of is given

T (IR (e o

with domain

D(A) = {(I) e M2([—H,0],C")

7 fis abs. cont., L € L*([—H,0],C") and f(0) = x}

7 odt
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The spectrum of A consists only of eigenvalues, it is a discrete subset of C, and it is given
by the solutions of the characteristic equation,

o(A) = {s € C|x(s) = 0} (6.11)

The multiplicity of every eigenvalue of A is finite. For every a € R there are only finitely
many eigenvalues of A in {s € C|Res > a}.

For the interpretation of the semigroup operation t — T'(t)z = x,(z) on M? as a solution
of an abstract Cauchy problem compare with Lemma and Proposition [2.11]

When the initial segment is already continuous the setup of the abstract Cauchy problem
reduces to the solution semigroup S(t) : C' — C' : ¢ — x;(p). Its generator is given by

Ac:C—C:p— 4y pe D(Ap),

with domain

D(Ac) = {gp < Cl([_H7 0],C")

#9(0) = Agp(0) + ZAkSO(—hk)} ;

k=1

see [38, Example I1.3.29].
The following proposition shows equivalent conditions for the exponential stability of (6.1]).

Proposition 6.14. The following statements are equivalent.

(i) The delay equation is exponentially stable.

(ii) For all s € C, Res > 0, the characteristic function of satisfies x(s) # 0.
(iii) The C-solution semigroup (S(t))icr, is exponentially stable.

(i) The M?*-solution semigroup (T'(t))ier, is exponentially stable.

(v) There exist constants M > 1 and 3 < 0 such that |[K(t)|l, < MeP* for all t > 0.

Proof. The equivalence of (i) and (i) is due to Proposition [6.5] Now, [29, Theorem 5.1.7]
shows that (7i) and (iv) are equivalent. The implication (v) = (i) follows directly from
formula (6.8). If (i) is satisfied then ||z (t, )|, < |lz:(@)]. = IS®)¢ll, < MeP ol
holds for all continuous ¢ € C. Thus (%) implies (7).

To round up the proof we now show (i) == (v). For this, we assume that is
exponentially stable. There exists a sequence of continuous segments () C C for a given
v € R" such that limy,_ ¢1(0) = v, limy_o @i(t) = 0 for t € [-H,0), and ||ex| = [[v]l,-
Then for all k& = 1,2,... we have |lz(¢,ér)ll, < Me? ||pill, = Me |lv|l,, ¢ > 0. In
the limit & — oo we obtain ||K(t)v]l, < MeP |lv]|, ¢ > 0, from Lebesgue’s dominated
convergence theorem. O]
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6.2 Liapunov Functionals

Quadratic Liapunov functions provide means of analysing the behaviour of linear delay-
free ordinary differential equations, cf. Section |3.4] For delay systems, Liapunov functions
depend on solution segments. We have seen on Proposition that the M?-solution semi-
group 1" of is exponentially stable if and only if the delay system is exponentially
stable.

6.2.1 Liapunov Equations in Hilbert Spaces

In the following we want to check this stability property using Liapunov techniques. For
this, let us recall the notion of an abstract Liapunov equation, see Curtain and Zwart [29]
Theorem 5.1.3, Exercise 5.3].

Theorem 6.15. Given a generator A of a strongly continuous semigroup (T'(t))icr, on
a Hilbert space X, then T s exponentially stable if and only if there exist a coercive self-
adjoint linear operator P € L(X) and € > 0 such that

(Az, Pz) + (Px, Az) < —e(z, ) for allz € D(A)\ {0}. (6.12)

Moreover, if T is exponentially stable then for every coercive self-adjoint linear operator
Q € L(X) the coercive self-adjoint linear operator P € L(X) given by

pP= / OOT(t)*QT(t)dt (6.13)

satisfies ((6.12)).
Here, is the solution of the Liapunov equation

(Az, Px) + (Px, Az) = —(x,Qx) for all z € D(A) \ {0}. (6.14)
for the operator A. The following proof draws heavily from the machinery developed in

Chapter

Proof. We only show that (6.12]) implies exponential stability of T, as it is easy to see that
if () € L(X) is coercive and T' is exponentially stable then P defined by ((6.13)) is a bounded

coercive operator which satisfies (6.14)) and therefore also (6.12)).
(x, Px) is a norm on X for

Let P be a coercive bounded operator. The norm ||z|, =
which there exist a, § > 0 such that

alz,z) < ||z||3 < Bz, ) for all z € X\ {0}. (6.15)
With respect to this norm, the initial growth rate of A is given by

Az, P Px A —
[/JP(A) — % sup < T, iL’> + < xz, l‘> — % sup <£L‘,Q£E> S _i < 0,
z€D(A),z#0 <$7 PZIZ’> z€D(A),x#0 <$a PJ:) 26
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see Definition m Hence A is strictly dissipative with respect |-||, thus generates a
uniform contraction semigroup 7" on (X, ||-||5). Now, by the operator norms |||
and ||-||» are equivalent on L(X). We conclude that A generates an exponentially stable
semigroup on (X, ||-||), see also Corollary 2.57 O

As a general assumption for the rest of this chapter we consider only those delay equations
for which the matrices Ay € R™" k = 0,1,...,m in (6.1) are all real. We will
derive an explicit formula for the solution of a Liapunov equation for the generator A of
the solution semigroup 7' of . Let us assume that this semigroup is exponentially
stable. Hence there exist M > 1 and $ < 0 such that the M?-operator norm satisfies
I7(1) e < M.

Definition 6.16. Suppose that the solution semigroup associated with (6.1]) is exponen-
tially stable. For a given positive definite matrix W € H’} (R) we define the delay Liapunov

function of (6.1) by
U:R— R™™ U(t):/ K(1) WK(t + 7)dr, (6.16)
0

where K (-) is the fundamental matrix of (6.1]), see Definition [6.6]

This integral is well-defined if T' is exponentially stable as the fundamental matrix K is
decaying exponentially for |¢| — oo, see Proposition [6.14 Hence the integral in (6.16]) is
bounded,

elt

_25'

The name “delay Liapunov function” owes to the fact that U takes over the role of a classical
quadratic Liapunov matrix for delay-free systems. In particular, if is a differential
equation without delays, i.e., of the form & = Ayx then the fundamental matrix is just
the matrix exponential, K(t) = e/t ¢ > 0, and reduces to U(t) = U(0)e ! where
P :=U(0) satisfies

/OO K(r)"WK(t +71)dr

< /OOO IWIHIE K+ 7)) dr

swww/<mﬁmnwwwﬂ
0

o0
;
P = / o TV e dr
0

This is the classical explicit formula of the solution of the quadratic Liapunov equation
PAy+ Ay P = —W where W € H"(R) is a positive definite matrix.
We now collect some properties of U.

Lemma 6.17. Suppose that T is exponentially stable. Then the matriz function U(t) de-
fined by (6.16)) is continuous, decaying exponentially, and satisfies the symmetry condition
Ut)=U(—=t)" forallt € R.
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Proof. We have already seen that U is exponentially bounded as t — oo with a negative
growth rate 3. For the continuity of U on R, , note that we have for all ¢ > 0 and all
e e (0,t) that U(t+e)—U(t) = [T K(r)"W(K(t+e+7)—K(t+7)) dr — 0ase— 0.
The symmetry condition can be shown by applying the integral transformation 6 = 7 — ¢
to (6.16)),

U(—t) = /OOO K(r)"WK(r —t)dr = /OOO KO+ t)"WK(@0)d) =U(t)". (6.17)

This symmetry property implies that U(t) is continuous for ¢ < 0, hence for all t ¢ R. O

Let us now introduce the M?2-operator () for which we will construct an explicit solution P
of the Liapunov equation (6.14)) associated with the M?-generator A. For given symmetric
weights Wy, Wy € H"(R) we set W = Wy + H Wy in (6.16) and define the operator

Q : M? — M? via
r\  ( Wox
o(3) = (i) (015)

Lemma 6.18. If the weight matrices Wy, Wy = 0 are both positive definite then Q) defined
by (6.18)) is a bounded self-adjoint coercive linear operator.

Proof. We have
((2).Q()), , = (@ Waay + (£ Wif) s = Wow, 2y + (Waf. s = (Q(D) ()
Hence @ is symmetric, and
2
(7)

min{ Amin(Wo), Amin(Wx)}

0|

<((7):Q()),, Smax{ (W), Anax(Wi)}

M?2 M2
shows that @) is bounded and coercive. ]
The candidate P : M? — M? for the solution of the Liapunov equation is partitioned
as follows U(0) P

T T+
P = ) 6.19
(1) () 019

Let us now discuss its components. If 1, = 1;_, o denotes the characteristic function of
the interval [—hy, 0] then the linear operators P; : L? — R™ and P, : L? — L? are defined
by

Plf:/ﬂ i1j(e)U(—hj—9)Ajf(9>de,
;H = - (6.20)
(Pof)(t) _Z1k(t)A;/ > U(t—0+hy—h;)A;1;(0)£(0)d0 + (H+£)Wy f(2).

It is not difficult to prove that these operators are bounded. With this definitions we now
check that the operator P is a self-adjoint bounded linear operator with respect to the
M?-inner product.
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Lemma 6.19. The matriz U(0) € R™ ™ is a symmetric matriz, Py is a bounded self-adjoint
linear operator on L*. Py is a bounded linear operator, its adjoint P; : R" — L? is given

by
(Pra)(t) = L()ALU(t + hy)x. (6.21)
k=1
Hence P is a bounded self-adjoint linear operator on M?.
Proof. For t = 0, (6.17) takes the form U(0) = U(0)", thus U(0) is symmetric. Let us

denote the right hand side of (6.21]) by P;. For every x € C" and every f € L? this operator
P, satisfies

(f.Pz) = /O ( L (AT U + hk)x>*f(7)dr

—-H

= x*/_ Z L(T)U (=7 — Iy ) A f(T)dT = (P1 f, ),

H -1

where we used that U(—t) = U(t)T = U(t)*. Hence the adjoint of P is P¥ = P;. The
domains of P; and P; are given by D(P) = L? and D(P;) = R". With the same
symmetry argument for U we can prove that P, is a symmetric operator on L2,

(Pofoahs = [ a0 SSu0AL [ UG =0+ b= 1) AsL6) 0) b

+/0 g@t) (H + )Wy f(t)dt

—-H

:/0 (Zm: 1j(9)A]~T/O iU(G—th—hk)Aklk(t)g(t)dt> £(6)do

H

n / (H + ) Wig(t)" F(t)dt

-H
= <fa P29>L2a

where we changed the order of summation and integration. Hence P is a symmetric
operator on M?. The boundedness of P follows from the boundedness of its components.
O

We now use the integral representation ((6.16]) of U to show that for a given @ of the form

(6.18)), the operator P defined in (6.19)) solves the Liapunov equation (6.13]) associated
with the generator A in M?2.

Theorem 6.20. If T of is exponentially stable and P and Q are given by (6.19) and

(6.18]) where Wy and Wy are Hermitian matrices, then

/000 (T4(2), QEy(2)) 2 dt = (2, P2) 32, z = (xg, ) € M. (6.22)
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Proof. The integral of the inner product (Z;, Q). is given by

oo 0
/ (az(t)*WOx(t) + / x(t+0) Wy (t + 9)d0) dt. (6.23)
0 —H
Let us study its first term, [;°x(t)*Wox(t) dt. Using and then sorting for different

quadratic and mixed terms we get

/Oo (8 W (t) di = /oo ( x0+2/ K(t— hy —91)Akgp(91)d91>
W (K(t)xo s / K(t—h, — QQ)Ajgo(QQ)ng) dt

:/ x(’;K(t)TWOK(t):cgdtJrQRe/ S (t TWOZ/ K(t — hy, — 0) App(0)d6 dt
0

*

+/Oo (i 0 K(t—hy — 91)Ak90(91)d91> (6.24)

k=17 —h&

m 0
- —h;

0

= 25U°(0)zo + 2Re Z/ —0)Arp(0) do
k=1

hi
5 / 04T / (i 4 61— hy — 02) Ayip(62) by db,
1 —hi
where U°(7) = [[° K(t )TWOK (t + 7) dt. Here we used a parameter transformation to get
/OOOK(t — 1) WoK (t — 75) dt = /OOOK(t)TWOK(t + 7 —1)dt=U%1 —7m)  (6.25)

for 71,7 € R. Let us now discuss the second term of (6.23)), [;* fiJH z(t+7)* Wya(t+7)drdt.
When changing the order of integration one has to take into account that z(t) = ¢(t) if
€ [-H,0), so that

/Om/}(tJre)*WHx(He)dedt:/(JH(/;O@)*WHSD@MH/wa(t)*WHx(wdt) @0, (6.26)

Again, changing the order of integration in the first term of the right hand side of (6.26))
gives

/ / Y Wae(t dtde_/ / Lig,0)(t)p(t) Wr(t) dtdd

0

-/ olty Warett) ([ Hl[_me)de) = [+ 00l Waplt) . (627

—-H
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The second term in ([6.26)) is independent of 6, and combined with (6.27)) we arrive at the
following expression for ((6.26))

/0 (H +t)p(t) Wyep(t) dt+H/ £ Wya(t)dt.

—-H

However, an analogous term to [ z(¢)*Wyx(t)dt has already been treated in (6.24). Hence
replacing U%(7) in (6.24) with U (7) := [ K(¢) "Wy K (t +7) dt and using this in (6.26),
we obtain for (6.26))
oo 0 0
/ / ot 4 ) Wzt + 7) drdt = / (H + 7)p(r) Wio(r)dr + H <x8UH(O)xO
0o J-H
+ 2Rez} Z/ —hy, — 0)Arp(0) d
+ Z/ ©(01) ATZ/ UH (hy — h; + 6, — eg)AM(eQ)degdel) (6.28)

Returning to (6.23)), we get by summing and (6.28)
/ (@4, Q) gy dt = 25U (0)z0 + 2Re ;) Z/ U(—hr — 0)Arp(6) do
0 —

+Z/ (01) ATZ/ (hi — hj + 61 — 02) Ajip(0)dfyd6, (6.29)

0

s [ ooy (@ + I Wap(r)ar,
—H

where U(7) = U°(1 )+HUH = JoO K@) (Wo + HWy)K(t + 1) dt.

Now, we have to identify (6.29) as the M 2 -inner product weighted with P. We evaluate

this inner product using 16.19) and ((6.20)),

(Pz,2)yp = 25 (U(0)z0 + Prop) + / e(t)" ((Prao)(t) + (Pap)(t)) di
3:0+:UOZ / —hy — 0)App(0)db

/ O p(t)" AL U (t + i )wodt (6.30)

m

/0 ety aly [ " U= 04 b — ) Ay (0) do

—h;

+

o(t)"(H + t)WHSO(t)> dt.
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When we compare ((6.30) with (6.29), and recall that U satisfies the symmetry condition
U(t) = UT(—t), we see that both expressions are identical, hence (6.22)) holds. O

From Theorem we conclude that P satisfies (6.13]).

Corollary 6.21. Given the generator A of the exponentially stable solution semigroup of

(6.1]) in M?, then the operators P and Q of (6.19) and (6.18) associated with Hermitian
weights Wy and Wy satisfy the Liapunov equation

(PAz,2z) o + (2, PAZ) o = —(2,Q2) 2, z € D(A). (6.31)

Especially, the derivative of the functional v : D(A) — Ry, z — v(z) = (2, Pz) . along
trajectories of the abstract Cauchy problem (2.6) is given by

0(z) = 1{%%(0(@(2)) —v(2)) = —(2,Q%2) 2, z € D(A). (6.32)

Proof. Let us first recall that by Proposition|2.10] z € D(A) implies that t — x(2) = T'(¢)z
is a differential function for all ¢ € Ry which satisfies £2(z) = Az,(z). Moreover for
z € D(A), T(t)Az = AT(t)z for all ¢ € R;. Then by Theorem [6.20]

(P2, A2),jo+{Az, P2}, = < /0 TPy QT dt, AZ>M2+<A,Z, /0 h T(t)*QT(t)zdt>

M2

= /Ooo <Q$t(2)7 AZ/L’t(Z)>M2 + <A:Bt(z)’ Ql’t(z)>M2 dt
= /OOO (Quy(2), 21(2)) yp2 + (T1(2), Que(2)) 2 dt
B /ooo T2 QT (1)2) o dt = (T(0)2, QT(1)2) )iy = ~(2, Q. ) e

Hence, v(2) equals —(z,Qz) on z € D(A). O

If the weights W, and Wy are positive definite, then P satisfies the Liapunov inequality
(6.12)) in M? because Q is coercive.

6.2.2 Liapunov-Krasovskii Functionals

We now want to derive transient estimates for the solutions of the delay system ({6.1)). For
this we introduce the notion of a Liapunov-Krasovkii functional.

Definition 6.22. A continuous functional v : M? — R, is called a Liapunov-Krasovskii
functional for the delay equation (6.1 if it has the following properties

(i) There exist ay,ay > 0 such that

ay ||zl < v(z) < g ||2]3p for all z = (xg, @) € M*. (6.33)
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(ii) For z € D(A) the derivative 0(z) = limy o 1 (v(#:(2)) — v(z)) along solutions of (6.1))
exists, and there exists a constant 5 < 0 such that 0(z) < 25v(z).

Theorem 6.23. Suppose that v : M? — R, is a Liapunov-Krasovskii functional satisfying
(i) and (ii) in Definition [6.23 Then the delay system (6.1) is exponentially stable and
satisfies the exponential estimate

|z(t, 2)], < Z‘—feﬁt 120l g2 » z€ M?* t>0. (6.34)
On the other hand, if (6.1)) is exponentially stable then for every given pair of positive
definite matrices Wo, Wy € H.(R) the functional v(z) = (2, Pz) 2 defined by (6.30)) is a
Liapunov-Krasovskii functional for (6.1) where P is defined in (6.19)).

