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Introduction

From a practical point of view the concept of stability may be deceiving: Asymptotic
stability allows for arbitrary growth before a decay occurs. These transient effects which
are only of temporary nature have no influence on the asymptotic stability of a dynamical
system. However, these effects might dominate the system’s performance. Hence we are
in need of information which describes the short-time behaviour of a dynamical system.

Motivation

Everyone has noticed that devices need some time to get ready for use, like an old radio
warming up or a computer booting. On a larger scale, plants also need an amount of
time to reach their working point. But in this initial phase, the plant is particularly
vulnerable. The faster one wants to reach the working point, the more stress the plant
has to endure: there may be overshots which carry some parts of the plant to the limit
of their capacity. One may think of chemicals, which advance towards toxic or explosive
concentrations, before reaching the desired concentration of the reagents, or an autopilot
steering the wrong way before getting on track.
One could believe that such a distinctive behaviour in the initial phase can only occur for
complex dynamical systems. However, this behaviour can already be observed for linear
differential equations which provide simple models for dynamical processes.
To avoid catastrophes like those indicated above, one wishes to eliminate the bad influences
in the starting phase, or at least, to keep them small. Furthermore, methods are needed
that allow to predict if the system under consideration shows these transient effects, and
if so, to obtain information on the duration and intensity of these excursions.
This work is mainly concerned with questions dealing with the last two issues, namely
finding bounds on the exponential growth of linear systems. Although there are many
results on exponential bounds, there is still no systematic treatment in the literature.
The mathematical model of a plant will in general not yield the accurate description of the
behaviour of the real plant. Hence we are in need of results which are robust under small
perturbations of the mathematical model. Fortunately, these results follow directly from
our systematic treatment of the exponential bounds.
In addition to the general theory, we study two major classes of linear systems, namely
positive systems and delay-differential systems, which are used frequently in economics and
biology.
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2 INTRODUCTION

Moreover, we study the influence of state feedback on the transient behaviour. We ob-
tain necessary and sufficient conditions to model a closed-loop system without transient
excursions.

Finite-dimensional linear systems are mostly used as an approximation of more complex
dynamical systems. These are obtained by linearization or discretization. Let us now
discuss two possible ways in which the transients of linear systems may influence the
dynamics.

From Transience to Turbulence

Most linear dynamical systems are obtained by linearizing a nonlinear model of a real
process around an equilibrium point. Now, Liapunov’s theorem implies that the nonlinear
system is asymptotically stable if the linearization is asymptotically stable.

Figure 1: Toy model for turbulence.

But if the asymptotically stable linear system has solutions which move far afield before
eventually decaying, these solutions of the linear system may leave the domain for which
the linear system is a valid approximation of the nonlinear system. Hence small perturba-
tions from the equilibrium point may incite nonlinearities. Models of this kind have been
suggested in Baggett and Trefethen [8] to explain why turbulence of certain flows occurs
at Reynolds numbers much smaller than predicted from a spectral analysis. For example,
let us investigate the following nonlinear time-invariant ordinary differential equation

ẋ = Ax+B(x) =

(
−5 36
0 −20

)
x+ ‖x‖

(
0 −1
1 0

)
x, x ∈ R2, (1)

where A is an asymptotically stable, but nonnormal matrix and the nonlinearity B(x) is
conservative (energy-preserving), thus B only adds a rotation of the state-space to the
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linear system ẋ = Ax. Figure 1 shows many trajectories of system (1) starting on a circle
of radius 50.
The trajectories which converge to the origin are colored in black, which gives a rough
approximation of the domain of attraction for the origin. One observes that this domain
of attraction is flat, the nonnormality of the linear system ẋ = Ax quickly drives the
state into regions where the nonlinearity has strong effects on the state. Note that in this
example nonlinearity and nonnormality form opposite forces which create a sort of conveyor
belt driving the states away from the stable origin. The picture drastically changes when
replacing B(x) by −B(x).

From Transience to Permanence

Another interesting observation can be made when approximating infinite dimensional
systems by finite dimensional approximants. Now assume that there exists a sequence of
finite dimensional matrices which approximate an infinite dimensional linear operator, and
that this sequence consists only of stable matrices. Then the infinite dimensional system
need not be stable. But this can be detected by studying the transient behaviour of the
approximants. Let us consider the matrix exponential of Jordan-blocks Jn of growing size n
associated with the eigenvalue λ0 = −1/2. These blocks approximate a “multiply-and-shift”
operation J∞ on the sequence space `2(C) given by

J∞ : `2(C)→ `2(C), (xk) 7→ (xk+1 − 1
2
xk).

But the spectrum of J∞ consists of a whole unit ball centered around λ0, because it is a
Toeplitz operator with symbol s 7→ −1

2
+ s, see Böttcher and Silbermann [21], and

∂σ(J∞) = −1
2

+ S, where S = {s ∈ C | |s| = 1}.