Proof. By definition, the Liapunov-Krasovskii functional v satisfies 0(2;) < 2pv(2;) for all
solutions &, = #;(z), t > 0, with initial value z = (z¢, ) € D(A). Then the derivativdl] of
e~ 2Pty (z;) is given by

4 (e(@y)) = e (0(d) — 2Bv(#1)) <0,

so that v(2;) < e?’'v(z). By (6.33)) we obtain for z € D(A)
arllz(t, 2)[5 < v(@) < o(z) < ag |z, 20,

Now, v is a continous functional on M? and D(A) is dense in M?. Hence (6.34) holds for
all z € M? and the delay system is exponentially stable by Deﬁnition
Conversely, if the delay system is exponentially stable we show that the functional v(z) =
(z, Pz) 2 of Theorem is a Liapunov-Krasovskii functional. If W, and Wy are positive
definite then the operator Q € L(M?) is a coercive self-adjoint operator, and Theoremm
shows that P is also a coercive and bounded linear operator. Thus there exist constants
o, s > 0, By, B > 0 such that

oanllellye < (2 P2)ye S0z llzlie,  Billellae < (2 Q2)ae < Ballzlipe

Clearly, ay ||zl < v ||2]] 2 for z = (20, @) € M2, and therefore (6.33) is satisfied. Since
0(2) = —(2,Qz) . for z € D(A) by Corollary [6.21| we have 9(z) > — s || 2|32 > —g—jv(z).
Hence v(z) = (2, Pz),,. is a Liapunov-Krasovskii functional for (6.1)). O
Theorem [6.23] shows that the existence of a Liapunov-Krasovskii functional defined in

Definition provides a necessary and sufficient condition for the exponential stability
of the solution semigroup 7" of the delay equation (6.1).

Remark 6.24. Using the terminology of Chapter , the inequalities in (6.43]) provide an
estimate for the eccentricity of the quadratic functional v(z) = (z, Pz),,, compared to the
M?*-norm ||-||2 = /(s ) 2. An optimal value of 3 in Definition (ii) corresponds

IFor ¢ = 0 this derivative is one-sided.
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to the initial growth rate of the generator A (6.10) with respect to the weighted norm

vp(z) = \/(z, Pz) 2, as for v(z) = vp(z)? we get from Proposition that

PA — )
uw(A)= sup Re —<Z’ 2 = sup —<Z’QZ>M2 :% sup —U<Z).
2€D(A)\{0} (2, P2)pp2 sen(an{oy 202, P2) pp sen(AN o} V(2)

With Corollary [2.17] we have p(A) = inf {# € R |for all z € D(A), 0(z) < 26v(z)}.

We can also consider Liapunov-Krasovskii functionals which operate on continuous seg-
ments. Let us define the following continuous counterpart to Definition |6.22]

Definition 6.25. A continuous functional v : C' — R™ is a Liapunov-Krasovskii functional
for (6.1]) if the following properties hold

(i) There exist ay, ag > 0 such that for all ¢ € C, ay [|(0)]7 < v(p) < ag||¢]%, , where
160l = suprer-n le (@)1l -

(ii) The derivative along solutions 0(p) exists for all ¢ € D(A¢), and there exists 5 < 0
such that o(¢) < 26v(p).

We obtain the following counterpart to Theorem [6.23

Corollary 6.26. Let v : C' — RT be a Liapunov-Krasovskii functional satisfying Definition
(i) and (ii). Then the delay system (6.1) is exponentially stable. Its solutions satisfy

the exponential estimate
et o)l < (/2™ olle,  welit>0. (6.35)

On the other hand, if (6.1) is exponentially stable, then for every given pair of positive defi-
nite matrices Wy, Wy € H (R) the functional v(y) = (¢, PP) 2 is a Liapunov-Krasovskii
functional on C for (6.1) where P is defined in (6.19)).

Proof. The proof of the exponential estimate follows analogously to . We will
only show that ¢ +— v(p) = (¢, P), is a Liapunov-Krasovskii functional on C'. Let us
consider a continuous segment ¢ € C. The associated M?-segment ¢ = (p(0), @) € M?
then satisfies the following inequalities

12122 = (Ol + llellze < (Ol + H llelle, < (1 + H) el
2l = 2Oz + llelize > Nl (O3,

so that oy [[¢[lhe < v(p) < az [|@l3 implies that aq [[p(0)[l; < v(p) < as(1+ H) ¢l
The functional ¢ — (@, P),,. is a continuous function for all ¢ € C and satifies (6.34)),
hence also (with different constants) for ¢ € C'. Hence it is a Liapunov-Krasovskii
functional on C. [

Note that ¢ — P gives rise to a continuous function, i.e., U(0)p(0) + P (p) = (Pf¢(0) +
Pyp)(0) is satisfied, if and only if ¢ € D(A¢).
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6.2.3 Complete Type Liapunov-Krasovskii Functionals

In a series of articles [81) [79, [78], V. Kharitonov and co-authors study so-called complete
type Liapunov-Krasovskii functionals v : C([—H, 0], R") — R, , for which the the derivative
along trajectories, 0(p) = —w(y), takes the following form

wl) = GO Rogl0) + - (—ha) Risp(hi) + Y- [ l0) Ruvo(®)s, (630

k=1

where R;, € H}(R) are given positive definite weights. If ¢ € C is a real continuous
segment then ¢ — (P, Q¢),,» is of the form (6.36) with Ry = Wy, Ra, = Wy, and
Ry = -+ = Ry,,_1 = 0. But this breaks the requirement of positive definite weights.
However, we have seen in the previous discussion that ¢ — (@, P),» is a Liapunov-
Krasovskii functional, hence we do not need positive definite weights Ry, ..., Ro,_1 in
(16.36)).

Proposition 6.27. For every complete type Liapunov-Krasovskii functional v : C' — R
there exist weights Wy and Wy such that the coercive operators P,Q : M* — M? given by
(6.19) and (6.18)) satisfy for all continuous segments p € C

v(p) Z (P, PE)yp and 0(p) < — (P, Q) p

Proof. The complete type functional v is induced by a quadratic functional w given by
(6.36). Setting Wy = Ry and Wy = Ry, we get Qp = (Wop(0), Wre) € M?. Clearly,
(¢, Q%) 12 < w(p) = —0(p). Now, by Theorem [6.20]

(6, PE)ayn = / T3, QT (1)) e i < / " wlad@)) dt = v(p),

where the last equality follows from the construction of complete type Liapunov-Krasovskii
functionals, see [81]. O

We can modify the operator () to account for more terms of the complete type functional.
To this end, we replace the matrix Wy with an operator W : [-H,0] — H'' (R"), given
by W(t) = > ;- 1,(t)W,, with W), positive definite. The multiplication of W (t) with

f € L*([-H,0], R") is defined pointwise. Then for Q(;) = (tHMVy(O;)C f(t)) we have

(8, Q2) 32 = 9(0) Woep(0 / 0 Zlk YWif (1)

0)* Wo(0 +Z/ £ Wi f(t)

Hence all integral terms in ([6.36)) can be reconstructed by introducing a time-varying
positive definite matrix W (t), while the weighted point-delays associated with the weights
Ry, ..., R,, cannot be embedded into an M2-framework.



6.3. EXISTENCE AND UNIQUENESS OF DELAY LIAPUNOV MATRICES 147

6.3 Existence and Uniqueness of Delay Liapunov Ma-
trices

In the current and following sections we present an analysis of the properties of the delay
Liapunov matrix based upon a finite-dimensional approach.

We have seen in that the delay Liapunov matrix U(t) is the building block in the
construction of (@, P) ... However, the integral representation U(t) = [~ K (1) TWK (t+
7)dr cannot be used for the numerical computation of the delay Liapunov matrix. We
therefore present an alternative characterization of U. The following description of U(t)
has been given in Datko [32] for the one-delay case.

Proposition 6.28. Suppose that (6.1)) is exponentially stable. The delay Liapunov matriz
U:R — R given by (6.16) is a function which is differentiable on [0,00) and satisfies
the following matriz delay differential equatiorﬂ

Uty =U(t)Ag+ Y U(t —hp)Ag, >0, (6.37)
k=1
and the conditions
Ult)y=U(-t)", t <0, (6.38)
U(0) Ao+ AgU(0) + > (U(hi) " A + AL U (hy)) = =W. (6.39)
k=1

The condition (6.38) is called the symmetry condition as it implies U (0) = U(0) T, while (6.39)
is called the algebraic condition associated with the weight W. Using the one-sided deriva-
tive of U in t = 0 we can rewrite (6.39) as U(0) + U(0)" = —W.

Proof. We will verify that the improper integral (6.16]) satisfies the delay equation (6.37))
and the additional conditions (6.38)) and (6.39)). The integral is well-defined for all ¢t € R
because (6.1)) is exponentially stable. By Lemma we have for t > 0

4U(t) = /OOO K(r)"WLK(t+7)dr
- /OOK(T)TW (K(t—i—T)Ao—{—iK(t—{—T — hk)> dr
— /oo K(T)TWK(t —|— T)Aodt —I— i /OO K(T)TWK(t —|— T — hk)Ade

=U(t)Ao + i U(t — hg) Ag,

k=1

?In t = 0 we require that the one-sided derivative satisfies U(0+) = U(0)Ag + > v, U(—hy,) As.
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whence U satisfies the differential delay equation ((6.37 - Again, as the differential equa-
tion for K(t) does not hold for ¢ < 0 and is only one-sided in ¢ = O we have U(0) =
limp o U (t) = U(0)Ag + Y7, U(—hg) Ay The symmetry condition has been shown
in (6.17). Using the symmetry condition we rewrite as

U(0)Ao + AgU(0)" + > (U(=h)Ar + A U(=hi)")
k=1

T

= /OOK(T)TW (K(T)Ao —|—i K(r— hk)Ak> + <K(7')A0 —i—i K(r— hk)Ak> WK (r)dr

- /om K(r) W (£K(r) + (£K(1) T WK (r)dr = —K(0) WK(0) = =W,

since lim, o K(7) =0 by exponential stability of . O
For t = 0, equation (|6 shows that U(0) is Symmetric. Then the left hand side of
can be written by U (O) (U(0))T. Moreover, is satisfied with W = 0 if and only if
U0) = —(U(0)7, i.e., U(0) is skew- symmetmc.

The solutions of -,, and may also be obtained in the following way, see
Louisell [96] for the one-delay case.

Proposition 6.29. Consider the transfer matrix of the delay system (6.1)) given by

G(s) = (s[ — Ay — ie_Sh’“Ak> _ , s € o(A). (6.40)

k=1

If iR C o(A) then the integral
1 o0 )
V(t) = o / Gliw) WG(iw)e*do,  t R, (6.41)
Tr — 0o

is well-defined. If the delay equation (6.1) is exponentially stable then V (t) = U(t) for all
t € R. Hence V satisfies (6.37)),(6.38]), and (6.39).

Proof. Let us first show that V' (¢) is well-defined if o0(A) does not contain purely imaginary
roots. By taking norms in (6.41)) and using ||G(iw)| = ||G(iw)*)|| = ||G(—iw)||, we have
V@) < 7t W 52 G i) 2 do. Now [|G(iw) | satistes

m

-1
G (iw)|| = |w| ™ (In — LA =) Lerhyy ) . w#0. (6.42)

k=1

For w — oo the right factor in (6.42)) approaches 1, hence w — G(iw) is bounded on R by
continuity. Therefore there exists a constant M > 0 such that for all w € R with |w| > 1,
|G(iw)|| < M |w|™". Thus for all t € R,

o< 2w ([ 16 ar+ [T ra) < Liwi (me e + ).
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Therefore V is uniformly bounded.

Let us now show that V equals U if is exponentially stable. As K € L' N L?, the
Fourier(-Plancherel) transform of K is given by the L? function w — G(iw). The inverse
transformation gives K(t) = 5= [*° G(iw)e™'dw for t > 0. Now consider the weighted
inner product

[e.9]

(f,g>W=/ 9(9)*Wf(9)d9=/ (W2g(0))" (W' f(0))dd  on L*(R,C").
Applying Parseval’s formula ([135, Equation (2.1.8)], [34, Section 6.5.2]) to this inner
product yields for all £ € R and z,y € R"

(K(-+t)z, K()y)y = / Yy KO)WK(t+0)xdd = %/ y*G(iw) WG(iw)e™z dw.
But (K(- +t)x, K()y),, = y*U(t)x for all z,y € C". Therefore V equals the definition of
U in (6.16]). O
Note that by Proposition the integral (6.41]) exists if iR C o(X), hence this formula may
provide solutions of ((6.37)—(6.39) also in case that the delay system is not exponentially
stable. The two Propositions [6.28 and [6.29] show that we have to study the existence
and uniqueness of solutions for (6.37)),(6.38)),(6.39) which we pose in form of the following
problem.

Problem 6.30. For a given symmetric positive definite matric W € H?(R) find a contin-
uous matriz function U : R — R™ ™ which solves the delay differential equation (6.37) on
Ry (with initial function Ul_p)) and satisfies the conditions (6.38) and (6.39).

Instead of specifying an initial function directly, the initial function is given by the symme-
try condition, and hence by mirroring a part of the solution. In a sense, we deal here with
a boundary problem for delay equations. Let us comment on the smoothness of solutions.
Assume that we have a solution of (6.37)—(6.39) for the initial matrix segment U||_ ). If
the initial function U|[_p o is continuous, then this solution is continuously differentiable.
But by symmetry , the initial function is itself continuously differentiable. Repeating
this argument, we see that U is infinitely differentiable, with a possible exception at t =0
where the delay equation only determines the one-sided derivative U(0+).

For the choice W = Wy, + HWpy we obtain a functional U that can be used for the
construction of Liapunov-Krasovskii functionals in Theorem [6.23] Here U does not depend
directly on the terms Wy and Wy, but only via the sum Wy + HWpy.

We will now show that equation (6.37)) and conditions ([6.38)),(6.39) uniquely determine the
delay Liapunov matrix if (6.1]) is exponentially stable.

Theorem 6.31. Suppose that (6.1)) is exponentially stable. Given a Hermitian W there
exists a unique solution of (6.37)) satisfying the conditions (6.38]) and (6.39) which is given

by the matriz U(t) of (6.16).
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Proof. By Propositionﬂ, U(t) given by (6.16) is a solution of (6.37)—(6.39)). Let us now

assume that Problem has two different solutions U () and U?(t) for a given W. We
define two functionals v; : M? — R, i = 1,2, which operate on z = (zg, ©) € M?,

0

vi(2) = 25U (0)x0 + Z 2Re 333/ U'(—hy, — 0)Arp(0)do+
k=1 —hk

0
—h.

J

corresponding to U' and U?, respectively. These functionals satisfy v;(z) = (2, P'z)
where P : M? — M? are given by (6.19), (6.20) with U replaced by U’ and where
Wy = 0. Hence by Corollary we have

0:(24(2)) = —x(t, )" Wa(t, ) for t>0,ze D(A),i=1,2.

Thus the difference v(#;) = vo(#;) — v1(24) satisfies the equality v(z;) = 0, ¢t > 0. This
shows that for all initial segments z € D(A) and all t > 0 we have v(Z(2)) = v(z) as v
is constant along solutions of (6.1)). By exponential stability of (6.1)), ||Z:(2) 2 — 0 as
t — o0, therefore it follows from Definition that also v(2(z)) — 0 for ¢ — oo which
implies that v(z) = 0 for every initial segment z € M?. Now, D(A) is dense in M? and
therefore v(z) = 0 for all z € M?. Using U(t) = U%(t) — U'(t) in for t = 0 yields

m 0
k

,hk

=1
m m 0 0
33 ot ([
k=1 j=1 7~ —h;

U(QQ - 01 + hk - h])Aj90<91)d91> dez, (644)

because U(t) = U?(t) — U'(t) satisfies the conditions of Problem with W = 0. Now
for y € C™ consider the M?-initial value z = (y,0). For this z all integrals in vanish
and hence takes the form 3" U(0)y = 0. Since y is an arbitrary vector and U(0) is
a symmetric matrix, U(0) = 0 must hold. Now, fix an index ¢ € {1,2...,m} and choose
7 € [—=h;,—h;_1) and € > 0 such that 7 +¢ < —h;_;. For any two given vectors y,y" € C"
consider now the initial value

! te|r,t+¢|,
z=(y, ) € M?,  p(t)= {y | |

0, for all other t e [—H,0).

For this z € M?, condition ([6.44) now reads

m T+e
k=i T

mom T+e pTte
+ Z Zyl*A;— (/7— /7— U(el - 92 - hk: + h])d91d92) Ajy/.

k=i j=i
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If £ > 0 is small then the first integral is proportional to ¢ while the double integral is
proportional to €2 so that the last equation can be written as

0 = 2Reey” (Z U(—hy, — T)Ak> y' + o(e),
k=i

where @ — 0ase — 0. Asy and g/ are arbitrary vectors and as € can be made arbitrarily

small,

S Ut —he)Ay =0 for t€ (hiy,hil. (6.45)

k=i
Now holds for all ¢ = 1,2,...,m. For ¢ = 1 we therefore obtain from the
differential equation U(t) = U(t)Ao for t € (0,h] as > ;- U(t — hy)Ay = 0. But we
already know U(0) = 0, and hence U(t) = 0 for all ¢t € [0, hy]. On the interval (hq, hs
equations and for i = 2 now yield the delay equation U(t) = U(t)Aq + U(t —
hy)A;. But on the interval [0, h], U(t) is constantly 0, therefore U(t) = 0 for t € (hq, hsl.
Continuing this process we conclude that U(t) = 0, ¢t € [0, H], i.e., U'(t) = U?(t) for all
t € [-H, H|. Hence every solution of Problem is given by the integral whenever
is exponentially stable. [

Let us now investigate under which conditions equation has no solution satisfying
the conditions and . Of course, by the previous Theorem such a situation
may only occur if system is not exponentially stable. We first discuss the relationship
between solvability of f and the uniqueness of its solutions.

Proposition 6.32. The solution set Uy of (6.37)—(6.39) associated with W = 0 forms a
real linear subspace. If Uq is non-trivial, then the solution set Uy, for a given W € H™(R) is

either empty or given by Uy = Uo+ Uy where Uy is a particular solution of (6.37)—(6.39))
associated with W.

Proof. Equations ([6.37)—(6.39) represent a system of affine equations for continuous and
apart from 0 differentiable matrix functions U : R — R™*". The associated homogeneous

system of equations is given by (6.37)—(6.39) with W = 0. ]

In Corollary we constructed a solution of the operator Liapunov equation given the
explicit integral formula (6.16)) of the delay Liapunov matrix U. Let us now show that

the same construction can be accomplished given a solution of equations (6.37)—(6.39) in
Proposition [6.28|

Theorem 6.33. Let Wy = W and Wy = 0. If U : [-H,H] — R™" is a solution of
(6.37)—(6.39) then for z = (xo,¢), Z = (yo,%) in D(A) and for solutions x; = x(t + -, 2),
y =x(t+ -, 2) of (6.1) we have

%(‘%UPQQM? - —<I(t),Wy(t)>2, t > O, (646)

where P is given by (6.19) and (6.20)).
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Especially for z = Z = (Z) € M?, P is a solution of the Liapunov equation with right hand
side (z, Wx),. However, as this it not coercive in M? | it is not clear if P is a coercive
self-adjoint bounded linear operator.

Proof. We have to verify that the derivative of (Py;, &), equals —(Wy(t),z(t)), =
(U0) + U(0)Ny(t), z(t))2. We write down the derivative in more explicitly,

P i = <P<zzi%’>~4<zzi99>>m + <PA<%<£>>7 GO0
0

~

= &(t)" (U(0)y(t) + (Prye)) + ((Pry())(0) + (Pay)(0)) db

H
0

+z()" (U0)y(t) + (Prgr)) + wt ((Pry(0))(0) + (Paye)(0)) dO

\\

— U(0)(t) + (Pui)) () + / UBHO)O) + (Pai)(0) m(0)d0

+2()" (U(0)y(t) + (Prge)) + /_th(ﬁ) (Prg())(0) + (P2ye)(0)) db, (6.47)

where we used the duality of P, and P/, see Lemma [6.19 Let us start by computing the
difference of U(0)x(t) — U(0)#(t). By (6.37) U satisfies U(t) = U(t) Ao+ S py U(t — hg) Ag
on t > 0, while the solution z(t) of (6.3)) satisfies (t) = Agz(t) + > ;- Agx(t — hy) on
t > 0. By partial integration we obtain

U(0)x(t)-U(0)i(t) = > U(—hi) Apx(t)—U(0) Ap(t —hy)

M-

I
NE

[U( 60— hk)Akw(tﬁ-H)]ei hi

(6.48)
0
_ Z/h U(—0 — hyo) Ay (t 4+ 6) + & (U(—0 — he)) Aga(t + 6) d6

0
— (Puiy) + Z/ 4 (U(—0 — hy)) Aga(t + 6) do.
k=1""hx
For the ease of notation let us introduce the operator

m .0
Py RxI2C" Py(ra) = Z/ DU (7 — 0 — hy))Agay(6) o,

so that ( can now be written as U(O)x(t) + P (& U(0)z(t) — Ps(0, ).

) =
We now study the term Z := [°, 2,(8)* ((P;y(t))(8) + (Paogi)(8)) d9. We obtain the fol-
lowing expression,

Z = Z/xt (61) Ak< (01 + hy)y +Z/U91 02—i—hk—h‘)Ajyt(Qg)ng)dOl.
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If we now replace 9(t) by Agy(t) + Z;nzl Ajy(t — hj) in Z we get

Z = Z / Iit(Hl)*AZ (U (61 + ) Aoy(t) + Y U (01 + hie) Ajy(t — hy)

J=1

0
+ / U(0; — 0+ hy, — hy)A;5(60:) d02> db;.

—h;
The inner sum can be modified by partial integration analogously to (6.48)), thus
0

U0y + hi) Ajy(t — hy) + / U(6y — 0y + hi — ;) As5(62)d6s

hj

NE

1

<.
I
o

NE

U(01+ hk— i / % 01— 02+ hk— hj))A]yt(02>d02

1 hy

<.
Il

U(¢91+ hk— hJ)Ajy(t)> - P3(01 + hk)

1

i

J
We therefore obtain using the symmetry of U

0

A

&)*A,I(U(e + hk)Aoy(t)—i—Zm: U(@+he —hj)A;y(t) —P3<9+hk)) df

Ty

—hg j=1

M= 11z

(
xt(Q)*A;(U(H + hy)y(t) — Ps(0 + hy, yt)) df

17
m
ke

)> / hd9<U< 0- hk>Akxt<e>de>y<t>—Z | oyl po+ huwo

).
_ Py(0,20)" Z/ O)ALPA6 + ).

A dual result holds when exchanging z; and y; so that we can treat both integral terms in
(6.47). We now have all the results ready to write —(xt, Pyt> M2 without explicit depen-
dency on the derivative of the trajectories. Using ((6.48)) and ([6.49) - now reads

/
r

i

460 P = (D00 = P0.20) (0

z(t) P3(0,y:) + x(t)" <U(0)y(t) — P5(0, yt)) + P3(0, ) y(t)
— Z/ (Ps(0 + P, 20)* Apy(0) + 4(0)* A P3(0 + hy, 1)) dO

= 2(t) (U(0)" +U(0)) y(t) = —a() Wy(2).
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To verify this equality we have to check that the sum involving the P; operators vanishes.
But this follows after a small calculation from

?
(AU + e — 02 = By)) = =G U (02 + by — 01— ).

Hence (6.46)) holds for all M?2-initial conditions. O
In the following we describe a situation where there exists a weight W € H"(R) such that
there exists no associated solution. We need the following technical lemma.

Lemma 6.34. For two non-trivial vectors x,y € C" there exists a real symmetric matrix

W e R™" such that x*Wy # 0.

Proof. Assume that z and y are linearly independent vectors. Then the Cauchy-Schwarz
inequality yields |z*y|> < ||z||* |y||*, hence

(zy" +ya*)y = |ll* [lyl* + (z"y)* # 0.
For linearly dependent vectors, choose W = [,,. O]

Proposition 6.35. If there exists Ao € C such that {\g, — Ao} C o(A), i.e.,

det (j:)\oln — Ag =) T Ak> =0, (6.50)

k=1
then there exists a symmetric matric W for which (6.37) has no solution satisfying the con-
ditions (6.38))—(6.39). Moreover, in this case there exists a non-trivial solution of (6.37]) -
(6.39) with W = 0.

Proof. Assume by contradiction that for every symmetric matrix W, equation has
a solution satisfying conditions f. Note that as the matrices Ay are all real,
A € o(A) implies that A € 0(A). Thus we can pick two eigenmotions of system (6.1))
associated with the eigenvalues A\; = Ay and Xy = — )\ (see Deﬁnition which are of the
form

x(l)(t) = Mg, ZL‘(2)(t) = MMy, r,ye Chz,y#0, t>—-H, (6.51)

and which are solutions of (6.1). By Lemma there exists a symmetric matrix W
such that z*Wy # 0. Now by assumption, (6.37)) has a solution U(t) which satisfies the

conditions (6.38)—(6.39)). Let us define the bilinear functional for z = (xg, @), Z = (Zo, §)

m 0
p(z,2) = agU(0)io + Y x| U(—h; — 0)A;4(0)d6
j=1 7N
m 0
+) / ©(0)* AU (hy, + 0)d0i,
k=1" ~"hk
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ie., p(z,2) = (PZ,2),2 where P : M? — M? is given by (6.19) and (6.20) with Wy = 0.

To see this, compare (6.52)) with (6.30)). Note that we do not assume that U is of the form
(6.16). However, U solves Problem [6.30, The solutions 2! (¢) and 2(®(¢) defined by (6.51))

are in the domain of A, hence we can apply Theorem We obtain

(M 3P) = Wy Wa® (1) = —eM D Wy = —2*Wy #0. (6.53)

On the other hand, direct substitution of these solutions into the bilinear functional yields

p([ﬁ%l),j;g?)) ()\1+/\2 tx* ‘|‘ Z/ h _ 9 A 20 + ATU(h] + 9)6;\10(19—{—
+ Z Z/ / )\291+)\192ATU(92 0, + hy, — h])AJdeldHQ] Y.
k=0 j=0* ~hk

Observe that the matrix in square brackets does not depend on ¢. The condition A\; + Xy =
Ao — Ag = 0 therefore implies that

dtp($£1)7.ft ) - 0 (654)

But this is in contradiction to (6.53). Hence there exists no solution of satisfying
- - for the special choice of W.

If W = 0 then for any non-trivial solution U of (|6 - U ) is skew-symmetric while
U(0) is symmetric, see the discussion following Proposmon “ We now construct such a
solution. By there exist vectors v; € C", v; # 0, such that v, (Ag+> 1, e Ay) =
)inlT for ¢ = 1,2 where \; = Xy, Ay = —Ag. Define

U(t) = e +e 0] 40t +e 05 = Re (Mogo] + e v, ), t € R,
which is real and satisfies the symmetry condition ([6.38)). Here the real (or Hermitian) part
of a matrix A € C"*™ is given by Re A = %(A + A*). Now U also satisfies the differential
equation (6.37) for every t € R, as

U(t)A(H—Z U(t—hy)Ar=2Re (e’\OtUQUIT(AO +Ze"\°h’“Ak)+e_’\°tvlva(Ag +Ze’\0h’“Ak))
k=1 k=1 k=1
= 2Re (Ao vav] — Aoe vy, ) = U(t).

For t = 0 the derivative U(0) = 2Re (X\o(vov{ — v1v;)) is skew-symmetric, hence is
satisfied with W = 0. [
Remark 6.36. The proof Proposition [6.35] shows that under the condition that there are
two eigenvalues of with sum 0 or 0 € o(A), Problem has a non-trivial solution
of W = 0. It is generally not known if the condition of Proposition [6.35|is the only critical
condition.

We will investigate this question for systems with one delay (m = 1) in the next section.
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6.4 The One-Delay Case

Let us now assume that system (6.1]) has only one delay term h > 0 (m = 1),
&(t) = Aoz(t) + Ajx(t — h), t > 0. (6.1])

We study existence and uniqueness issues for this case.

The symmetry condition allows us to reformulate the differential equation (6.37)
for U as a delay-free ordinary differential matrix equation. This has already been studied
in Infante and Castellan [73] and Datko [32]. A recent analysis of this approach may be
found in Luisell [98], 9] where it is used to locate those eigenvalues of which lie on
the imaginary axis. Consider the following problem formulation.

Problem 6.37. For a given symmetric matric W € R™*" find a solution U : [—h, h] —
R™™ satisfying

Ut)=U(t)Ag + U(t — h) Ay, te[0,h], (6.55)
Ut)y=U(-t)", t € [—h,h] (symmetry condition),
U(0)Ag +U(h)" Ay + AgU(0) + A U(h) = -W (algebraic condition).

As this problem is just the restriction of Problem tot € [—h, h] and m = 1, any solution
of Problem is called a delay Liapunov matrix for . Note that we do not assume
exponential stability, so the integral representation is not applicable. Therefore not
only uniqueness, but also existence of delay Liapunov matrices must be investigated. We
do so by introducing the following boundary value problem for a delay-free system for
which the solution set is basically equivalent to the one of Problem [6.37]

Problem 6.38. For a given symmetric matriz W € R™ ™ find solutions U,V : [0,h] —
R™™ of the ordinary differential system

Ut)=U@t)Ag+V(H)A;,  V(t)=—-AlU@t) — AJV (1), (6.56)
which satisfy the two conditions

U@0)-V(h)=-w, UW0)—V(h)=0. (6.57)
Here U(0) and V (k) serve as a shorthand notation for the one-sided derivatives,

U(0) := P\n% Ut) = U(0)Ag + V(0)A; and V(h):= y/r% V(t)=—AlUh) — ALV (h).

The differential equation for V' is called the counterflow equation, see Marshall et al. [105].
Let us reformulate equations (6.56) and (6.57)) by introducing linear operators working on
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pairs of matrices,

U UAg+V A
A RPX7 ¢ RX7 R™X7 5 RX7 .

crer e ()= (G ) e

X
mos RV x R — R™™, < 1) — X, 1=1,2,
X
'Bl,‘BQ RV x R — Rnxn’ Bl = (7T1 — 7T2€Ah).A, ‘BQ =T — 7T2€Ah,
B — (g ) R2X7 5 RPX1 _, RPXT 5 RPXN (659)
2

Then Problem can be written compactly as #(t) = Axz(t) on t € [0,h] with the

boundary condition
Bx(0) = ()  for x(0) € R™" x R™™, (6.60)

From (6.59) we see that the kernel of B satisfies ker B = ker By N ker By. If this kernel is
trivial then B is a vector-space automorphism of R"*" x R™*",

Corollary 6.39. A solution of Problem 15 obtained by prescribing an initial value
z(0) = (gg) = B_l(_ ) for @(t) = Axz(t). Then x(t) = ( ) where U(t) and V (t) are a
solution of Problem |6.38. Moreover, a solution of Problem |6 5’ 6.38 is uniquely determined if
and only if the boundary operator B is invertible.

In particular, if x(¢) is such a solution then the symmetry condition is regained by

Byx(0) = mz(0) — mx(h) = m (i) — m2((h) = U(0) = V(h) =0,

and the algebraic condition reappears from

By2(0) = BoAw(0) = By (0) = Bs(y(g)) = U(0) = V(h) = =W.
Here we used that if x(¢) is a solution of the linear system & = Az then @(t) is also a
solution.
The solution sets of Problems and are equivalent in the following sense.

Proposition 6.40. If U : [—h,h] — R™" is a solution of Problem then the pair
(U, V) : [0,h] — R x R™™ with V(t) = U(h —t)" solves Problem |6 m If the pair
(U, V) : [0,h] — R™" x R solves Problem [6.58 then

solves Problem 6.3

Gy =1 VO FV(=t)T,  te[0,h],
Ut)T +V(h+t), te[-h0),
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Proof. Suppose that U(t) solves Problem [6.37, Set V (t) = U(h —t)". By symmetry,
Ut)=Ut) Ao+ U(h —t)" Ay = U(t) Ay + V() Ay, t €0, h],
V(it)=—-AUL—-t)" =AU —(h—1t)" ==A]U®) — AJV(t), te]|o,h)]

Moreover, the symmetry condition U(0) = U(0)" gives U(0) = V (k). Applying this equal-
ity and V(0) = U(h)" to the algebraic condition in (6.55)) yields

(6.61)

~W =U(0)4g +U(h)TA; + AJU(0) + AU (h) =
= U(0)Ag + V(0)A;s + AJV (h) + AT U(h) = U(0) — V(h).

Therefore the pair (U(t),V(t)) solves Problem [6.38] R X
On the other hand, given a solution pair (U, V') of Problem m, the pair (U(t),V(t)) =
(V(h—t)T,U(h —t)T) also solves Problem since

U(t) = — (A U —t) = ALV(h— 1)) = U(t)Ag+ V(£) Ay,

V() = — (U(h —t) Ao + V(h— ) A1) = —ATU(t) — ATV (2).
Furthermore we have U(0) — V(h) = V(h)T —U(0)T = 0 and by symmetry of W

U(0) — V(h) = U(0)Ag + V(0) A, + ATU(h) + ATV (h) =
=V(h)"Ag+ U(h) " Ay + A{V(0)T + AJU(0)" =

= (A3U(0) + ATUM) + V(04 + V() A) = (0(0) = V() =W

We will now show that U defined in the proposition solves Problem [6.37. Note that
U=21((U()+U(t)) on [0,h]. Hence for t € [0, h)

2
Ut) = U@ +V(h—t) ) A+ 3(V(E) + U(h—t)T)Ay = U(t) A+ U(h — )T Ay. (6.62)
To verify the symmetry condition for U it only remains to check U(0) = U(0)T since by
definition U(t) = U(—t)" on [—h,0). But the condition U(0) = V (k) of implies that
U0)=3(U0)+vHn")=+VH +U0)")=00)". (6.63)

Let us now verify the algebraic condition. Since W is symmetric, we have by that

. . . . T
-W=1 ((U(O)—V(h)) + (U(O)—V(h)) ) . From this equation we obtain by using the

symmetry of U(0), (6.63)), and the differential equations for U and V in (6.61)) that
=W =3 ((U0)+V(h)") A+ (V(0) + U(h) ") Ay)
+3 (AL UR) +V(0)7) + Ag (V(h) + U (0) "))
=U0) A+ UML) TA +AJU) +AJU0)T,

which is the algebraic condition for U of Problem . Hence U is a solution of Prob-
lem [6.37 [
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From the proof of Proposition we get the following corollary.
Corollary 6.41. Given a solution pair (U(t), V(t)) of Problem[6.38 with t € [0, h].

1. The pair (U(t),V(t)) = Yo(U(t)+V (h—t)T, V(t)+U(h—t)") also solves Problem|6.38
and satisfies U(t) = V(h — )T fort € [0,h], and U(0) = U(0)".

2. If the solution pair of problem [6.38 is uniquely determined then U(t) =V (h—1t)" for
t €0, h).

The last item raises the uniqueness problem, for which we present the following uniqueness
theorem.

Theorem 6.42. The following statements are equivalent.
(i) There exists a non-trivial solution pair (U, V') of Problem|6.58 associated with W = 0.
(ii) The boundary condition of Problem is singular, i.e., ker B # {0}.
(11i) There exists A € C such that
det(A\ — Ay — A1e™) =0 and  det(—A\I — Ay — Ae*) = 0. (6.64)
In this case, A, —\ € o(A).

(iv) There exists X € o(A) for which an associated eigenvector of A takes the form (gjoo) €

Cvn x Cv™n, Uy # 0, ¢ € C, with ¢ = e,
For the proof we recall the following technical lemma, see e.g., Arnold [5].

Lemma 6.43 (Unique Representation of Quasi-Polynomials). Given a quasi-polynomial
o(t) = Zle eMilp;(t) where \; € C, \i # \j for i # j, and p; € C[t] are polynomials. Then
@ =0 implies p; =0 foralli=1,... (.

Proof (of Theorem [6.42)). (iii) = (iv). Let A € C such that det(£A — Ay — A;eT) = 0.
Then there exist non-trivial vectors v, w € C" such that
o' (M —Ag—Aje™) =0 and w' (=M —Ay—4eM) =0, ie,
AWl =v"(Adg+ A1e™) and Aw' =w'(—Ay— AeM). (6.65)

Setting Uy = wv" and Vy = e Mwo’ the pair (‘U/g) e C™™ x C™™ is an eigenvector of A
corresponding to A, as

4 Uo\ wv Ay + e MuwvTA,; B wv'(Ag + e MA) _\ wo ) Uy
Vo) \—AlwvT — AJe ™) \(=AJe M —ADwoT ) “\e ™) "\ 1)’

where we used (6.65) to extract A € C. Since Vj = e *"Uj, we have found an eigenvector

of the required structure. If A = 0 then Uy =V, = vv'.
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(iv) = (ii). An eigenvector (‘(ig) of A corresponding to A € o(A) which satisfies Vj =
e U, also satisfies the boundary condition B (60) =0 as

By (4P

VO) UO — 7T2€Ah (Uo) = U() — 7T2€/\h< ) U() — 6)\h‘/0 Uo - eAh(e_)\hU()) = 0,

Vo

whence fBl(‘U/g) = ’BQA(%’) = \By (‘[ig) = 0. Therefore ker By Nker By = ker B # {0}, i.e.,
the boundary condition is not regular.