Hence the asymptotic growth rate of the semigroup generated by J∞ is given by α(J∞) =
sup{Reλ |λ ∈ σ(J∞)} = 1/2. Figure 2 shows the growth of ‖exp(Jnt)‖ for n = 2, 4, 8, 16, 32.
Although all Jn, n ∈ N, are stable, the limit 1/2 of the transient growth rates given by
µn = d

dt+

∥∥eJnt∥∥ ∣∣
t=0

coincides with the asymptotic growth rate of J∞.

The Curse of Nonnormality

Both of these examples suffer from the same defect: the linear matrix A is highly nonnor-
mal, i.e., there exists no orthogonal basis of eigenvectors. Moreover, if there are eigenvectors
which roughly point into the same direction then there are vectors of small size for which
the coordinates will blow up if they are represented in an eigenvector basis, see Figure 3
where w = 7/2v1 − 13/4v2. Clearly, if the angle spanned by v1 and v2 becomes more acute,
this results in larger coordinates of w in the {v1, v2}-basis. Grossmann [49, 50] calls this
behaviour the “blind spot” of such a basis.
Henrici [54] has identified the nonnormality as a cause for the failure of many numerical
algorithms. He introduced the departure from normality as a measure of nonnormality.
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Figure 2: Exponential growth of Jordan blocks.

However, there are matrices for which the departure from normality is small, but transient
effects are present, e.g. dep(Jn) = 1 for a Jordan block of dimension n.

Outline of the Thesis

The next chapter is devoted to some mathematical preliminaries which fix the notations
used throughout this thesis and cover some topics from linear algebra and functional anal-
ysis that are used in the later chapters.

In Chapter 2 we collect some facts for generators of strongly continuous semigroups and
semigroups of contractions. We introduce an indicator for contractions which forms the
basis of much of the later work. This indicator is related to a convex Liapunov function.
We also consider some duality issues here and discuss the stability of differential inclusions.

Chapter 3 deals with a suitable concept of stability and discusses several types of estimates
for the norm of the matrix exponential. Unfortunately, bounds based on spectral properties
have several drawbacks. Hence we are investigating alternatives, we consider exponential
bounds derived from quadratic Liapunov function and from resolvent estimates.

In Chapter 4 several small results are presented, including a discussion of transient norms
and quadratic Liapunov functions of minimal condition number for 2× 2 matrices.

In Chapter 5, results for positive systems are derived. In a sense these systems exhibit
the “worst” transient behaviour as no cancellation of terms in the matrix exponential can
occur. We show that Liapunov functions for positive systems are of simple structure, and
so we can derive simple exponential bounds for positive systems.

Moreover, we can compare the transient behaviour of an arbitrary system with the be-
haviour of a positive one which allows us to apply the simple bounds to a large class of
matrices.

We close the “analysis” part of the thesis by considering differential delay equations in
Chapter 6. In order to obtain comparable results for the transient estimates a special class
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Figure 3: Nonnormality blows up coordinates.

of Liapunov functionals is introduced and studied. We also discuss numerical issues related
with the computation of these Liapunov functionals.
On the “synthesis” side, Chapter 7 is devoted to results under which a closed-loop system
satisfies given exponential bounds when state feedback matrices are introduced. We discuss
this topic for general norms, as well as for the special case of quadratic norms.
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Chapter 1

Preliminaries

In this chapter we fix some terminology and notations used throughout later chapters. Let
us denote the field of real numbers by R and the field of complex numbers by C. The
natural numbers are given by N = {0, 1, 2, 3, . . . }, and the ring of integers is called Z.

1.1 Matrix Analysis

This section fixes the notation for some standard notions from linear algebra. The n-
dimensional vector space over the field K = R or C is denoted by Kn. If S is a subset of a
vector space Kn the span or linear hull of S is the set

spanS :=

{
k∑
i=1

αixi

∣∣∣∣∣αi ∈ K, xi ∈ S, k = 1, 2, . . .

}
.

The set spanS is always a linear subspace of Kn.

The space of linear operators from Kn into Km is denoted by Km×n. Its elements are
called matrices. If A = (aij) ∈ Km×n then A> = (aji) ∈ Kn×m is its transpose and
A∗ = (āji) ∈ Kn×m is its Hermitian adjoint. The kernel of A ∈ Kn×m is given by kerA =
{x ∈ Kn |Ax = 0} ⊂ Kn and the image of A by imA = {Ax |x ∈ Kn} ⊂ Km. For square
matrices with n = m we say that A is symmetric if A = A>, and it is Hermitian if A = A∗.
It is called normal if AA∗ = A∗A. The square matrix A ∈ Kn×n is invertible if kerA = {0}.
Then there exists an inverse matrix A−1 such that AA−1 = A−1A = In. Here In is the
identity matrix of dimension n. The set of all invertible square matrices A ∈ Kn×n is the
general linear group Gln(K).

Now let us consider the inverse of a partitioned matrix, see [70, Section 0.7.3].

Lemma 1.1. Let M = ( A B
C D ) be an invertible matrix. Then the inverse M−1 can be

7
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obtained via one of the following formulas if the used inverses exist.