(ii) = (i). Suppose that the boundary condition of Problem is singular. Then
there exists a non-trivial pair of vectors (U, Vp) which satisfies B (| ) 0="B, (UO) But

choosing (Up, Vp) as the initial value for the differential equation 3 (ggtg) A(UE ;) gives a
non-trivial solution (U, V) : Ry — R™™ x R™™ of Problem corresponding to W = 0
as U(0) — V(h) = 0,U(0) — V(h) = 0, see Corollary (6.

(i) = (iii). By Corollary [6.41] n a non-trivial solutlon can be chosen in such way that
Ut)=V(h—-1t)T", U) = U(O) and U(0) = V(h) (i.e., W = 0). Clearly, the solutions
of the differential equations not only exist on [O,H ] but on the whole real line.
Then U(0) and V' (h) are two- 81ded derivatives. We now show that the symmetry condition
U(—t) = U(t)" automatically holds for all + € R. For this we prove U(t) = V(¢ + h). To

see this consider the second order derivatives
U(t) =U)Ag+ V() A = U(t) Ay — (A U(t) + Ay V(1)) A
=U(t)Ag — AJU(t) + AJU(t)Ag — AU (1) Ay,
V(t) = —A[U(t) — AgV(t) = —A] (U(t)Ag + V(1) A1) — Ag V(1)
= V(A — AL V() + AJV(t)Ag — A] V(1) A;.

Hence U and V satisfy the same second order differential equation
X(t) = X(t)Ag— A X(t) + Al X (1) Ay — A] X (1) A;. (6.66)

By the time-invariance of - ) it follows that ¢ — V(¢ + h) is also a solution of (6.66]).
Since U(0) = V(h) and U(0) = V/(h), this solution satisfies the same initial conditions as
U and therefore U(t) = V(t + h) for all t € R. Corollary then yields the symmetry
result U(t) =V (t+h) =U(-t)".

Furthermore, the solution pair (U, V') is given by a sum of eigenmotions of the finite-
dimensional system . Hence, when projecting on the first component, there exist
Ai € C and matrices Zy, € C™", i = 1,...,(, k = 0,...,N;, such that {e"'t"Z; } is
a basis of the solution space for the U-component of where \; € o(A) are the
associated eigenvalues and Z;, € C™*" are the U-components of generalized eigenvectors

of (6.56)). Therefore
=> MYz, ITc{l,... 0},K;c{0,....N;}, teR,

el keK;

where the coefficients are incorporated in Zy, # 0. Since U(t) = V(h—t)" = V(h+t), the
matrix function U(t) satisfies U(t) = U(t)Ao + U(t — h)A; on R because the differential
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equation is satisfied on [0,2] and U and V are analytic functions. As the components of
U(t) are formed by quasi-polynomials we obtain from Lemma m that

by <Zthik> HOD Kt Zy | = (Zthik> Agte ik (Z(t - h)’“Zik> A, iel

keK; keK;\{0} keK; keK;

Now consider for a fixed index i the coefficient matrix of ¢* belonging to the highest degree
k; = max K;. Then Zi,;i()\il — Ag—eNhA) = 0. As Zit, # 0 we conclude that det(N\ ] —
Ag—eNtA) = 0. Projecting the eigenmotions of the solution pair (U, V) of onto the
V' component and then repeating the above argument yields det(—\;I — Ay — e**A;) = 0.

Thus we have found an eigenvalue A of A which satisfies det(£A — Ag — A1 e™V') = 0. O

If the conditions of Theorem do not hold we obtain the following result concerning
the solution set of Problem [6.37

Corollary 6.44. For all symmetric W € H"(R) there exists a uniquely determined solution
of Problem if and only if there exists no A € C satisfying (6.64), i.e., all eigenvalues
A € o(A) of the generator A of the solution semigroup associated with (6.1[|) satisfy —\ &
a(A).

Proof. By Corollaries and (2) a unique solution of Problem exists if and only
if the boundary operator B is invertible. The proof of the equivalence of Theorem [6.42
(#i) and (iv) shows that there exists a one-to-one correspondence between eigenvalues
A € o(A) of the finite-dimensional system such that there exists an associated
eigenvector with the special structure (U, e *'Upy) and eigenvalues A, —\ € o(A) of the
semigroup generator A, see ((6.64]) and . Hence the uniqueness issue (and therefore the
invertibility of B) can be answered by considering the zeros of the characteristic equation
associated with . O
By using Kronecker products Problem [6.38| can be vectorized and the resulting equations
can then be utilized in the numerical computation of solutions. The Kronecker product
satisfies vec AXB = (BT ® A)vec X, where vec X € R" is obtained from X € R™" by
stacking up its columns, see [71]. Problem takes the following vectorized form, where
we denote the vectorization of the matrices U, V, W with the corresponding small letters
u,v,w. As usual, we identify the operator A with its matrix representation with respect
to the standard basis on R2"".

Problem 6.45. Given a symmetric matric W € R™™. Find a solution pair u,v : [0, h] —

R™ such that
() —aC) A= (o i) oo

holds with boundary conditions

M(zggi) +N(ZEZ§):(_%}>’ M:(Aii@] AI@@I)’ Vo (I®OA1T Ifg)ff)? (6.68)

where u = vecU, v = vecV, and w = vec W.
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Let us show that this problem is the matrix counterpart of Problem [6.38

0

and only if (ngg) = (Z) :R—R2 js q solution of with (M~+Ne™h) (zégg) = (*V%C W).

Lemma 6.46. The pair (U,V) : R — R™™ x R"™" solves (6.58]) with B(g%g;) = () i

Proof. 1t is easy to see that the system matrix in is the matrix representation of
the operator A of . Let us show that the matrix representation of B is given by
M + e N, hence showing that both problems are equivalent. The matrix representation
of the projections my,my is given by (I,2 0,2) and (0,2 I,2), respectively. Hence By =
7 — mee’™ has a matrix representation given by (I,2 0) — (0 I,2)e™. Now B, satisfies
B, = ByA. As A commutes with e, we get the following matrix representation of By,

[(Z2 0) — (0 L2)eM | A = (1,2 0)A— (0 L2)Aet = (4 @1 Al @ 1)+ (I®A] I®A))e™,

B1

932) so that we can

where we already used the matrix representation of A. Now B = (
identify it with the matrix

B _ (AJ®I AI®1)+(I®AI [®AJ) A

. Ah
I 0 0 I =M+ Ne™.

Thus both the system operator A and the boundary operator B are represented by their
matrix counterpart. Hence Problems and are equivalent. O

From Problem [6.45| and the discussion of the boundary operator B following Problem [6.38

we immediately obtain the following existence and uniqueness result.

Corollary 6.47. Problem|[6.45 has a uniquely determined solution if and only if the bound-
ary operator B = M + Ne* is invertible. If B is singular then for a given w there exist
multiple solutions if ( w) is contained in the image of B, otherwise there does not exist

any solution satisfying (6.67] - and -

We now take a closer look at structure of the eigenvectors of the system matrix A in (6.67)
or equivalently, of the operator A defined in (/6.58)).

Lemma 6.48. Let A be the linear operator given by (6.58)). If (Ao, (‘[ig)) 1S an eigenpair

of A, then (UOI) is an eigenvector of A corresponding to the eigenvalue —\g.
0

Proof. Suppose that (/\0, (gg)) is an eigenpair of A then

Vi VW A+ U AL (A Vo+ ATy T Al
Aor) =\ carvr —agoy) = (—=VoA; — UpAg)T ol g
0 1 %o o Yo 0411 040 0

. . . AR . .
i.e., —)\g is also an eigenvalue of A and the pair (UZT) is a corresponding eigenvector. [
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One can even show that A and —A are similiar, hence the Jordan structure of A € o(A) is
identical to the Jordan structure of —\ € o(A).

As the matrices Ay, A; are real, the spectrum of A contains with every A also —\, A, —\.
This is reminiscent of the spectral properties of real Hamiltonian matrices. And indeed,
if we consider the change of the arguments of the Kronecker product A® B ~~ B ® A as
some “quasi-transposition” then A is a “quasi-Hamiltonian” matrix.

Proposition 6.49. Suppose that Ao is an eigenvalue of the linear operator A given by (6.58)
and that —X\g &€ 0(Ay). Then there exists an eigenvector of A corresponding to the eigen-

value \g which is given by a pair of the form (C(T;O) where Yo € C**", Yy # 0, and ¢, € C.

Proof. The pair (‘[ig) is an eigenvector of A corresponding to )\ if and only if the following
system of equations is satisfied,

Us(Ag — NoI) + Vo1 =0, AUy + (Mol + ANV = 0. (6.69)
Let us introduce the linear operator
L:CxCY™ —C™™ L)X =M+ A4))X(M — Ag) + A XA
Then using both equations of

LX) (Uo) = (Mol + AJUo(Mol — Ag) — (Mol + A )VoA; =0,
LX) (Vo) = (Mol + Ag )Vo(AoI — Ag) — A] Ug(Ag — AoI) = 0.

Hence both components of an eigenvector corresponding to g are contained in ker L(Ag).
We can therefore define the following linear operator on the kernel of L(Ag) (cf. (6.69))

M(No) : ker L(Ng) — ker L(Ng), U=V = —(NI + Ay) tA] U. (6.70)

For any U € ker L()\g), U # 0, the pair (M(AUO)U
Ao, because it satisfies ,

U(Ag — Nl) + M(N)UA; = U(Ag — XoI) — (Mol + Ay ) A UA,
= (Mol + A7) (Mol + A7) )U(Ag — Xol) — A[UA,) =0,
ATU + (Nl + A )M M)U = ATU — (Mol + AJ) (Nl + AJ) AU = 0.

) is an eigenvector of A corresponding to

Now, the linear operator M()g) possesses an eigenvector Yy with M(\g)Yy = (oYy. Hence
there exists an eigenvector ( 43;'/0) of A corresponding to A\g which is constructed from the

eigenpair ({p, Yy) of M(Ag). O
Remark 6.50. The condition —\ & o(Ag) can be replaced with the following alternatives.
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1. If A\g € 0(A), but \g € 0(Ap) then there exists an eigenvector of A corresponding to
Ao which is of the form (C%O), (o € C. This can be seen by replacing M(\g) of (6.70)
by

M/(Ao) : keI‘L()\()) - keI‘L(Ao), V- VAl()\()] - AO)_l.

2. If Ay is a regular matrix then the conditions —X\g & o(Ap) or A\g & o(Ap) can be
dropped. Here M”(\g) : U +— U(AoI — Ag)A; " replaces (6.70)).

3. If A, is singular and A\ € 0(Ag) No(—Ap) then eigenvectors of o(A) corresponding
to Ao can be constructed explicitly: they are formed by pairs (yv',0) and (0,2y")
where Ay =0, (A] — XNl)v =0, and (A] + A\oI)z = 0.

Hence without any assumption on the locations of the eigenvalues, the result of Proposi-
tion [6.49 can be generalized in such way that for every Ay € A there exists a corresponding

eigenvector which is of the form ( gUU)= (C‘Y ), (g) or (3)

Remark 6.51. Let us now comment on how to compute the delay Liapunov function U for
the one-delay system ([6.1[]).

1. Set up the system matrix A and the boundary matrices M, N according to the data
given in Problem [6.45]

2. Test if the boundary matrix B = M 4 Ne* is invertible. If it is not invertible then
the solution of linear equation Bxg = (_Ow) for zy in the next step may fail.

3. Compute an initial value zy € R2" via Bxg = (70“’).

4. Solve the system of linear ordinary differential equations #(t) = Ax(t) on t € [0, h/2]
with x(0) = xo.

5. Join the solution segments contained in x(t) = (;‘8))) As U(t) = VT (h —t) we have
vecU(t) = u(t) and vecU " (h — t) = v(t) for for t € [0, h/2].

In Step 3, the quasi-Hamiltonian structure of A (see the discussion following Lemma
implies that the computation of the matrix exponential can be ill-conditioned for even
relative small values of h. Namely for every A € o(A) with Re A > 0, the negative value
—A\ € o(A) is also contained in the spectrum. Hence the spectrum of the matrix exponential
contains both eigenvalues of small modulus, e™*", and eigenvalues of large modulus, e
The matrix A has a sparse structure. This should be honored when solving z = Ax in
order to keep computational costs and storage requirements small.

We close this section with an example.

Ezxample 6.52. Consider the 2 x 2 delay equation

(l) = (_04 _11> 2(t) + (g (1)) ot — h), (6.71)
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Figure 6.4: Delay Liapunov matrices for h = 1, 2, 3.

which has been discussed in [98]. Without delay, it is a pure oscillator, and it is stable
for positive delays h < 2.006. Now following Remark we can compute a solution of
Problem by solving an initial value problem.

Figure 6.4 shows the components of a delay Liapunov function for A = 1,2, 3 corresponding
to the weight W = I. For h = 2 the delay system is close to instability, and the norm of
U is relatively large. For h = 3 there still exists a uniquely determined U, but note that
the matrix U(0) is not positive definite. [

6.5 Uncertain Delays

In this section we consider the case when the delay h > 0 of the system
DI &(t) = Aoz (t) + Arx(t — h), t>0, (6.1])

is not exactly known. Hence we are looking for some robust results for the existence of
delay Liapunov matrices and for robust results on stability. As it turns out, these two
problems are closely related.

To indicate the dependence on h, let us define the spectrum and the spectral abscissa of

the delay system (6.1[])
o(Sh) = {s € C|det(s] — Ay —e*"A;) = 0},
a(Xy) =sup{Res|s € a(Zy)}.
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With this definition, is exponentially stable if and only if a(3;,) < 0.

Let us study the dependence of the spectrum on the delay h. Most authors dealing with
variable delays implicitly use the following conjecture for which there seems to be currently
no rigouros proof.

Conjecture 6.53. The map h — «(X}) is continuous on R;.

In the following we will assume that this conjecture holds true. Let us present some
ideas which could be used for a proof. The main obstacle for a proof is a missing global
parameterisation of the spectra h — o(X;). However, we have the following local result.

Lemma 6.54. Given o € R. Then the spectra of ¥y restricted to Cs, decompose into
finitely many continuous branches. In particular, let us define

No(h) = {s € C|det(s] — Ay — e *"A;) =0 andRes > a}.

Then for a given h° > 0 there exist v continuous functions \; : IF — Csq, i =1,..., 7 with
a suitable interval of maximal existence If = [h', k] C Ry, h° € I}, such that No(h°) =
RO i =1,...,r} and det(N\(h)I — Ag —e WA =0 forh e I}, i=1,...,r. Here,
if h'. > 0 then \i(h') = o and if hY, < oo then A\i(h')) = c.

Proof. For fixed a and h? the set N, (h°) is finite, see Theorem[6.13] Hence the remarks from
[77, Section 1V.3.5] allow us to apply the finite-dimensional decomposition [77, Theorem
I1.5.2] into continuous functions. If a branch ceases to exist then it has to leave C-, which
gives the conditions on A" and h’,. O

Now to prove the continuity of the spectral abscissa we have to take new snapshots of
parameterisations whenever the number of zeros in Cs,, changes. For this, let us assume
that « is such that C., contains an eigenvalue of Ay + A;. By Lemma the spectral
abscissa is continuous if the number of zeros inside Cs,, does not change since the maximum
of finitely many continuous functions is continuous. The change of zeros can be detected
as follows. Consider the shifted system

Y w(t) = (Ag — al)z(t) +e M Ay (t — hy)

which satisfies o0(2¢) = 0(X)) — a. Hence instead of detecting zeros of h — o(X},) passing
through a + iR we consider zeros of h — o(3f) passing through the imaginary axis. The-
orem (#7i) and (iv) provides a method of testing for this situation which yields critical
points if the equation ( = e is satisfied where both ¢ and A € iR are obtained from
the finite-dimensional operator A derived from X§. Thus new snapshots of the spectrum
have be taken at isolated critical delays, and therefore the spectral abscissa is a continuous
function of the delay h.

6.5.1 Ciritical Delays

From our previous analysis in Theorem [6.42| we obtain the following sets of critical delays.
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Definition 6.55. The set of critical delays of is given by
Heie = {h € Ry |det(M + Ne™") =0} .

By Theorem we have the following characterizations of the set of critical delays.
Corollary 6.56. The following statements are equivalent.

(1) h € Hepyt.

(i) Problem has either no or infinitely many solutions for the delay h.

(iii) The minimal singular value of the boundary matriz satisfies omin(M + Net) = 0.
(iv) There exists € C which satisfies det(EN —Ag—eTN' A1) =0. In this case, A€ (A).

(v) There exists an eigenpair (\, (g;)) € Cx C¥ of A such that ( = e ™

Proof. Clearly, since A of is the matrix representation of A of , their spectra
coincide. We have already verified that the matrix representation of the boundary condition
B is M + Ne. Thus the statements follow directly from Theorem [6.42 m Corollary -
and Lemma [6.46]

By Corollary m (v) we can rewrite Hey; as
H.it = {h >0 ‘ there exists an eigenpair (A, (g;)) of A with ¢ = e”\h} ) (6.72)

If 0(X) NiR # 0 then h is critical. Let us therefore consider those critical delays which
belong to purely imaginary eigenvalues A = iw, of A. We first discuss the case w = 0.

Corollary 6.57. If 0 € o(A) then H.i = R,

Proof. 1f 0 € o(A) then there exists an eigenvector of the form (g) associated with the

eigenvalue 0 of A. This yields U(4g + 4;) = 0 and —(A] + Aj)U = 0. Therefore
det(—Ag — Ay) = det(0I — Ay — e”"A;) = 0 which is independent of k > 0. Therefore all
h > 0 are critical. O

For the rest of this discussion let us assume that Ay + Ay is reqular. We now consider
eigenvalues A\ = iw, A # 0, of A.

Proposition 6.58. The following statements are equivalent.
(i) There exists iw € o(Xp) \ {0}.
(i) There exists an eigenvector (g%) of A associated with iw such that U = U*.

In this case, all delays of the form h + |2w—”|€ > 0 with ¢ € Z are critical.
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Proof. (i) = (ii). Let us assume that h is a critical delay of ¥, such that det(iwl — Ay —
e~ “hA)) = 0 for a suitable w # 0, see also Corollary (iv). We find a vector v € C"
such that

v*(iwl — Ag — Aje™") = 0.

Complex conjugation yields —v' (iw + Ay + A1e®") = 0. The Hermitian matrix U = vv*
then induces an eigenvector (e,ghU) associated with the eigenvalue iw of A, see the proof
of Theorem [6.42] This shows (ii).

For (i1)) = (i) consider an eigenvector (CI{J) of A with Hermitian component U. The

scaling factor ¢ € C satisfies || = 1 as by Lemma ("' = holds. If v € C" is an
U

eigenvector associated with a non-trivial eigenvalue of U then A( g]) =W ( CU) implies that
v*(iwl — Ag—CA;y) = 0 and (iwl + A +¢*A] )v = 0. Hence as || = 1, there are infinitely
many solutions i > 0 with ¢ = e™" which are all critical delays of ¥, by Corollary

(iv). These solutions occur periodically with a period length of % ]

Unfortunately it is currently not clear if an imaginary eigenvalue of A always leads to
critical delays. It is easy to see that if (CUU) is an eigenvector corresponding to iw €

o(A) then (Cg) is an eigenvector corresponding to the eigenvalue —iw = iw of A, see
Lemma [6.48] and Proposition [6.49] including Remark If the eigenspace is assumed
to be of dimension 1, U = U* and { = (™', which shows that in this case any h > 0
satisfying ¢ = e™™" is critical. For eigenspaces of higher dimension, the situation is not

clear. However, note that
ker L(iw) = {X € C™" | (iwl — Ag)* X (iwl — Ag) = A] XA}

enforces a Hermitian/skew-Hermitian structure on the components of the eigenvectors of
A corresponding to iw € o(A). In particular, if X € ker L(iw) then also X + X*, X — X* €
ker L (iw).

We can split H; into periodic and aperiodic critical delays Heit = Hper U Hyper. The set
of periodic critical delays is given by

Hyer = U {h + %f eR, ‘ h € [0, %),f e N, (iw, (e,ghU)) is an eigenpair offl} )
iweo(A)\{0}

The set of aperiodic critical delays

Hoper = U {h eR, | there exists an eigenpair (A, (e,l{hU)) ofA}
AE(A)\iR*

only contains finitely many points under the regularity assumption of Ay 4+ A;. Aperiodic
critical delays can only occur in unstable systems, hence they are of no importance for
stability considerations. To see this, assume that A € o(X;) is not a purely imaginary
eigenvalue associated with a critical delay h. By Corollary , —\ € 0(Xy,) which implies
that >, has an instable eigenvalue with positive real part.
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Hence if H,;; # R, then it does not contain any finite accumulation point, and its elements
can be ordered increasingly. Let us introduce for all h > 0,

| I erie :=sup {h’' € Heit | < h}, [Rlesie := inf {h’ € Heue | > h},

with the convention that inf () = +00 and sup() = —oco.
Let us now determine maximal delay intervals for which ¥, is stable provided that Con-

jecture holds.

Proposition 6.59. Suppose that X, is exponentially stable for some hy > 0, then X, s
exponentially stable for all h € (| hocrity [holeri) N R4

Proof. The set H; is a discrete subset of R, as by assumption ¥, is exponentially stable,
hence H.i # R.. Now let us suppose that h > hy and Xj is not exponentially stable.
Using Conjecture the minimal h € (ho, h] with this property satisfies (%) = 0.
Hence there exists w > 0 with fiw € o(%;). Corollary and Corollary (iv) imply
that h € Heyt, hence h = [ho|ei. For the lower bound, analogous results hold. O

If (X)) <0 and [h]ei = +oo then the delay system X, is exponentially stable for all
h' > h,and if (X)) < 0 and |l = —oo then ¥ is exponentially stable for all o' € [0, h.
We obtain the following criterion for the exponential stability independent of delay. For
other conditions of delay-independent stability see Bliman [19],and Hertz et al. [55].

Corollary 6.60. Suppose that the eigenspaces associated with imaginary eigenvalues of A
are of dimension 1. Then the delay equation (6.1])) is exponentially stable independent of
delay (i.0.d.) if and only if Ag+ Ay is exponentially stable and o(A) NiR = (.

Proof. Using Proposition [6.59|and its proof it remains to show the necessity of the condition
o(A) NiR = (. But by Proposition [6.49 (including Remark and Proposition [6.58
each purely imaginary eigenvalue iw, w # 0 of A gives rise to some critical delay h’ with
(X)) > 0. Hence is exponentially stable i.o.d if and only if H. = 0. O

Note that a stability criterion listed in [55] requires to test Q(s, z) := det(sI —Ag—zA;) # 0
for all {(s,2)|Res =0, |z| =1} while Corollary only has a finite number of tests.

Remark 6.61. (i) There are eigenvalues of the delay equation (6.1]) which coincide with
eigenvalues of the matrix A if the delay Liapunov matrix is not uniquely determined,
see Corollary [6.44] Hence the finite-dimensional system & = Az together with the
symmetry condition has some kind of resonance with the delay system, more or less
like a candle placed between two parallel mirrors gives the impression of infinitely
many candles. This coincidence also implies that for a varying delay all critical
spectra of the delay equation have to pass through finitely many holes in iR
punched by o(A) which is illustrated in Figure , see the next section.

(ii) Corollary allows us to compute critical delays directly from an analysis of the
matrix A. For every eigenvalue A\ of A one has to find the scaling factor ¢ between
the two components of an associated eigenvectors ( C%) The set of critical delays can

be computed via . For a stability analysis, only purely imaginary eigenvalues

of A are of interest, see Corollary [6.60}
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Definition 6.62. Suppose that ¥, is exponentially stable for h = 0. The constant 0 <
h* < oo is called the delay margin for %, if [0, h*) is the maximal interval such that 3, is
exponentially stable for all h € [0, h*).

From Proposition [6.59, we immediately obtain the following corollary.

Corollary 6.63. Suppose that Ag + A; is exponentially stable. Then the delay margin
of (6.1[]) is given by h* = min H ...

Note that the delay margin is a periodic critical delay, as h can only be an aperiodic critical
delay if the delay system X, satisfies o(3,) N C, # 0.

Example 6.64. This example shows the existence of an aperiodic critical point, i.e., h € H
does not correspond to a purely imaginary eigenvalue of A. Consider the matrices

() (1)
Using these matrices for the delay equation we can start a numerical parameter
study. And indeed, for oy = 1.17003 we obtain a real solution h = 1.6048 of ( = e~
where both A\, { € C are derived from the spectrum of A, but contrary to periodic solutions,
A = 0.77330 4 1.3434: is not purely imaginary. Here ( = —0.15965 — 0.24103:. Varying «
about the critical value «q , we observe a sign change in the imaginary part of the solution
h, so that this solution is not only numerically close to a real solution, but there exists
indeed a real solution in the vicinity of the given parameter «p. Figure [6.5] shows the root
locus for varying h, some roots leave the left half-plane through the holes at £3.717 € o(A)
for critical values of 0.317+1.69¢, ¢ = 1,2,3,... But for h = 1.6048 four roots of the delay
equation hit the spectrum of A which is marked by circles in Figure [6.5 For this delay
there exist no uniquely determined delay Liapunov matrix. |

T

I | I A I
-4 —2 0 2

Figure 6.5: Root locus of a delay equation with varying h.
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6.5.2 Spectrum under the Variation of the Delay

We have seen in Proposition that some accumulation points of the eigenvalues of X,
as h — oo are given by eigenvalues iw € o(A). Let us now study other properties of o(3,)
as the delay term h varies. The following example shows that there exist delay equation
where the variation of the delay has no influence on the spectrum.

A1 o 0 oo

Example 6.65. Consider the matrices Ay = (7 /\2) and Ay = (5 %) where A, Aoy, 0, 0 €
C. Then 0(Ap) = (Ao + A1) = 0(X) as

S—A —a; —age _ _
det ( 0 5 — )\2 ) == 0} == {/\1, /\2} (673)

We have already seen the continuous dependency of some branches of the spectrum of X,
on the delay h in Proposition [6.54] For the following analysis, let us recall the Implicit
Function Theorem, see Dieudonné [34], which provides us with the following result.

o(Xp) = {s eC

Lemma 6.66. Define the continuously differentiable function
f(h,A) = det(M — Ag — e " Ay). (6.74)

Suppose that (h.,\s) € Ry x C satisfy f(he, A\s) = 0 and fr(hs, \s) # 0 where f\ = %.
Then there ezists a continuously differentiable function \(h) : I. — C on an open interval
L. 3 h, which satisfies A(h.) = A\« and f(h,A(h)) =0 for all h € I,. The derivative in h,
is giwven by N (hy) = —;—i(h*, As).

We now analyse if the roots enter or leave the left half-plane when passing through the
imaginary axis.

Proposition 6.67. Define f(h, ) := det(\ — Ay — e ™ A)). Ifiw, € o(A) is a simple
eigenvalue of X, , i.e., fr(hs, iwy) # 0, for some h, > 0 then the direction of a (local) root
branch A(h) of h — o(3,) crossing the imaginary axis through iw, is independent of h,
i.e., the roots of ¥, either always leave or always enter the left half plane through iw,.

Proof. We can write f(h, \) as a polynomial p(\, () = det(A[ —Ay—CA;) in X and ¢ = e~
The derivative of a root branch A(h) in h, is then given by
h*, )\* )\* * A*) *
f>\(h>k7)\*) p)\<>\*7<:*) - h*(*pd)‘*aC*)
where A\, = A\(h,) and (., = e see Lemma . Here the partial derivatives satisfy
Tn(ha, A) = pe(As, GG (=A) and fa(ha, M) = pa(As, G) + pe(As, G)C(—hy). As we are
interested in the direction in which a root branch crosses the imaginary axis, we are looking
for the sign of the real part of the derivative in h, with \, = iw,. Since sgn Re z = sgn Re 27!

we obtain from (|6.75]) that
DX ()\*7 C*) h* )

senRe N (h,) =sgnRe | ——— X _ — =

(6.76)
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But h, /A« = h./(iw,) does not contribute to the real part of (6.76)) as it is purely imaginary.
Hence for w, > 0 using Re ¥ = Im z,

p)\(/\*, C*) — sen Im p)x()\*a g*) Cfl _ pC()"H C*)

iw*C*pc<)\*,C*) pg()\*7C*) : p)\(>\*7<*)

Clearly, this expression for sgn Re X' (h,) only involves the data A\, = iw, and (, which can
be obtained from A without calculating any critical delays h, first, see Proposition|6.49, [
A rough method to compute the crossing direction is given by approximating the partial
derivatives of p(As, () by difference quotients. One proceeds by choosing a small € > 0
and computing

sgn Re \'(h,) = sgn Re Cs.

—sgn Im

Pa( A +6,¢) Pa(A +2,¢) = p(As, )

for all critical values obtained by an analysis of the matrix A of Problem In the second
formulation of the term p(\, (i) is included which should theoretically be 0, but due
to numerical errors it is not. The inclusion of this term may robustify the computation.
Numerical experiments suggest the following asymptotic behaviour of the root branches of
o(X). However, due to the missing global parameterisation of these branches we do not
provide a proof.

(6.77)

Conjecture 6.68. Suppose that Ay + A; is exponentially stable and A; is regular. If
h +— A(h) is a continuous function from R, to C such that A(h) € o(X},) for all sufficiently
large h then limy, o, A(h) = 0.

Remark 6.69. With the help of Proposition and Proposition we can trace the
destabilization process of h +— o(3;). We introduce the inertia of a retarded linear delay
system (7(3), t(X1,)) € N? which counts the number of zeros of the characteristic function
xn = f(h,-), see , in the right half plane and on the imaginary axis, respectively.
As the number of zeros in the left half plane is infinite, we do not consider it part of
the inertia. Now, an analysis of the operator A gives all periodic critical values h, for
which o(3;,) NiR # (), and Proposition shows in which direction the imaginary axis
is traversed. Thus, for each delay h the pair (7(X), ¢(2;)) is known.

6.6 Multiple Delays

Let us now consider the case of multiple delays, i.e., the delay equation is given by
z(t) = ZAka:(t —hy) where 0=ho<hy <---<h,=H and A; € R"™. (6.78)
k=0
The associated delay Liapunov function then satisfies the matrix delay equation

U(t) = i Ut — hp)Ap,  t2>0, (6.79)
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the symmetric and algebraic conditions now read
U—t)y=U@®)", t>0, —W = U(0)Ag+ AJU(0) + Y _U(hy) " Ap + ALU (), (6.80)
k=1

where W € H"(R) is a symmetric positive definite weight matrix. Unfortunately, for
this general case there are no results available. If we do not assume asymptotic stability
of then existence and uniqueness issues of a delay Liapunov matrix have not been
addressed yet in the literature.

6.6.1 Systems with Commensurable Delays

The results for the one-delay case can be extended to the multi-delay case if the symmetric
condition allows us to extract a finite dimensional linear ODE from the matrix delay
equation . This is possible in case of commensurable delays, i.e., the delays are given
by hy = kh, k = 0,...,m. Let us assume that U is a solution of , associated
with the weight W. By defining

Up(t) = U(t+kh), Vi) =U((k+1)h—t)" =Uy(h—t)"  k=0,....,m—1 (6.81)

the matrix delay equation (6.79)) with respect to shifted time arguments can be written as

m k m
Un(t) = U(t+kh) = Ut +kh—jh)A; =Y Uj(t)A;j+ Y U((j —k)h—t)T A,
7=0

j=0 j=k+1
k
= Ui j(t)A; + Z Viee1(DA;,  te0,h)]. (6.82)

The differential equation for the counterflow V, £k =0,...,m — 1, is then given by

Vi(t) = 4 (Uy(h ZATU,” —t)7 ZAvk1 —t)7

j=k+1

:_ZA Vi (1) ZAU]kl te0,h]. (6.83)

j=k+1

Hence the use of the symmetry condition U(t) = U(—t)" gives us a system of 2m ordinary
differential matrix equations, where all Uy and V} are defined on [0, h]. The boundary
conditions Uy_1(h) = Ug(0) and Vi(h) = V4_1(0) for £ = 1,...,m — 1 are needed to
concatenate the solution segments. The symmetry condition is given by Uy(0) = Vy(h) and
the algebraic condition by

—W = Uy(0) — Vig(h) = Up(0)Ag + A Vi(h) + i Vi_1(0)A; + AU (h).

Jj=1
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Again, if there exists a unique solution of , with the above-mentioned boundary
conditions for a given W then it coincides with the solution of a delay Liapunov equation.
This will be shown in the next proposition. Let us first collect the differential equations
and the boundary conditions in the following problem formulation.

Problem 6.70. For a given W € H" (R) find a solution of

ZU;” A+Zv(k+1 tel0,h,k=01,...,m—1,
Jj=k+1
ZATV;” ZAU] e ( te(0,h,k=0,1,...,m—1,
j=k+1

which satisfies the following conditions
Up(0) = Vo(h), Ux—1(h) = Uk(0), Vi_1(0) = Vi(h), E=1,....m—1,
Un(0) — Vo(h) = Up(0)Ap + > _ Vi1 (0)A; + AJVo(h) + Y~ AJU;_1(h) = —W.
=1 =
As already mentioned, solutions of Problem are intimately related to delay Liapunov
matrices for (6.1) with commensurable delays.

Proposition 6.71. Suppose the pairs (Uy(T), Vi(T))k=0,...m—1 solve Problem on [0, h]
for a given symmetric matric W € H(R). Using the Gauss integer bracket |t J = max{n €
Z|n <t} the function

(6.84)

U(t) = {% (Ui (8 = [Yn]h) + Vi) (L4 [Yn)h = )T) £ >0,
U(_t)T> t <0,

is a solution of (6.79),(6-80). On the other hand, if U(t) is delay Liapunov matriz for (6.78))
with hy = kh given as a solution to - then

Ui(r) = U(T+kh), Vi(r) = U((k+1)h—17)" = Up(h—7)",  k=0,...m—1, (6.85)

form a solution of Problem . If this solution is uniquely determined, then Ug(t) =
Vi(h =) for all k = 0,. —1,t€[0,h].

Proof. Let {(Ug, Vi)} be a solution of Problem and U be given by (6.84). As Uy(0) =
Vo(h) the matrix U(0) = 3(Uo(0) + Vo(h) ") is symmetric, hence t — U(t) is continuous in
to = 0 when setting U(t) = U(—t)" for t < 0. For each t € [kh, (k + 1)h) we have

Ut) =3 (U(r)+Vi(h—7)") with 7=t—|Ya]h=t—kh.
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Hence

k
(Z (Ui (7) + Viej(h = 7)) A; + Z ) (7 +Uj—<k+1)(h_7)T>AJ>
7=0

Jj=k+1

Therefore U(t) satisfies the matrix differential equation (6.79). We now have to ver-
ify the algebraic condition (6.80). Since U(0) is symmetric and by setting U,,(0) :=
Un-1(h), Vin(h) :== V,,,—1(0) we have

U(0)Ag + Ay U(0) + > " U(kh)" Ay + AJU(kh) = > U(kh)" A + AL U (kh)
k=1 k=0

=1 (i(Uk(O)T + Vi(h) A + AL (UL(0) + Vk(h)T))

=33 (ALUL(0) + Vi(h)Ay) +§Z (Ux(0)T A + AL VR (R)T)

m
k=0 k=0

Hence U is a delay Liapunov matrix for the weight . On the other hand, since we obtained
the formulation of Problem by chopping a delay Liapunov matrix into pieces of length
h, any Liapunov matrix for the weight W will also be a solution of Problem [6.70] If this
solution is unique, then we obtain —analogously to Corollary that Uy (t) = Vi(h—t)"
forallk=0,...,m—1,t € [0,h]. O

Now for further analysis, the equations of Problem can be brought into matrix form
by using Kronecker products.