M−1 =

(
A−1 + A−1BQCA−1 −A−1BQ

−QCA−1 Q

)
, Q = (D − CA−1B)−1,

M−1 =

(
R −RBD−1

−D−1CR D−1 +D−1CRBD−1

)
, R = (A−BD−1C)−1.

These two descriptions yield the Sherman-Morrison-Woodbury formula

A−1 + A−1B(D − CA−1B)−1CA−1 = (A−BD−1C)−1. (1.1)

For the determinant of M we have

det(M) = det(A) det(D − CA−1B) = det(A−BD−1C) det(D).

The matrices D − CA−1B and A−BD−1C are called Schur complements of M .

1.2 Properties of Norms

In this section we recall some facts for vector norms on the vector space Kn. References
for this material can be found in the books by Horn and Johnston [70] and by Bhatia [18],
and the article by Bauer, Stoer and Witzgall [12]. Let us first study vector norms.

Definition 1.2. A norm ‖·‖ on Kn is called

1. absolute, if ‖x‖ = ‖ |x| ‖ for all x ∈ Kn, where |x| = (|xi|)i=1,...,n,

2. monotone, if ‖x‖ ≤ ‖y‖ for all x, y ∈ Kn with |xi| ≤ |yi| , i = 1, . . . n,

3. symmetric, if ‖x‖ = ‖Px‖ for all x ∈ Kn and all perturbation matrices P ∈
{0, 1}n×n, P 2 = In.

Proposition 1.3. The p-norms on Kn, given by

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞, and ‖x‖∞ = max
i
|xi| ,

satisfy properties (1)-(3) of Definition 1.2.

Proposition 1.4 ([70, Theorem 5.5.10]). A norm on Kn is absolute if and only if it is
monotone.

If v(·) is a norm on Kn, the dual of v(·) is defined by

v∗(y) = sup
v(x)=1

|〈x, y〉2| = sup
v(x)=1

Re 〈x, y〉2.

Here 〈x, y〉2 = y∗x is the inner product of x and y. It is easy to see that v∗(·) is a norm. In
fact, v∗(·) is a norm even if v(·) is a function which does not satisfy the triangle inequality,
but meets all other requirements of a norm. If B = {x ∈ Kn | ‖x‖ ≤ 1} is the closed unit
ball of ‖·‖ then we denote the unit ball of the dual norm by B∗.



1.2. PROPERTIES OF NORMS 9

Proposition 1.5 ([12, Theorem 1]). If v(·) is a monotone norm on Kn, then so is v∗(·).

Proposition 1.6. The dual norm of ‖·‖p is given by ‖·‖q where 1
p

+ 1
q

= 1. Especially the

norms ‖·‖1 and ‖·‖∞ are dual norms on Kn.

Proposition 1.7 ([70, Theorem 5.5.14]). The bidual ν∗∗ of a norm ν on Kn equals ν,
ν∗∗(x) = ν(x) for all x ∈ Kn.

A norm ‖·‖ on Kn is called smooth if it is Gâteaux-differentiable in every x 6= 0. A norm
‖·‖ is smooth if and only if for every x0 with ‖x0‖ = 1 there exists a uniquely determined
y0 ∈ Kn with ‖y0‖∗ = 〈y0, x0〉2 = 1, see Werner [147, Satz III.5.3]. The dual norm of a
smooth norm is in general not smooth.

Let us now turn to norms on Kn×n. A norm ‖·‖ on Kn×n is called a matrix norm, if it is
sub-multiplicative, that is, it satisfies ‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ Kn×n. If ‖·‖ is a

norm on Kn then A 7→ supx 6=0
‖Ax‖
‖x‖ is a norm on Kn×n called the operator norm which we

also denote with ‖·‖ . Each operator norm on Kn×n is a matrix norm.

Example 1.8. A norm on Kn×n which is not a matrix norm is given by the numerical radius
of A ∈ Kn×n,

rnum(A) = sup
x6=0

∣∣∣∣〈x,Ax〉2〈x, x〉2

∣∣∣∣ .
However, for every norm ν on Kn×n there exists a positive real constant α > 0 such that
αν is a matrix norm. Here the norm ν(A) = 4rnum(A) is a matrix norm on Kn×n, see [70,
p. 331]. �

The following lemma shows some properties of operator norms induced by monotone vector
norms.

Lemma 1.9. If ‖·‖ is a monotone vector norm on Kn then the associated operator norm
satisfies the following properties, see [12].

(i) If A = (aij) and B = (bij) are nonnegative matrices in Rn×n that satisfy aij ≥ bij ≥ 0
then ‖A‖ ≥ ‖B‖ .

(ii) For A = (aij) ∈ Kn×n we have ‖A‖ ≤ ‖ |A| ‖ where |A| = (|aij|) ∈ Rn×n.

(iii) The vector norm ‖·‖ is monotone if and only if the induced operator norm satisfies
‖Λ‖ = maxi=1,...,n |λi| for all diagonal matrices Λ = diag(λi).

Hence, the operator norm induced from a monotone norm is not monotone by itself, but
satisfies the monotonicity condition only on the positive orthant.
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1.3 Spectral Value Sets and Stability Radii

In this section we present some notions which are used to analyse robustness issues for
matrices, see Hinrichsen and Pritchard [67]. Spectral value sets have been introduced
in [64, 65] as a tool to cope with the behaviour of highly nonnormal systems. These sets
are used to study the robustness of dynamical systems, including the analysis of numerical
algorithms.

Definition 1.10. The pair (∆, ‖·‖∆) is called a perturbation structure in K`×q if ∆ ⊂ K`×q

is a closed convex cone and ‖·‖∆ is a norm on the linear span of ∆, span(∆). If C∆ = ∆
then we call (∆, ‖·‖∆) a complex perturbation structure.

Let us consider affine perturbations of the form

A A∆ := A+B∆C, ∆ ∈∆, (1.2)

where B ∈ Kn×` and C ∈ Kq×` are given structure matrices, and (∆, ‖·‖) is a perturbation
structure in K`×q.

Definition 1.11. Let A be a matrix in Kn×n, and B ∈ Kn×` and C ∈ Kq×n be structure
matrices. For a given perturbation structure (∆, ‖·‖) in K`×q we define the following
notions. The spectral value set of A corresponding to the perturbation level ε ≥ 0 is given
by

σε(A,B,C |∆) = σ(A) ∪
⋃

∆∈∆,‖∆‖<δ

σ(A+B∆C).

The structured pseudospectral abscissa of A corresponding to the level ε ≥ 0 is given by

αε(A,B,C |∆) = sup {Re s | s ∈ σε(A,B,C |∆)} .

The structured stability radius of A ∈ Kn×n is defined by

r(A,B,C |∆) = inf {ε ≥ 0 |αε(A,B,C |∆) ≥ 0} .

For full block perturbations ∆ = K`×q where ‖·‖ is an operator norm on K`×q, we drop the
dependence on ∆. In the unstructured case B = C = In we write σε(A |∆), αε(A |∆)
and r(A |∆).

The spectral value set is the union of all the spectra of the perturbed matrices A∆ where
∆ ∈ ∆ and ‖∆‖ ≤ ε. The stability radius measures the robustness of the stability of the
matrix A under perturbations of the form (1.2).
Instead of characterizing the spectral value sets in terms of spectra of perturbed matrices,
we have the following description in terms of the resolvent of A, R(s, A) = (sIn − A)−1.

Theorem 1.12 ([67, Theorem 5.2.16]). Given A ∈ Cn×n, let B ∈ Cn×` and C ∈ Cq×n be
given structure matrices. If ∆ = C`×q and (∆, ‖·‖) is a full block perturbation structure
the spectral value set of A for the level ε is given by

σε(A,B,C) = σ(A) ∪
{
s ∈ C \ σ(A)

∣∣ ∥∥C(sI − A)−1B
∥∥ > ε−1

}
.
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For the unstructured case, if B = In = C and if ‖·‖ is the spectral norm ‖·‖2, we denote
σε(A,B,C) = σε(A) and obtain

σε(A) = σ(A) ∪ {s ∈ %(A) |σmin(sIn − A) < ε} .

Here σmin(A) = σn(A) denotes the smallest singular value of A. An unstructured spectral
value set of level ε is also called an ε-pseudospectrum of A.

1.4 Linear Operators

Let X and Y be Banach or Hilbert spaces over K equipped with the norm ‖·‖ where K
is either R or C. Let A : D → Y be a linear map defined on a linear subspace D ⊂ X
and taking its values in a Banach space Y . A is called a linear operator with domain
D(A) := D ⊂ X and range A[X] := {Ax |x ∈ D(A)} ⊂ Y . The symbol L(X, Y )
stands for the Banach space of all bounded linear operators from X into Y (endowed with
the operator norm). We write L(X) instead of L(X,X). The identity operator on X is
denoted by IX or just by I. An operator A is said to be closed if the graph of A defined by
{(x,Ax) ∈ X×Y |x ∈ D(A)} is a closed subset of X×Y , and it is called a dense operator
if A[X] is dense in Y . A is densely defined if D(A) is dense in X.

Definition 1.13. Let A be a closed linear operator on X.

1. The resolvent set of A is given by

%(A) =
{
s ∈ C

∣∣ (sIX − A)−1 exists in L(X)
}
.

2. The operator function R(s, A) : %(A)→ L(X), s 7→ (sIX−A)−1 is called the resolvent
of A.

3. The complement in C of the resolvent set is called the spectrum of A, σ(A) := C\%(A).
We define the following subsets of the spectrum,

σP (A) = {s ∈ C | sIX − A is not injective} ,
σC(A) = {s ∈ C | sIX − A is injective, not surjective, with dense range} ,
σR(A) = {s ∈ C | sIX − A is injective and without dense range} .

σP (A) is called the point spectrum of A, σC(A) the continuous spectrum of A, and
σR(A) the residual spectrum of A. A point λ ∈ σP (A) is an eigenvalue of A and
x ∈ D(A), x 6= 0 such that λx = Ax is a corresponding eigenvector.