Problem 6.72. Consider the tuple (Up—1,...,U, Uy, Vo, Vi,...,Vin_1). The system of
ordinary differential equations corresponding to the vectorization of the conditions in Prob-
lem [6.70] then takes the form

Al eI ... Al eI Al eI vec Upp—1
. Al @I Al ol ... Al oI vec Ug
T = T T T T, T =
—I®AL, —-I®Al , ... —-I®A] vec Vi1
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The boundary matrices M and N satisfying M + Net = —(Ve%W) are given by

Ajel ... Al eI Al®l I®A)L I®Al | ... I®A]

1,2 —1,2

n n

1,2 —1,2

The system matrix A in Problem has the structure of a block Sylvester resultant
matrix, see Lang [02] for a general discussion of resultants. Note how the symmetry
condition Uy(0) = Vy(h) nicely fits into the conditions which join the solution segments
together. The existence and uniqueness issues for this boundary value problem are again
attached to the regularity of M + Ne*”.

We study the properties of such block resultant matrices. The following proposition con-
tains the basic facts.

Proposition 6.73. Suppose that p(s) = >, Ais' and q(s) = >7"_ Bjs’ are polynomial
matrices of degree r > 1 with A;, B; € C™" and A;B; = BjA; for all t,57 = 0,...,r
where Ay and B, are reqular. There exists a common root s € C and a non-trivial vector
x € C™™ such that p(s)x = 0 = q(s)x if and only if the determinant of

Ay ... Ay A,
B Ay A A,
=18, ... B, B,

By B, ... B,

2rn2 x2rn2

18 Zero.

Proof. If s € C is common root s of p and ¢ and = # 0 is a suitable vector such that
p(s)xr = 0 = q(s)z, we construct the column vector z := (z, sz,...s* 'x). Then

Ay ... A1 A, x p(s)z
B Ay A . A, sl | sip(s)x |
oAz = By B, B, s'x | q(s)x =0
By By ... B. s¥rly s"q(s)x

Thus Az = 0 for z # 0 implies that det(A) = 0. On the other hand, if det(2) = 0 then
there exists a non-trivial vector « partitioned into x = (z1, ..., zs,) with z; € C" such that
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Az = 0. As Ay and B, are invertible, let us set Ay; = AalAi and B, ; = Br_lBj. Then the
structure of 2 implies that fori=1,...,r

Tip1 0 I x; z; —Ao1 —Aog2 ... —Aos\ [Tiv1
Tit2 - Tit1 Tiy1 0 I Tit2
= 5 =
I
r+1 —Dro —Prl-... —DPrr-1 r+i—1 r4+i—1 r+1
T B B B T T I T
—:B+ —A-

If we define Z; = (x;,...x,.;_1) € C™ then this can be written compactly as z;,; = B*Z;

and ; = A~Z;4, for alli = 1,...,r. Now consider the product A~ B*. The vector ; is an
eigenvector of this product corresponding to the eigenvalue 1. Considering just the first
block-row in this product gives us for i =1,...,r
r—1 r—1
— Z AO,kxi+k -+ AOJ« Z Br’kak = XT;. (686)
k=1 k=0

Since A; and B; commute, multiplying (6.86)) with Ay and B, yields

<
—_

(ATBk - AkBr)fL'i—i-k = 0.

0

B
Il

Hence all z;, i = 1,...,r, are contained in the kernel of the matrix
7 = [AT‘BO - A()Br, ArBl — AlBry N aArBr—l — A?”—].BT] .

Therefore BT, A~ : ker Z — ker Z. We have found a subspace which is invariant under B™
and A~. Thus there exists an eigenvector in ker Z, say Z, corresponding to an eigenvalue
¢ € Cof B". But if Z is an eigenvector of Bt then it is also an eigenvector of A~
as 2 = A Btz = (A %. Due to the structure of BT, this eigenvector is given by Z =

(2,(z,...,("12). Clearly, for powers of BT, Z will also be an eigenvector. Therefore
A(z,Cz,...,¢*12) = 0, which implies p(¢)z = 0 = ¢({)=. O
As the system matrix A of Problem satisfies the assumptions of Proposition[6.73], there
are eigenvectors x; of A which are given by vectorizations of tuples (Z;, (;Z;, ..., (? ™ Z;)

where (; € C and Z; € C™*", corresponding to an eigenvalue \; of A. These eigenvectors
satisfy

S ZiA =Nz and =Y Al (FZi= N2 (6.87)
k=0 k=0

Now assume that the boundary matrix B = M + Ne/" is singular and that there exists
r =) .a;z;, x # 0, such that

0= Bx = Z al(Mxl + N@Aihxi) = Z a; (VeC()\iC;;m_lzi, Zia QZZ, ey C,?m_QZZ)
i i (6.88)
—Nvee( =G Zi, G Zis G s GV 2),
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where we used ([6.87]) to obtain

1

Mz; = VGC(Z G2 A 25, Gy G ) = vee NG T s, iy G0 2,
k=0

Nz; = VeC(Z Al Zis =Gy, =G Z) = vee (NG Ziy —GZiy - — G Z).
k=0

From (6.88) we have ¢; = e %" for all indices i with a; # 0. We still have to verify the
first block-row of (6.88]) which reads

m

0=> a (g’“ S ziA+ G i A;k(fZi> :
i k=0

k=0

But by ((6.87) this term vanishes if

Z (M -y e_AikhAk.) =0 and ("Z/ (—)\i -y e—A*m—“hAm_k) = 0.

k=0 k=0

Therefore det(£N1 — Y " e **" A;) = 0 for all ¢ with o; # 0. Hence we have no uniquely
determined delay Liapunov matrix if for a suitable index ¢ both \; and —\; are eigenvalues
of the delay equation (6.1)) for commensurable delays.

Ezample 6.74. We now calculate the delay Liapunov matrix U(t) on t € [0,2] which is
associated with the equation

#(t) = Ao (t)+ Az (t—1)+ Az (t=2), where Ag = —(55), A1 = (07 %), A2 = (%" 09

with h = 1. Consider the vectorization of the tuple (Uy, Uy, Vp, Vi) as state. Then the
system matrix A and the boundary matrices M, N are given as in Problem [6.70] Now
given a weight W we find an initial value by computing zq = (M + Ne/h)~! (7 o W). Due
to the symmetry in the solution segments we need to solve the associated initial value
problem only on [0, #/2]. Rearranging the solution segments via

(1) = Uy(t — kh) ift € [kh, (k+ 3)h],
C\Vi(h = (t—kR)T ift € [(k+ D)h, (k+ )R],

we obtain the solution depicted in Figure with weight W = 61. [ |

Remark 6.75. We have not addressed the problem of delay margins for stability of delay
systems with commensurable delays. The main problem with the presented approach is
that it only considers the “unit” delay h. Hence a stability analysis starting from a solution
of Problem would have to ensure that the commensurability of the delays stays intact,
regardless of perturbations in the unit delay hA. Under this premise, the results for critical
delays can also be used in the commensurable case.
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0 0.5 1 1.5 2
Figure 6.6: Components of the multi delay Liapunov matrix U(t),t € [0, 2].

6.7 Scalar Differential Delay Equations
In this section we study the scalar delay equation with one delay
&(t) = apx(t) —ayx(t —h) with a9 <0,a; #0, (6.89)

and the scalar equation with commensurable time lags
z(t) = apx(t) + Zak:c (t — kh), (6.90)

for which we apply the obtained results.

Let us first consider the one-delay case . The continuous dependency of the spectrum
of equation on the delay is seen easily in this case. In the real scalar case the partial
derivatives of f(h,\) = A — ag — a;e~* are given by

0 - 0
8—§:1+a1h6 A f—a)\e

We only consider solutions (h, \) with f(h,\) =0, i.e., A\ — ag = a;e~*, hence we obtain

U =1+4+h(A\—ap), L =X)—a).
In particular, the only critical point with f(h,A\) = 0 and %(h, A) = 0 is located at
A = ag — h™! € R. This can only occur if a; < 0, as additionally e®"~! = —a;h has to
hold. A monotonicity argument shows that in this case there exists only one real solution
ho of et = —a;h. Hence the implicit function A(h) with f(h, A(h)) = 0 is continuous
on h € (0,hg) or h € (hg,00) depending on whether h < hy or h > hg as there are no other
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critical values for which the partial derivative vanishes. Moreover, if a; > 0 then there
exist no critical values, and A(h) is continuous for h > 0.

Let us now set up the data according to Problem |6.45|in order to solve for a delay Liapunov
matrix. We obtain

_ [ @o ai _ (@ @ _ (@1 ao
=G S) () v ()
By Corollary , equation ([6.89)) is stable independent of delay if the spectrum of A
contains no imaginary eigenvalues. Now det(s] — A) = s? — a2 + a? has only real roots
for a3 > a? and only purely imaginary roots for a2 > af. Therefore we have stability
independent of delay if (6.89)) is exponentially stable, ag + a; < 0, and |ag| < |ay].

Let us now consider the case |ai| > |ag|. We determine the delay margin for (6.89). For
this analysis we need the eigenvectors of A which are given by (_ao izil/m) corresponding

to the eigenvalues +iy/a? — a3. Hence the scaling factor associated with A\ = i\/a? — a3

is ( = e M = ’\;% which is of modulus 1. We obtain the delay margin, the first critical

A=ay _ o~k

value for h, as the smallest positive solution of ( = -

Example 6.76. Let us take a look at the hot-shower Example[6.1] There we had ag = 0 and

a; < 0. From the spectral analysis of A we obtain A\ = i |a;| and therefore ( = —i = el
The smallest positive solution of this equation is given by h* = —34; > 0, which is the
delay margin.

With the data from Example , namely a; = —1, the delay margin h* = 7 satisfies
1 < h* < 2. Hence our assertions about the exponential stability of for the delay
h =1 and about the instability for the delay h = 2 are correct. |

For the multi-delay case , we set up the data according to Problem m The system
matrix A is given by

Qo e Q1 Qo
Qg aq Ce a
A = m c R2m><2m.
—Qyy ... —A71 —Qo
—Qy, —AQAmp—-1 ... —Qp

This matrix is a resultant matrix. Hence det(A — A) = 0 if and only if the polynomials
pa(s) i= (ag — A\) + 37, ars® and gx(s) := 31y @m_xs" + (ap + A\)s™ contain a common
root, see Gantmacher [45]. Now ¢,(s) = s™p_,(s7"') which again demonstrates the intrinsic
symmetry of the problem. Moreover, the common root ( € C coincides with the scaling
factor from which an eigenvector (1,¢,...,¢?™ 1)T of A is constructed. For a stability

analysis, we have to consider purely imaginary eigenvalues A = 1w of A and solve for h in



6.8. NOTES AND REFERENCES 181

¢ = e M to get candidates for the delay margin. If we set
AO fry c . A , Al — t. . ,

then we can rewrite as the one-delay matrix equation @(t) = Aoz (t) + A1z (t — mh).
However, it has not been investigated in which way the delay Liapunov matrices of both
formulations are related.

6.8 Notes and References

This chapter has grown out of the article [80] with V. Kharitonov, see also the references
therein. In contrast to this article, where Liapunov-Krasovskii functionals over C' have been
considered, we embed them here into an M?-framework. Functional analytic approaches to
delay-differential systems can be found in many books, e.g. Hale and Verduyn Lunel [51]
and Diekmann et al. [33]. Our discussion of the M?2-inner product follows Curtain and
Zwart [29]. For application of this calculus to neutral-type delay systems, see Salamon [122],
for an application to partial differential equations with delay, see Batkai and Piazzero [10].
The book [110] by Niculescu is a valuable resource for results on delay equations. MP-spaces
for delay equations are discussed in Bensoussan et al. [16].

To embed Liapunov-Krasovskii functionals v which satisfy

— () = ¢ (0) Wou(0) + Z (=) Wisp(—hy) +Z / Wosisp(0) db,

k=

like the ones discussed in [81) [79] into an M?-framework one needs an augmented M?-
space which also respects all delayed states, (©(0),(=h1),...,0(=hm), @) € (R")™ x
L*([-H,0],R™). A different approach of prescribing the terms of the functional v(@) is
chosen in most papers dealing with the construction of Liapunov-Krasovskii functionals
[97, M9]. Such an approach does not automatically lead to positive definite functionals
0(p), hence the functional v might not provide exponential estimates for the solutions of
the delay system.

Proposition can be found in Datko [32], a systematic study can be found in Kharitonov
and Zhabko [81]. Smith [127] has shown that a solution of the classical delay-free quadratic
Liapunov function —(Q) = PA 4+ A*P is given by

— —/ (iw)* QG (iw)dw where G(s) = (sI — A)™!

The counterpart for Liapunov-Krasovskii functionals associated with systems with one
delay is obtained in Louisell [96], which we extended to the multi-delay case in in Propo-

sition [6.291
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The Infante-Castellan approach of solving the one-delay Liapunov matrix goes back to the
articles [73, 28], see also [32]. Unfortunately, Infante and Castellan state in their article
[73] that the existence and uniqueness issue has been solved in their earlier paper [25].
However, those results are not applicable.

The computation of delay margins is discussed in Hertz et al. [55]. A method working with
matrix pencils can be found in Chen et al. [26], see also the overview in Niculescu [110].
For a method working with LMIs, see Bliman [19].

Computational issues for the numerical solution of differential delay equations can be
found in Bellen and Zennaro [I3]. Numerical methods to obtain the spectrum of a linear
differential-delay system are discussed in Breda et al. [23].



Chapter 7

(M, 3)-Stabilization

In this chapter we study the synthesis of state feedback matrices for linear dynamical
systems such that transient effects are taken into account. Let us first extend Definition
to dynamical systems with inputs. We will only consider the case of real data.

Definition 7.1. A linear time-invariant system of the form
t(t) = Ax(t) + Bu(t), t>0, AeR™™ BeR™™, (7.1)

is said to be (strictly /uniformly)(M, [3)-stabilizable by state feedback, if there exists a ma-
trix £ € R™™ such that the closed loop system @(t) = (A—BF)x(t) is (strictly /uniformly)
(M, B)-stable. For the special case M =1, § = 0 we will call the pair (A, B) contractible.

Our main tool for the investigation will again be the initial growth rate with respect to
some norm as for (A — BF') < 0 the closed loop system generates a uniform contraction
semigroup with respect to this norm. We opted for the synthesis of uniform contraction
semigroups, as the inital growth rate does not provide us with methods to differentiate
between strict and weak contractions. In the following we identify those systems which
allow for a uniform closed loop contraction. To allow additional freedom for the transient
bound M, we consider general norms ||-||. Later on, we fix the Euclidean norm and study
quadratic (M, ()-stabilizability.

7.1 Synthesis of Contractions
If the system (7.1) admits a feedback matrix F € R™*" such that the closed loop system

matrix Ap = A — BF generates a uniform contraction then this feedback has to satisfy
u(Ap) < 0. Let us first investigate the vector case (m = 1).

x(t) = Az(t) + bu(t), AeRY™ beR™ (7.2)

183
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We assume that a norm of interest ||-|| is given and we denote its dual norm by |||,

see ([2.16]). For a given b we set

Vti= {:L' € R"| for all dual vectors y of z, y'b > 0} ,
V™ := {z € R"| for all dual vectors y of 7, y b < 0}, (7.3)
VY= {a: € R"| there exists a dual vector y of x with y'b = 0} .

For our first result the following assumptions are needed.
(A1) VO contains a real hyperplane H° defined by a suitable vector h # 0 through

HY .= {a:GR"} hT[L':O}.

(A2) For all z € H, ||z|| = 1, there is a uniquely determined vector y,. such that (z,y.) is
a normed dual pair.

The hyperplane H° separates the sets V't and V~ = —V*. The assumption (A2) is
satisfied for quadratic norms but not necessarily for arbitrary norms. In general, given a
specific norm only a few vectors will have this property as the following Lemma shows.

Lemma 7.2. If (A2) holds, then for every dual pair (x,y) of ||| with x € H® and y'b =0
the normed vector y/ ||y||* is an extremal point of ||-||*.

Proof. Assume that (x,y) is a unitary dual pair of ||-|| with z € H and y"b =0, ||y||" =1
such that y is not an extremal point of ||-||". By Definition the unit sphere of ||-||*
then contains a face given by conv(yi,...,yr) 2 y with |ly;|" = 1,4 = 1,..., k. But
if (2/,y) is a dual pair of ||-|| then (z/,4') is a dual pair for all ¢y € conv(yy,...,yx), see
Proposition (711). Hence the dual vector of 2" is not uniquely determined. By definition
2’ € VO, and for x = 2’ we see that there are vectors in H° that have no uniquely determined
dual vector. ]

Corollary 7.3. If the unit sphere S of |-|| is smooth (see p.[9) then (A2) holds.
The role of (A1) is investigated in the following lemma.

Lemma 7.4. Given a vector b € R"™ and a vector norm ||-|| in R™. The following two
statements are equivalent for h € R™, h # 0.

(i) For all dual pairs (z,y) of |||,

y'bh x>0 and y' bh'x >0, Vedkerh',ydkerd'. (7.4)

(ii) The set VO in (7.3) contains a hyperplane H°CV° given by H'={xeR™|h'z=0}.
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Proof. (i) == (ii). For a given h € R" we take € H° = kerh'. Then h'x = 0.
By (7.4), y € kerb" holds for all dual vectors y of 2. Hence H° C V°.
(i1) = (i). We define the real halfspaces

HY :={zeR"h'z>0}, H ={zeR'|h'z<0}. (7.5)

Now, h'b # 0. Namely, suppose that h'b = 0. Then b € H° C V°, whence there exists
a dual pair (b,a) with a’0 = 0. But this is a contradiction as dual pairs (b,a) always
satisfy a'b > 0. We therefore can assume without loss of generality that A'b > 0. First
note that if (x,%) is a normed dual pair then y'b is a subgradient of the convex function
g:t— |z +1tb]| at t =0, since

g(t) = llz + 0] =y (z +tb) >y (x + tb) = |Ja]| + ty b (7.6)

holds for dual pairs (x + tb,y:), ||y:||” = 1, see Proposition (). If x € VT, ie,
y b > 0, this implies that the function g is strictly increasing in ¢ = 0 and therefore for all
t>0. Ifx € VTN H™ then as h'b > 0 we have that x + t;b € H° for some ¢t; > 0. By
assumption there exists a normed dual vector y; of z 4 t;b which satisfies b'y; = 0. This
implies that g has a minimum in ¢, as

29(t)|,_, = Lllx+ 0]l |,_, =yib=0.