Like in the matrix case, we have the following tool for robustness analysis of closed linear
operators, see Hinrichsen, Gallestey and Pritchard [60].
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Definition 1.14. Let A be a closed and densely defined linear operator on a Banach space
X. The following set associated with the perturbation level ε > 0,

σε(A) =
⋃

∆∈L(X),‖∆‖<ε

σ(A+ ∆),

is called the ε-pseudospectrum of A. The ε-pseudospectral abscissa of A is given by

αε(A) = sup{Re s | s ∈ σε(A)}.

The ε-pseudospectrum can also be characterized via the resolvent of A.

Theorem 1.15. Let A be a closed and densely defined linear operator on a Banach space
X. If ε ∈

(
0, sups∈%(A) ‖R(s, A)‖−1) then

σε(A) = σ(A) ∪
{
s ∈ %(A)

∣∣ ‖R(s, A)‖ > ε−1
}
.

1.4.1 Block-Diagonal Operators

We now study a special class of linear operators for which the spectrum just consists of
the point spectrum. We consider the Hilbert space

X =
⊕
k∈N

Cnk =

{
(xk)k∈N

∣∣∣∣∣xk ∈ Cnk ,
∑
k∈N

‖xk‖2 <∞

}
,

which is called the Hilbert direct sum of Xk = Cnk , nk ≥ 1, see also [36, Definition IV.4.17].

We denote the elements of X by (xk)k∈N or for short, (xk). Here each xk is contained in
Cnk . The space X is equipped with the inner product

〈
(xk), (yk)

〉
2

=
∑

k∈N 〈xk, yk〉2.
Given a sequence of square matrices Ak ∈ Cnk×nk for k ∈ N, we define the block-diagonal
operator

A =
⊕
k∈N

Ak : X → X, A(xk)k∈N = (Akx
k)k∈N.

The domain of A is given by

D(A) =

{
x ∈ X

∣∣∣∣∣∑
k∈N

∥∥Akxk∥∥2
<∞

}
.

This is a dense subset of X because D(A) contains the following set

{(xk)k∈N ∈ X |xk 6=0 for only finitely many k},

which is a dense subset of X.

Lemma 1.16. A =
⊕

k∈NAk is a closed and densely defined linear operator on X.
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Proof. We have already seen that A is densely defined. Let us take a sequence (xj) in D(A)
such that xj = (xk,j)k∈N ∈ X. If we assume that both limits xj → x and yj = Axj → y
exist in X then

y = lim
j→∞

Axj = lim
j→∞

(⊕
k∈N

Ak

)
xk,j = (Ak lim

j→∞
xk,j)k∈N = (Akx

k)k∈N = Ax.

Hence x ∈ D(A) and Ax = y and therefore A is a closed operator in X.

Let us now have a look at the norm and the spectrum of block-diagonal operators.

Lemma 1.17. The operator norm of the block-diagonal operator A =
⊕

k∈NAk : X → X
is given by ‖A‖ = supk∈N ‖(Ak)‖2.

Proof. Given x = (xk) with
∑

k∈N
∥∥xk∥∥2

2
<∞. Then

‖Ax‖2 =
∑
k∈N

∥∥Akxk∥∥2

2
≤
∑
k∈N

‖Ak‖2
2

∥∥xk∥∥2

2
≤ sup

k∈N
‖Ak‖2

2

∑
k∈N

∥∥xk∥∥2

2
=

(
sup
k∈N
‖Ak‖2

2

)
‖x‖2 .

On the other hand, there exists a sequence xk ∈ Cnk such that
∥∥xk∥∥

2
= 1 and ‖Ak‖2 =∥∥Akxk∥∥2

. Consider the sequence

x̃j = ((x̃k))k ⊂ X where x̃k =

{
xj, k = j,

0, k 6= j.

Then ‖x̃j‖ = 1 and supx≤1 ‖Ax‖ ≥ supj ‖Ax̃j‖ = supj ‖Ajxj‖2 = supj
∥∥Akj∥∥2

. Therefore
‖A‖ = supk ‖Ak‖2.

From this lemma we obtain the following implications.

Corollary 1.18. Let A be a block-diagonal operator in X. The resolvent set of A is given
by the complement of

σ(A) =
⋂
ε>0

⋃
k∈N

σε(Ak).

On %(A) = σ(A)C the resolvent is given by R(s, A) =
⊕

k∈NR(s, Ak). The point spectrum
of A is given by σP (A) =

⋃
k∈N σ(Ak).

Proof. For s 6∈
⋃
k∈N σ(Ak) the operator

⊕
k∈NR(s, Ak) satisfies

(⊕
k∈NR(s, Ak)

)
(sIX −

A) =
⊕

k∈N(R(s, Ak)(sIXk −Ak)) = IX and analogously, (sIX −A)
(⊕

k∈NR(s, Ak)
)

= IX .
By Lemma 1.17 it is a bounded operator if and only if supk∈N ‖R(s, Ak)‖2 <∞. Now

sup
k∈N
‖R(s, Ak)‖2 =∞ ⇐⇒ ∀ε > 0 ∃ k ∈ N : ‖R(s, Ak)‖2 > ε−1.