This is in contradiction to the convexity of ¢, as g is monotonously increasing on ¢t > 0 and
has a minimum in #; > 0. Hence the intersection V™ N H~ and analogously V- N H™" are
empty. As Vt C H*, V- C H~ we have that y "bh'z > 0 for all dual pairs (z,y) and it is
easy to see that y'bh'z > 0 for all dual pairs (z,y) such that y € kerb", z € kerh". O

Hence (A1) guarantees the existence of a “quasi-semidefinite” matrix bh' for the norm ||-|.

With the addition of Assumption (A2) we can conclude the following.

Theorem 7.5. Consider system (7.2) and the norm ||-||, and assume that (A1) and (A2)
hold. Then the pair (A,b) is uniformly contractible with respect to ||-|| if and only if

y'Az <0 for ally € kerb' and 2 € R™ such that (x,y) is a dual pair. (7.7)

Proof. Tf (A,b) is uniformly contractible then there exists a vector f € R'™ such that
A —bf generates a uniform contraction semigroup, or equivalently, for all dual pairs (x,y)
of ||-|| the strict inequality y' (A — bf)x < 0 holds. For dual vectors y € kerb' of x this
implies that y' (A —bf)z = y" Az < 0, hence proving necessity of (7.7). We now show the
existence of a suitable feedback if holds under the assumptions (Al) and (A2). By
Lemma there exists a hyperplane H° induced by the vector h which separates V+ and
V= of . We now claim that for « sufficiently large we have

y (A —abh")z <0
for all dual pairs (z,y). Note that it is sufficient to prove this on the compact set

Z = {(w.)| Iyl"= 2| = y"2 = 1} = {(x,) unitary dual pair}
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By continuity, the set Z_ C Z of points satisfying y"Az < 0 is open in Z. Assumption (A2)
now implies that Z_ contains a set of the form

Z.={(v,y) € Z_| —e<h'z <e}

for £ > 0 sufficiently small. Now, if (z,y) € Z\ Z. then |h"z| > e. Furthermore, there
exists a § > 0 so that y'Az > 0 implies |y'b| > 4, otherwise we obtain a contradiction
to . We have by Lemma that y"bh'z > 0 on Z \ Z.. If additionally y'Az > 0
holds then 3 "bhT2 > de > 0. Hence setting

2 T
= o (;g;?gz |y "Az| >0, (7.8)
we easily see that y Az — ay"bh"z < 0 for all (z,y) € Z. ]

Remark 7.6. Note that the term max(,y)ez |y Az| can be replaced by max{u(A),0} as
only the positive terms y Az have to be bounded. Moreover, note that the construction
in the previous proof relies on a high gain type argument. We have constructed h such
that always y"bh "2 > 0. This implies that if A — agbh' generates a uniform contraction
semigroup then the same is true for A — abh' for all & > «y. Such a high gain idea is not
feasible in all situations. For example, consider a system given by

-1 ¢ 0
A= b=
and assume that we want to generate a uniform contraction with respect to the 1-norm

||, - The kernel is given by kerb' = R([l)) and the (unique) vector x such that (z, ((1)))

is a dual pair is given by x = e;. An easy calculation shows (é)TA((l)) = —1 so that
condition (7.7) is satisfied. Note that H° from (A1) has to be H® = Rey, but (A2) is not
satisfied for H°. Also Ae; is not pointing inside the unit ball of ||-||, which can be seen by

calculating (fl)TA((l)) = 1 and noting that (fl) is dual to e;. If we now consider possible
feedback matrices (f; f2) then we see that

—1 c
A‘bf:(—2—f1 d—fz)'

Hence for f; € (—3,—1) the matrix A — bf is diagonally dominant in the first column.
Similarly, fo > max{d + ¢,d — ¢} ensures that A — bf is pointing inward at e;. Hence
A —bf generates a contraction semigroup with respect to |||, if and only if

fe {[fhfz] € ]le} fie(=3,-1), fo > max{d—i—c,d—c}}.

In particular, for any choice of f that leads to a uniform contraction semigroup there is
an «aq such that for all & > ag, A — abf is not dissipative. Hence there is no high-gain
feedback as in Theorem [7.5l
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Figure 7.1: A closed loop contraction with respect to ||-|;.

Ezample 7.7. Choosing ¢ = 6,d = —3 in the previous remark gives A = (=3 %). The
allowed feedback matrices [f1, fo] can be selected from f; € (—3,—1) and f, > 3. Figure[7.]]
shows a trajectory of & = Az which leaves the (dotted) unit box of ||-||; and a trajectory

of the closed loop system with f = [—1,3]. Here A — bf = (1 %) is only marginally
diagonally dominant, and the closed loop system generates a strict contraction but not a
uniform contraction. For f = [—3, 3] the closed loop becomes only marginally stable as
A—bf = (7' 5) is singular. |

To treat the case of higher dimensional input spaces the following result can be easily
obtained from Theorem [7.5] Again the assumption (A1) and (A2) are crucial. To apply
the same arguments as before we have to assume that for each of the columns of B the
assumptions (A1), (A2) are satisfied individually. Note, however, that using a state trans-
formation R on the input space, this property might be obtained for the matrix BR, while
it is false for B.

Theorem 7.8. Consider system (7.1) with A € R™"™ B € R™™ and the norm ||-||.
Assume that for each column b; of B, j = 1,...,m the properties (A1) and (A2) are
satisfied. Then the pair (A, B) is uniformly contractible if and only if

y' Az <0 for ally € ker B" and x € R" such that (z,vy) is a dual pair. (7.9)

Proof. The necessity of (7.9) is obvious. For sufficiency, consider the matrices H =
[hi, ..., hy] and A = diag(ay,...,q,) obtained from Theorem for each column b;
of B,j=1,...,m. Then for F = #AHT

y (A—BF)x =y (A — Z %bﬁ;) xr = y' (A- Ozjbjth) x < 0.
j=1

1
m
1

m
j:

Hence the pair (A, B) is uniformly contractible. ]
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By replacing A with A — 31 in Theorem we obtain the following result for arbitrary
decay rates.

Corollary 7.9. Under the assumptions of Theorem there exists a feedback matrix
F € R™™ for a given decay rate 3 < 0 such that (A — BF) < 3 if and only if all dual
pairs (x,y) with y € ker BT satisfy y" Az < By z.

Let us return to the system (7.2). We now discuss stabilization results which can be
obtained without postulating (A2). As we have already seen, to guarantee the existence
of a feedback f with pu(A —bf) < 0 we have to assume that

for all dual pairs (z,%) of ||-|| with y € kerb” : y" Az < 0. (7.10)
Let us now define for every vector x € R" the following set of feasible feedback vectors,
F. = {f c RY*" { for all dual vectors y € R” of z, 3y (A —bf)z < 0} .

Depending on the sign of y'b this definition can be reformulated, namely, if z € V* we
have

F, = {f e RIxn y;fb’“" < fx for all dual pairs (z, y)} ;

if x € V- we set

F = {f c RIxn f&? < y Az for all dual pairs (l’,y)} )

y'b

and if x € V° both of the above conditions have to be considered, i.e.

F, = {f e RIxn nyTAf < fx for dual pairs (z,y) with y'b > 0, and
(7.11)
fr< nyTAIf for dual pairs (x,y) with y'b < O}.

Now suppose that z € V0 and that there are dual vectors y;, y» of x satisfying y, b > 0 and
Yo b < 0. Then there exists A € (0, 1) such that (z, y3) is a dual pair with y3 = Ay +(1—\)ya
and y4 b = 0. By (7.10), y3 Az < 0, i.e., Ay Az < (A — 1)y, Az. Now, dividing by Ay b =

T . y, Az yJ Az
(A —1)y, b > 0 gives ﬁ < ;;b ,

hence for the case x € V° there is always a feasible set

of feedback matrices.

By construction, a feedback matrix f € R'" which is taken from the set F = (), 5 Fo
gives a closed-loop matrix A — bf which generates a contraction. But the set F could be
empty. We study this in more detail when the norm of interest is a polytopic norm.

7.2 Contractibility for Polytopic Norms

We have seen in Lemma [4.16| that dissipativity with respect to a polytopic norm needs
only to be checked for a finite set of extremal points. The test for contractibility therefore
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generates a finite set of linear inequalities. However, Lemma shows that in general (A2)
does not hold for polytopic norms, since points inside the faces of its unit sphere are not
extremal.

If ||-|| is a polytopic norm given by its set of vertices (extremal points), C' C R", then
the dual norm is also a polytopic norm, given by the set C* C R™ which corresponds to
the normals of the faces of S¢ := {x € R"| ||z||, = 1} = conv(C). We want to determine
conditions such that there exists a feedback matrix F' € R™*"™ with puc(A — BF) < 0. By
Lemma this is equivalent to y " (A+BF)z < 0forallz € C and y € C* with y "o = 1.
However, for y & ker BT, we have to find a feedback ma-

trix F such that y"BFz < y'Axz. As both C and C* :
are finite sets, this condition generates a set of finitely : PRI /
"

many inequalities for F'. But it is not clear if this set of
inequalities is feasible.

Figure demonstrates this situation. The set C' is given L ?

as the vertices of the left cube, the set of dual extremal

points is given by the vertices of the octahedron on the

right. BT now projects the dual vectors y € C* down into D *

some subspace, where they again form some polytopic

norm (not all vertices will stay extremal). We now have

to find a map F on the C- side such that (conv FFC)* =

conv(B*C*). Then y*BFxz > 0 for all y € C* and x € C.  Figure 7.2: Polytopic Norms.
This general problem is as yet unsolved. For a result

involving linear transformations of convex sets, which leads the way to a possible solution,
see [120, Corollary 16.3.1].

Let us return to the case m = 1, hence b € R" is a column vector in . We now discuss
the set

F= ﬂ {f ERIX”’y is a dual vector of z with y' (A — bf)x < 0}.

TESC

By Lemma only the extremal points have to be checked for dissipativity. Thus we
have F = (,.- F» and the sets F, are given by finitely may inequalities of the form
y" (A —bf)z < 0 for suitable y € C*. For further analysis, let us define the set

Wt = {(w,y) ceCxC” ‘ (z,y) is a dual pair and y'b > O} )

Hence if 2 € VT N C there exists a vector y € C* such that (z,y) € WT. Moreover,
for dimension n > 2, every vertex x € C has more than one adjacent face such that for
r € VONC there exists a y € C* with (x,y) € W+ or (—z,y) € W depending on the sign
of y'b. Hence W is located in a half-hyperspace. To this end, if both (x,%) and (—z, —y)
were elements of W+ then y'b > 0 and —y'b < 0 which is a contradiction.

Lemma 7.10. The z-components of W are separable from V= by a suitable hyperplane.
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Proof. Let x € (V- UV?) NC. Then all dual vectors y of x satisfy y"b < 0. For these dual
pair (x,y), y'x = 1 holds and for all 2 € VT NC we have y "z < 1. Hence z & conv(VNC).
Therefore the convex cone generated by VTNC' is separable from the convex cone generated
by V= N C using a suitable hyperplane. ]

Let us assume that ([7.10) holds. As there are only finitely many points in W7 the set of
feasible feedback vectors satisfies

F= () { f e R>™
(xy)ew+
This set is non-empty as the points in W™ are located in a half hyper-space and dual pairs
(wg,y0) With zg € VONC, yo € kerb" have no effect on the set F. To this end, consider
a dual pair (zg,y) € W' and a continuous path y : [0,1] — R™ deforming y(0) = y into
y(1) = yo such that y(t)'x =1 for all ¢ € [0, 1]. Then the quotient yl(/t(g%x
for t — 1 since y(t)" Az becomes negative by .

Remark 7.11. If both 2 and —x are first components of dual pairs in W then z € V? and
the feasible set is contained in a linear strip given by . As there exists a hyperplane
which separates V* and V~, we find a vector h € R" such that 2"z > 0 for all (z,y) € W.
Note that generally, h # b.

Ezample 7.12. Consider ||-|| = ||-||,, on R®. For b = e, its kernel is given by kerb' =
span(ey, ez). The set VO N C consists of all extremal points (£1,41 + 1)7 of S, and
W+ = {((£1,£1,1)7,e3)} as ez is the only extremal point of the dual norm |-||, with
e3b > 0. Hence any A for which there exists a closed-loop contraction with respect to |||
must already satisfy e] Az < 0 for # = (1,£1,41)7, and ej Ar < 0 for z = (£1,1,£1)"
Therefore the conditions on a suitable feedback vector f € RY™™ are fr > e] Av,z =
(£1,41,1)". Let us consider the matrix

-
y'Azx
f‘r> yTb

approaches —oo

-4 2 -1
A=1[3 -5 1
6 -7 8

The first two rows are already diagonally dominant, and evaluating the conditions for
feasible feedback vectors gives the conditions

f(lv 17 ]-)T > 77 f<]-7 _]-7 ]-)T > 2]-7 f(_17 17 1)T > =9, f(_17 _17 1)T > 9.
For example, f = (0,0,24) is a feasible feedback vector. [ |

7.3 (M, 3)-Stabilizability

The questions which we are interested in this section are based on the following problem.
Consider the linear time-invariant system

#(t) = Ax(t) + Bu(t), (7.1)
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where A € R™" B € R™™ are given. We are looking for a feedback matrix F' € R™*"
such that the closed-loop matrix Ap = A — BF' is dissipative or satisfies a (M, 3)-stability
requirement for given constants M and (. Corollary immediately leads to

Corollary 7.13. The system (7.1)) is uniformly (M, 3)-stabilizable if and only if there
exists a norm v(-) on R™ with eccentricity eccv < M and a feedback matriz F' € R™ ™
such that u, (A — BF) < (3 holds.

We now identify for a given vector norm v(-) those initial vectors which have a growth rate
larger than allowed, and those initial vectors for which the initial growth rate is invariant
with respect to any feedback matrix. We define the following sets

(7.12)

Ma() = {zeRY| sup >4,
(ya)=v(y) v(z)

K(v) = {z € R" |for all y € R", with (y,x) = v(y)*v(z), y Eker B' }.

The set M contains those initial vectors x( for which the associated solution has an initial
growth rate of at least (3,

Mg = {zo € R" ‘ (5Lv(z(t,20))|em0) = Br(zo)} -

The set K contains those initial xq vectors for which the initial growth of the associated
solutions remains constant under all possible feedback matrices, since all of the dual vec-
tors are contained in the kernel of B'. If the intersection of these two sets is non-empty,
then there are solutions for which the initial growth is too large, but this growth cannot
be controlled by any choice of linear feedback. Hence we have the following necessary
condition.

Corollary 7.14. Given a vector norm v with eccentricity eccv < M. Suppose there exists
a feedback matrix F' such that the initial growth rate of the closed-loop system satisfies
p(A— BF) < 3. Then

Mgs(v) N K(v) = {0}. (7.13)

We will show in the following that this condition is also sufficient when dealing with
weighted Fuclidean norms.

7.4 Quadratic (M, §)-Stabilizability

In this section we consider weighted Euclidean norms. Moreover, there are no difficul-
ties when allowing for complex data. Since we consider elliptical norms v(z) = ||z||, =
(x,Px)l/ > where P = 0 is some positive definite weight in C"*", dual pairs are always
uniquely defined by (z, Px) because (Pz,z), = Va*Px\/(Px)*P~'(Pz) = ||z| » | Pz||p.
These weighted Euclidean norms must be compared with the standard FKuclidean norm.
We have already seen in Section that this involves the use of Hermitian matrix pencils
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and quadratic Liapunov functions. The Liapunov operator which maps P to PA + A*P
for a given A € C™"*" is denoted by L 4.

The underlying stability concept used in this section is called quadratic (M, 3)-stability,
see Boyd et al. [22].

Definition 7.15. Given the constants M > 1,3 < 0, a matrix A € C™*" is called quadrat-
ically (M, 3)-stable if there exists a positive definite Hermitian matrix P > 0 such that

ke(P) < M? and L4(P)= PA+ A*P < 23P.

A pair (A, B) € CV" x C™™ is called quadratically (M, 3)-stabilizable if there exists a
matrix F' € C™*" such that A — BF is quadratically (M, [3)-stable.

If A is quadratically (M, 3)-stable then by Lemma [3.31] up(A) < 5. Hence A is the
generator of a uniform contraction semigroup with respect to the P-norm. Let us now turn
to stabilization issues. As dual vectors are explicitly known, the sets Mg(P) = Mg(||-|| p)

and X(P) = K(||-||p) of (7.12) are now given by
Mg(P) ={z € C"|2"PAx > Bax" Pz} = {zx € C" | 2" L4(P)x > 20z Px},
K(P) ={x € C"| Px € ker B*} = ker B*P.
Theorem 7.16. Consider the pair (A, B) € C"*" x C"*™ and constants M > 1,3 < 0.
The system & = Ax + Bu is quadratically (M, [3)-stabilizable if and only if there ezists a
matriz P = 0 with ky(P) < M? such that
Mgs(P) Nker B*P = {0}. (7.15)

Proof. The initial growth rate for a weighted quadratic P-norm is given by (13.27)). From
the fact that HeAtH < MePt «— He(A*M)t” < M, t > 0 the following equivalences hold
for any P-norm

up(A) < <=V € C"\{0}: (z,(PA+ A*P)x) < 2f{x, Px) <= LA(P) < 26P, (7.16)

(7.14)

where the Hermitian order relation is given with respect to the standard inner product.
Let us first assume that there exists a suitable P = 0 with ry(P) < M? and Mp(3) N
ker B*P = {0} . We show that there exists a feedback matrix F' such that (A — BF) <
by considering L 4_pr(P). Applying a Q) R-decomposition on B and transforming the data
with the resulting unitary matrix @), we get the following partition of the matrices, where
we conveniently retain their names

(A Anp (R _(G1 Gy (P P
A (B A o (), mee (@), e (D %)
According to this partition, the blocks of L4_prp(P) = (Ei; f;i) take the form

L= £’1411—G1 (Pl) + P12A21 + A;1P1*2’
L1z = Pi(A12 — G2) + PraAss + (A — G1)"Pra + A5 P,
Loy = La,, (P2) + P(A1z — Go) + (A1 — G2)* Pia.
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The kernel of B*P is the largest subspace which is invariant under changes of the feedback

matrix. This can be seen as follows. Since R in ((7.17)) is invertible, the kernel of B*P

7P17]1P12)

is spanned by the columns of ( . Here, P, > 0 is invertible as it is a principal

submatrix of P > 0. The term

N —p7lp
(=PyPrY 1) La_pr(P) ( 11 12)
= P1*2P1_1L11P1_1P1*2 - P1*2P1_1£’12 - £‘y1K2P1_1P12 + Log
= PP an o (POPT Py + £ gy o, (P P Pro) (7.18)

- (LA22(P1*2P1_1P12) + P1*2P1_1’£’A11—G1 (Pl)P1_1P12 + LAglelPlg (P2)> + LA22(P2)
= £Agr,almP;le(lD2 - P1*2P1_1P12)

does not depend on the choice of the feedback matrix. Hence, for every x € ker B*P
the term z*L 4 pr(P)z is independent of F. But if we take a vector x = (“"8) ¢ ker B*P
then x — z*L4_pp(P)r = xjL1171 depends on F', thus ker B*P is the largest subspace
such that z +— x*L4_pgp(P)x = *L4(P)z is independent of F. To achieve a growth rate
of less than 3 with a suitable feedback matrix F', the inequality £L,4_gr(P) < 28P has to
hold, see , which transforms into

1 0 I —Pflplz Py 0
(—PfQPI—l I) La-pr(P) (o I <20\0 p-pPyPPy)

Hence the following matrix must be negative definite.