By Theorem 1.15 we write the set satisfing this condition as
⋂
ε>0

⋃
k∈N σε(Ak). Hence⊕

k∈NR(s, Ak) is undefined for s ∈ σP (A) =
⋃
k∈N σ(Ak) and it is unbounded for s ∈

σ(A) \ σP (A). Therefore the resolvent of A is R(s, A) =
⊕

k∈NR(s, Ak).

Clearly
⋃
k∈N σ(Ak) ⊂ σ(A). If the ε-pseudospectra of Ak are disjoint for ε > 0 small

enough then σ(A) = σP (A).
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1.4.2 Self-Adjoint Operators

Let X and Y be Hilbert spaces over K = R or C, equipped with the inner products 〈·, ·〉X
and 〈·, ·〉Y , respectively. The material presented here follows [29, Appendix A.3] and [147].
Let us define the adjoint of an unbounded operator.

Definition 1.19. Let A be a densely defined linear operator on X. Then the adjoint
A∗ : D(A∗)→ Z is defined as follows. The domain D(A∗) of A∗ consists of all y ∈ X such
that there exists a y∗ ∈ X satisfying 〈y, Ax〉X = 〈y∗, x〉X for all x ∈ D(A). For each such
y ∈ D(A∗) the adjoint operator A∗ is defined by A∗y = y∗.
We say that a densely defined linear operator A on X is symmetric if 〈x,Ay〉X = 〈Ax, y〉X
holds for all x, y ∈ D(A). A symmetric operator is self-adjoint if D(A∗) = D(A).

It can be shown that if A is a closed, densely defined linear operator then A∗ is also closed
and densely defined.
For continuous linear operators we define the following classes of Hilbert space operators.

Definition 1.20. Let A ∈ L(X, Y ).

(i) The operator A∗ ∈ L(Y,X) which satisfies 〈Ax, y〉Y = 〈x,A∗y〉X for all x ∈ X,y ∈ Y
is called the adjoint operator of A.

(ii) A is called unitary if A is invertible with AA∗ = IY and A∗A = IX .

(iii) Let X = Y . A is called self-adjoint (or Hermitian) if A = A∗.

(iv) Let X = Y . A is called normal if AA∗ = A∗A.

Clearly, self-adjoint and unitary (in case of X = Y ) operators are normal.

Lemma 1.21 ([147, Lemma V.5.10]). For A ∈ L(X) the following facts are equivalent.

1. A is normal.

2. ‖Ax‖ = ‖A∗x‖ for all x ∈ X.

The norm of a self-adjoint operator can be calculated as follows.

Proposition 1.22. For a self-adjoint operator A ∈ L(X) the norm is given by

‖A‖ = sup
‖x‖≤1

|〈x,Ax〉X | .

Lemma 1.23. Let A be an element of L(X) where X is a complex Hilbert space. A is
self-adjoint if and only if 〈x,Ax〉X is real for all x ∈ X.

Definition 1.24. A self-adjoint operator A on the Hilbert space X is called nonnegative,
if 〈x,Ax〉X ≥ 0 for all x ∈ D(A), and it is called positive if 〈x,Ax〉X > 0 for all nonzero
x ∈ D(A). If there exists an ε > 0 such that 〈x,Ax〉X ≥ ε ‖x‖2 for all x ∈ D(A) then A is
called coercive.



Chapter 2

Contractions and Liapunov Norms

Consider a linear time-invariant dynamical system, ẋ = Ax where A ∈ Cn×n. If all solutions
decay in norm with t ≥ 0 growing, A is said to generate a contraction semigroup. In this
chapter we want to address the relationship between stability and contractions, and the
dependence of the contraction property on the norm. Moreover, as quadratic Liapunov
functions allow an interpretation as norms, we introduce the concept of Liapunov norms
which provides a link between stability and contractions.

2.1 One-Parameter Semigroups in Banach Spaces

One-parameter semigroups provide a natural generalization of the flow concept associated
with a system of linear ordinary differential equations. In this section we want to recall
some of its properties. For an in-depth coverage see Engel and Nagel [38], Curtain and
Zwart [29], Pazy [113], and Hille and Phillips [59].

Definition 2.1. Let X be a given (real or complex) Banach space and (T (t))t∈R+ be a
family of operators in L(X). This family is called a strongly continuous semigroup in X if

T (t+ s) = T (t)T (s), t, s ≥ 0, T (0) = I and

ϕx : t 7→ T (t)x is continuous on R+ for all x ∈ X.

The semigroup (T (t))t∈R+ is called uniformly continuous if

lim
h→0
‖T (t+ h)− T (t)‖ = 0 for all t ≥ 0.