( L1 —208P —511P171P12 + L )
) < 0.

* D— ¥ v D 7.19
— Py P Ly + L5, L,422_/12113;11312_,31(P2 — PP Pry (7.19)

Using a Schur complement this is equivalent to the following two conditions
Lty P pro—pr (P2 — PP Pp) <0, (7.20)

-1
LAllfGlf/BI(Pl)_"PlQAQl +A;1P1*2_K*<LA22—A21P1_1P12—BI<P22_PFZPf1P12>> K < O, (721)

where K := —L1 P; ' Py + L1 is the upper right block in ((7.19)), which is given explicitly
by

K = P(As — Gy — (A1 — G1) P ' Pra) + Pra(Agy — A21P1_1P12) + A5 (P — P1*2P1_1P12)-

The kernel condition is equivalent to the statement that for all x € ker B*P,
2*La_pr(P)r < 0. Then the negative definiteness of the first condition is guar-
anteed by . The second condition may be satisfied by choosing F} in such a
way that La,,—q,—pr(P1) < —(Pi2Ag + AS, Py) where Gy = RF;. Therefore, if the kernel
condition is satisfied then there exists a quadratically (M, 3)-stabilizing feedback F'.
Conversely, if the pair (A, B) is quadratically (M, 3)-stabilizable there exists P > 0 with
k(P) < M? and a feedback matrix F' such that the Liapunov inequality of holds.
Then it also holds on ker B* P, such that ker B*P N Mg(P) = {0}. O
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From the preceding proof we have the following reformulation of the kernel condition.

Corollary 7.17. Using the notation from Theorem and the partition (7.17)), the kernel
condition (7.15) is equivalent to the negative definiteness of a Liapunov matriz,

Ms(P) Nker B'P = {0} <= L, 4, prip, pr(P2— PHPr Pia) < 0.

This characterization gives necessary conditions on the inner product matrix P as the
matrix Al := Agy — Ao1 P; ' Pyy has to be stable, Plyy := P, — PP Py = 0 has to
hold, and L 4}, (P|ker) has to be negative definite. To select a weight P one could proceed
as follows. Choose P, and Py such that Ay, — Ay PPy is stable. Then choose P, in
such way that P, — P}, P! Py is positive definite and

Ltlier (P2) < L (PP Pr2). (7.22)
Let us now show that the feedback matrix F' may be chosen in a standard way.

Corollary 7.18. Consider the pair (A, B) € C"*™ x C™*™ and constants M > 1,5 < 0.
The following statements are equivalent.

(i) The system & = Ax + Bu is quadratically (M, 3)-stabilizable.
(ii) There exist v € R and P = 0 with ro(P) < M? such that
Loappp(P) < 26P, (7.23)
In this case, holds for all ' > ~.
(iii) There exists a P = 0 with ka(P) < M? such that is satisfied.
Proof. The equivalence of (i) and (i) has been shown in Theorem [7.16 Clearly, if
F = yB*P satisfies L4_pgp(P) < 26P then by definition, (A, B) is quadratically (M, 3)-

stabilizable for any M > y/ko(P), hence (ii) = (i). For F' = ~'B*P with 7/ > ~ we
have

LA—BF’(P> = LA—’y’BB*P(P) = PA + A*P — 2’7,PBB*P
< PA+ A*P —2yPBB*P = Lo pp-p(P) = La_pp(P) < 26P.

Hence F” also stabilizes the pair (A, B). Let us now show that (i) implies (i1), that is,
if holds, there exists v € R such that ' = yB*P is a stabilizing feedback. For
this let us take a look into with the data G; = yRR*P;, and Gy = YRR* Py, which
correspond to F' = vyB*P. Then

L1 = L4, (P) —2yPiRR* Py + PigAg + A Py,
K = Pi(A1p — AP Pio) + Pio(Ags — Ag P Pyo) + ASy (P — PP Pr).

Hence the off-diagonal block is independent of the choice of v while in the upper left block
v is a scaling factor for the positive definite matrix Py RR*P;. Now the lower right block is
already negative definite by , and so there exists a v € R such that is negative
definite. Thus the pair (A, B) has been stabilized by the feedback matrix F'=~vyB*P O
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Remark 7.19. Suppose 3 < 0 is fixed. If we choose the feedback matrix F' to be of the
form F' = yB*P the initial growth rate condition up(A — BF') < 3 < 0 gives rise to the
following parameterized Riccati inequality

PA+ A*P — 2yPBB*P — 28P < 0.

By Theorem positive definite solutions P > 0 exist if and only if (7.15]) holds.

We note two further consequences of Theorem and Corollary which simplify
the situation for the case that minimizing the M is more important than guaranteeing
a certain rate of decay < 0. The following corollary presents conditions for quadratic
(M, B)-stabilization for arbitrary 3 < 0.

Corollary 7.20. Consider the pair (A, B), and let M > 1. The following statements are
equivalent.

(i) For some 3 < 0 the system & = Ax + Bu is quadratically (M, 3)-stabilizable.

(ii) There exist v > 0 and a matriz P > 0 with ky(P) < M? such that

LA—WBB*P(P) < 0. (724)

(iii) There exists a matriz P > 0 with ko(P) < M? such that

{veC"|v'(A"P+ PA)v > 0} Nker B*P = {0}. (7.25)

(iv) There exists a matriz P = 0 with ro(P) < M? such that

z € ker B\{0} = 2*(AP '+ P A"z <0. (7.26)
Proof. This is immediate from Theorem and Corollary O

In the previous result, condition is remarkable as it allows for a nice geometric
interpretation of the problem. Namely, given the pair (A, B) the question is if we can
find a matrix P > 0 with xo(P) < M? such that for all z € ker B*,  # 0 the condition
Re (P~'x, A*z), < 0 holds. In other words, the system & = A*z is strictly dissipative in
the weighted inner product (-,-),_, on the subspace ker B*. A case of particular interest
is that of feedback matrices F' such that the closed loop system matrix A — BF' generates
a strict contraction semigroup for the spectral norm, that is, if we specialize to the case
M =1 with § < 0 arbitrary. Then we obtain

Corollary 7.21. Consider the pair (A, B). The following statements are equivalent.

(i) there exists a feedback matriz F' such that A — BF generates a uniform contraction
semaigroup with respect to the spectral norm,

(ii) there exists v > 0 such that A — yBB* generates a uniform contraction semigroup
with respect to the spectral norm,
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(#i) it holds that
x € ker B'\{0} = 2"(A+ A")x <. (7.27)

Proof. In fact, A — BF generates a uniform contraction semigroup with respect to the
spectral norm, if there exists # < 0 such that for all ¢t > 0

He(AfBF)tH < P,

Therefore Corollary is applicable with M = 1. In this case, the positive definite
matrices P = 0 with ro(P) < M? = 1 occurring in the statements of Corollary are
necessarily multiples of the identity. ]

7.5 Quadratic Programs for (M, 3)-Stabilization

In this section we briefly discuss how the geometric characterizations for strict quadratic
(M, B)-stabilizability obtained in the previous section can be reformulated in terms of
quadratic programs (QPs) with constraints given by linear matrix inequalities (LMIs). We
refer to [22] for an overview of applications of LMIs in control.

By Theorem the system & = Ax + Bu is quadratically (M, §3)-stabilizable if and only
if the following set is non-empty,

N:={P e H"(C)| P = 0,rs(P) < M* and Mg(P) Nker B*P = {0} } .

It is easy to see that N is a subcone of the cone of positive semidefinite matrices J’} (C),
so that if N is non-empty, then there is a P € N with o(P) C [M~2,1], hence || P||, < 1.
Furthermore, the set N is non-empty if and only if there are P = 0,x(P) < M? and
F € C™ such that pp(A — BF) < [ is satisfied. This inequality has the disadvantage
that the unknowns P and F' do not appear linearly, but by setting Q = P! and F' = X P
we obtain an LMI from L 4_gr(P) < 26P by pre- and post-multiplying with @). So all our
conditions can be summarized by the LMI

I=Q =M1,

AQ + QA" — (BX + X*B*) < 23Q. (7.28)

where the first inequality ensures that the eigenvalues of () are contained in the interval
[1, M?] which implies that k(Q) = x(P) < M? ad the second inequality implies that X P~1
is a quadratically (M, (3)-stabilizing feedback for the pair (A, B). By this simple refor-
mulation we obtain another condition for quadratic (M, 3)-stabilizability as an immediate

corollary to Theorem

Corollary 7.22. Consider the pair (A, B) and constants M > 1,3 < 0. The following
statements are equivalent:

(i) The system & = Az + Bu is quadratically (M, 3)-stabilizable.
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(ii) The LMI ([7.28)) is feasible, i.e., there exists a solution (@), X) € C**"xC™*" of (7.28)).
(i1i) There exists a solution (Q, 0) € C**"x R of the LMI

I=Q =M1,

AQ + QA* — 20BB* < 253Q. (7.29)

Proof. The equivalence of (i) and (ii) was shown in the derivation of ([7.28)). For the equiv-

alence (i1)< (iii), note first that (Q, o) solves (7.29)) if and only if (@, 0B*) solves (7.28)),
so that (44) implies (i7). Furthermore, by Corollary [7.18] quadratic (M, 3)-stabilizability
is equivalent to the existence of a stabilizing feedback of the form F' = oB*P. In this case
(Q, 0B*) solves (7.28), which implies (%ii). O
The advantage of (7i) compared to (i) in Corollary is that the dimension of the
parameter space is significantly reduced, depending on the dimension of B.

Remark 7.23. Using Corollary we can add further design objectives depending on the
specific problem since quadratic optimization problems may be solved on solution sets of

LMIs. For example, if a feedback F' of small norm is desirable, then it is advantageous to
minimize v > 0 under the constraints ([7.28]) and

v X
(1 %) xo -

Using the Schur complement it may be seen that is equivalent to v21 — X X* = 0, i.e.,
v > || X]| - As the solution set of is not necessarily closed, there may not be an optimal
solution, but at least the optimization problem yields matrices X with norm close to
optimal and for the corresponding stabilizing feedback F' we have || F|| < [| X] || P] < [|X]|-
Similarly, (7.29) may be used to minimize p.

Example 7.24. Consider the system ([7.1]) given by

-1 0 0 0 0 0 —625 1 000

0 -1 =30 400 0 0 250 0100

-2 0 -1 0 0 0 30 0010
A=15 -1 5 -1 0 0 200 |,B=10 0 0 1 (7.31)

1 1 25 =10 -1 1 =200 0000

200 0 0 —150 —-100 —1 —1000 0000

1 0 0 0 0 0 -1 0000

The transient behaviour of t — HeAtH is plotted in Figure , the eigenvalues of A are
—1,—1 410z, —1 + 204, —1 £ 25i. The vector x = e; — eg satisfies z* Az = 998, hence the
system is not a contraction with respect to the spectral norm, and as x € ker B*, there
does not exist a feedback matrix such that the closed loop system generates a contraction.
The matrix B is already an upper triangular matrixEL hence Corollary is directly
applicable.

"'We already applied an orthogonal transformation on both A and B. The original matrix A can be

found in Example
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Using partition , the submatrix A,y is already stable. Hence let us set P, = 0.
We therefore need to find a P, such that L4,,(P,) < 0 which ensures that there exists
a feedback matrix F such that the closed loop system overshoots at most x(P)"? where
P, = I, P, = 0. Using a quadratic program we find a positive definite matrix P, with
k(Py)"? = 315. Hence there exists a feedback matrix such that the transient excursion
of closed loop system stays below 315. And indeed choosing F' = —10B* gives even an
excursion below 250, as Figure |7.4] shows. |
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Figure 7.3: Transient excursions of an asymptotically stable linear system.
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Figure 7.4: Transient humps of the closed loop system.

7.6 Notes and References

The use of time-varying linear feedback to reduce transients has been studied in Hinrichsen
and Pritchard [66] and Pritchard [I17]. The relation of this problem to the pole placement
problem has been investigated by Izmailov [74]. For some new results in this direction see
Hauksdottir [52], 53].

The material in this section is based upon the articles by Hinrichsen, Plischke and Wirth [63]
and Plischke and Wirth [115]. The quadratic (M, 3)-stabilization has been discussed in
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the former article, while the generalization to arbitrary norms was presented in the latter
article. Some ideas on the influence of state feedback to the transient amplification can be
found in Pritchard [I17]. The link from quadratic (M, (3)-stabilizability to parameterized
Riccati equations is studied in Hinrichsen et al. [62], see also Hinrichsen and Pritchard [67,
Section 5.5].

Contractibility is studied by Malmgren and Nordstrom [103] 104] for discrete-time sys-
tems. The article by Moore and Bhattacharyya [109] discusses discrete-time systems for
which the overshoot is minimized via linear programming methods. A cursory discussion
of LMI methods for the quadratic (M, 3)-stabilization can be found in Boyd et al. [22].
Petersen [114] considers “quadratic” stabilizability which leads to optimization problems
involving Riccati inequalities.

Drégan and Halanay [35] discuss methods of finding high-gain feedback matrices which
stabilize continuous-time systems with fast decay of the output and avoiding, if possible,
overshoot phenomena. Scalar systems are studied in Leén de la Barra and Ferndndez [94].
Transient performance in classical output regulation is discussed in Saberi et al. [121], but
here the performance measure is the integrated tracking error, and not the maximal error.
Classically, the transient behaviour is analysed using the transmission zeros of the system,
see Qiu and Davison [119]. In our approach, their role is reflected in condition ([7.15)).
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List of Symbols

Sets and Norms

N
Z,R,C
N*, R*,C*

[ v ()
[R[IRIFS
B, B*, B,
p(A), i (A)
ecc(v, [|-]])
Mp(A)

Set of natural numbers, {0,1,2,...}

Ring of integers, fields of real numbers and complex numbers
N, R, C without 0

Number field, either R or C

Vector space over K of dimension n

Vector space of matrices over K with n columns and m rows
Real and imaginary parts of a complex number z

Open left half-plane, open right half-plane

Closure, interior, boundary and complement of a set .S.
Vector norms and the induced operator norms

p-norms (p = 1,2, 00), Frobenius norm

Closed unit balls of the norm ||-||, of its dual norm, and of the norm v(-)
Initial growth rate of A with respect to the norm ||-|| or v(+)
Eccentricity of the norms v(-) and ||-||

Transient growth of A with respect to the rate 3

Operators and Matrices

T’ A 1
det A, trace A
K(A)

Space of bounded linear operators from X into Y
Space of bounded linear operators on X, L(X) = L(X, X)
Space of continuous functions f: I — X

Space of square-integrable functions f: 1 — X
Space of square-summable sequences in K

Direct sum of Hilbert spaces X

Domain of the linear operator A

Adjoint of a matrix or operator A

Identity matrix or operator

Spectrum and resolvent set of A

Spectral abscissa and spectral radius of A
Resolvent of A, R(s, A) = (s — A)~1

Transpose of A, inverse of A

Determinant and trace of A

Condition number of A

201
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(x, )y Inner product on K", y*z
A® B Kronecker product of the matrices A and B
vec X Vectorization of the matrix A

ker A,im A Kernel and image of a matrix A

Positivity

R4 Set of nonnegative real numbers

R™ Ry Set of nonnegative matrices, set of Metzler matrices
span(.S), conv(S), cone(S) Linear hull (span), convex hull and convex cone of the set S
M(A) Metzler part of a matrix A

|A] Componentwise modulus of a matrix A

Diag(A) Diagonal matrix with diagonal entries from A

diag(v) Diagonal embedding of a vector v, K" — K"*"

diag(A) Diagonal extraction from a matrix A, K"*" — K"

A>B Componentwise comparison of the matrices A and B
A>0,0>0 Strict positivity of the matrix A or the vector v

1 Vector of ones

H™(C), H™"(R) Vector spaces of Hermitian and symmetric matrices
P>=0,P>0 Positive definite and positive semidefinite Hermitian matrix P
HE(C), H (R) Convex cone of positive semidefinite Hermitian matrices

La(P) Liapunov operator, P — PA + A*P
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Diagonalizable matrix, 55
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Front locus, 85
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asymptotic, 20
initial, 20, 30, 37

Hermitian matrix pencil, 71
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Inverse power method, 74
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Liapunov cone, 101
Liapunov operator, 99, 192
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Metzler matrix, 108
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Mild solution, 19
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operator, 9
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transient, 40
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Resolvent, 11

Schur complement, 8
Semigroup, 1522

contraction, 19

generator, 16

solution, 135
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Singular Value Decomposition, 60
Solution segment, 134
Spectral abscissa, 23
Spectral radius, 21
Spectral value set, 10
Spectrum, 11

of a Hermitian matrix pencil, 71
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exponential, 17
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quadratic, 72
structured, 78

Stability radius, 10
Stabilizability, 183, 192
Strictly positive matrix, 107
Structure matrix, 10

Theorem
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Transient amplification, see transient growth
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Transient growth, 40
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