In the following T or (T (t))t∈R+ will denote a strongly continuous semigroup on a real or
complex Banach space.
Each uniformly continuous semigroup is also strongly continuous. Strongly continuous
semigroups are also called C0-semigroups. We list some known properties of strongly con-
tinuous semigroups in the following proposition, which combines results from [38, Propo-
sition I.5.3], [29, Theorem 2.1.6], and [113, Theorem 1.2.4].

15



16 CHAPTER 2. CONTRACTIONS AND LIAPUNOV NORMS

Proposition 2.2. A strongly continuous semigroup (T (t))t∈R+ on a Banach space X has
the following properties.

• For all x ∈ X, limt↘0 T (t)x = x.

• For all x ∈ X, limt↘0
1
t

∫ t
0
T (s)xds = x.

• ‖T (t)‖ is bounded on every finite subinterval of R+.

For continuity issues we have the following result.

Lemma 2.3. [147, Lemma VII.4.3] If (T (t))t∈R+ is a strongly continuous semigroup on a
Banach space X then the map

R+ ×X → X, (t, x) 7→ T (t)x

is continuous, and uniformly continuous in T on compact intervals of R+. In particular,
for every x0 ∈ X the map x : t 7→ T (t)x0 is continuous, x ∈ C(R+, X).

Associated with every T is the (infinitesimal) generator A given by

Ax = lim
h↘0

1
h
(T (h)x− x), (2.1)

which is defined for every x ∈ X for which the limit in the right hand side of (2.1) exists,
i.e., the domain of A is given by

D(A) = {x ∈ X | lim
h↘0

1
h
(T (h)x− x) exists}.

If T is uniformly continuous then D(A) = X and A is a bounded linear operator. A
uniformly continuous semigroup can always be written as the exponential of its generator
T (t)x = eAtx, x ∈ X, t ≥ 0 where the exponential is defined by the familiar power series

eAt :=
∞∑
k=0

1
k!

(tA)k, t ≥ 0,

which is absolutely convergent in L(X). For all x ∈ D(A) the orbit map ϕx : t 7→ T (t)x is
right differentiable at t = 0 and ϕ̇x(0) and d

dt
T (t)x

∣∣
t=0

always denote the right derivative
at t = 0. By the semigroup property, ϕx is differentiable for all t > 0, because for h > 0,
h < t

lim
h↘0

1
h
(T (t+ h)− T (t))x = T (t) lim

h↘0

1
h
(T (h)− T (0))x = T (t)ϕ̇x(0)

lim
h↘0

1
h
(T (t)− T (t− h))x = lim

h↘0
T (t− h) 1

h
(T (h)− T (0))x = T (t)ϕ̇x(0).

Strongly continuous semigroups always admit an exponential bound.
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Proposition 2.4 ([38, Proposition I.5.5]). If (T (t))t∈R+ is a strongly continuous semigroup
then there exist constants β ∈ R and M ≥ 1 such that

‖T (t)‖ ≤Meβt, t ≥ 0. (2.2)

Definition 2.5. A strongly continuous semigroup (T (t))t∈R is called exponentially stable if
there exist constants M ≥ 1, β < 0 such that (2.2) is satisfied. It is called (M,β)-stable if
the semigroup T satisfies the growth bound (2.2) for prescribed M and β. The semigroup
T is called (marginally) stable if t 7→ ‖T (t)‖ is bounded on R+. These notions are also
applied to the associated generators of the semigroups.

We will study the matrix case in Chapter 3. The set of operators which generate a (M,β)-
stable semigroup is described by the following Hille-Yosida Generation Theorem.

Theorem 2.6 ([38, Theorem II.3.8]). Let A be a linear operator A on a Banach space X
and let M ≥ 1 and β ∈ R. The following statements are equivalent.

1. A is the generator of a (M,β)-stable semigroup.

2. A is closed and densely defined, and for every real α > β, α is contained in the
resolvent set %(A) of A and the resolvent R(α,A) satisfies∥∥R(α,A)k

∥∥ ≤ M

(α− β)k
, k ∈ N. (2.3)

3. A is closed and densely defined, and for every s ∈ C with Re s > β one has s ∈ %(A)
and ∥∥R(s, A)k

∥∥ ≤ M

(Re s− β)k
, k ∈ N. (2.4)

Note that in order to verify (2.3) the resolvent only needs to be known on the positive
half-line (β,∞). The resolvent of a generator can be used to recover the semigroup.

Theorem 2.7 ([113, Theorem 1.8.3]). Let A be the generator of a strongly continuous
semigroup T. Then for each x ∈ X and t > 0

T (t)x = lim
k→∞

(
I − t

k
A
)−k

x = lim
k→∞

(
k
t
R(k

t
, A)
)k
x,

and the limit is uniform in t on compact subsets of R+.

This formula is the main tool for the proof of Theorem 2.6. The term (I− 1
h
A)−1 corresponds

to an implicit Euler step in numerical analysis.

Example 2.8. Figure 2.1 shows the norm of the matrix exponential for A =
( −1 5 −20

0 −10 75
0 0 −2

)
and of the resolvent approximations (I − t/kA)−k of eAt for k = 1, 6 and 24. �

The resolvent is obtained from the semigroup by a Laplace transformation.
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Figure 2.1: Approximation of the matrix exponential by resolvent powers.

Corollary 2.9 ([4]). Let A be a (M,β)-stable generator of the semigroup T. Then for any
s ∈ C with Re s > β and all x ∈ X the map t 7→ e−stT (t)x from R+ to X is Bochner-
integrable and

R(s, A)x =

∫ ∞
0

e−stT (t)x dt. (2.5)

In particular, an operator A is the generator of a strongly continuous semigroup T if and
only if its resolvent R(·, A) is the Laplace transform of T given by (2.5).

So we have three mathematical objects at our hands which can be mutually reconstructed
from one of the other objects: the semigroup itself, its generator, and the resolvent of
the generator. For each property of the semigroup, matching properties of the generator
and the resolvent can be found. Some connections between these objects are listed in the
following proposition.

Proposition 2.10 ([4, Proposition 3.1.9]). Let A be the generator of a strongly continuous
semigroup (T (t))t∈R+ on a Banach space X. Then the following properties hold.

(i) lims→∞ sR(s, A)x = x for all x ∈ X.

(ii) R(s, A)T (t) = T (t)R(s, A) for all s ∈ %(A), t ≥ 0.

(iii) x ∈ D(A) implies that T (t)x ∈ D(A) and AT (t)x = T (t)Ax.

(iv)
∫ t

0
T (s)x ds ∈ D(A) and A

∫ t
0
T (s)xds = T (t)x− x for all x ∈ X and t ≥ 0.

(v) For every λ ∈ C, (eλtT (t))t≥0 is a strongly continuous semigroup and A − λI is its
generator.

(vi) Let x ∈ X and λ ∈ C. Then x ∈ D(A) and Ax = λx if and only if T (t)x = eλtx for
all t ≥ 0.
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We can identify the semigroup operation t 7→ T (t)x0 on X as a solution of an abstract
Cauchy problem using the generator A,

ẋ(t) = Ax(t) with initial value x(0) = x0 ∈ X. (2.6)

Proposition 2.11. [147, Satz VII.4.7] Let A be the generator of the strongly continuous
semigroup T on X, and let x0 ∈ D(A). Then the function x : R+ → X, x(t) = T (t)x0

is continuously differentiable with values in D(A), and solves (2.6). Moreover, x(·) is the
only solution of (2.6) with these properties, and x(t) depends continuously on the initial
value x0.

Hence if x0 ∈ D(A) then x(t, x0) = T (t)x0 is a solution of (2.6). Hence d
dt

(T (t)x0) =
ẋ(t, x0) = Ax(t, x0) = AT (t)x0. Such solutions are called classical solutions. If x0 6∈ D(A)
then x(t, x0) = T (t)x0 is not necessarily differentiable anymore. Such a solution is called
mild solution of (2.6).
We now study a special class of semigroups.

Definition 2.12. A strongly continuous semigroup (T (t))t∈R+ is said to be a contraction
semigroup, if ‖T (t)‖ ≤ 1 for all t ≥ 0. It is said to be a strict1 contraction semigroup if
‖T (t)‖ < 1 for t > 0, and it is called a uniform contraction semigroup if there exists β > 0
such that ‖T (t)‖ ≤ e−βt, t ≥ 0.

Note that there are strict contractions, which are not uniform contractions as the following
finite dimensional example shows.

Example 2.13 ([67, Example 5.5.27 (iii)]). Consider the matrix A =
( −1 2

0 −1

)
. The spectral

norm of its matrix exponential is given by∥∥eAt∥∥ = e−t
(
t+
√

1 + t2
)
, (2.7)

see Proposition 4.4. The derivative of (2.7) is given by

d
dt

∥∥eAt∥∥ = e−t
[(
t+
√

1 + t2
)(√

1 + t2
−1
− 1
)]
,

which is negative for t > 0 because
√

1 + t2 > 1. As d
dt

∥∥eAt∥∥ |t=0 = 0, A generates a strict,
but not a uniform contraction semigroup. Interestingly, the first three terms of the Taylor
series of t+

√
1 + t2 in t0 = 0 coincide with the series expansion of et. �

Lemma 2.14. For a strongly continuous semigroup (T (t))t∈R+ it holds that

lim
t↘0

1
t

log ‖T (t)‖ = sup
t>0

1
t

log ‖T (t)‖ , lim
t↘∞

1
t

log ‖T (t)‖ = inf
t>0

1
t

log ‖T (t)‖ . (2.8)

1In [67], the notions of “strong” and “strict” contraction semigroups are used instead of “strict” and
“uniform” contraction semigroups.
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Proof. We show that the supremum and infimum of t−1f(t) with f(t) = log ‖T (t)‖ are
attained at the boundaries t = 0 and t = ∞, respectively. To this end, we note that the
function f(t) is subadditive, as we have for all s, t ≥ 0

f(t+ s) ≤ log(‖T (t)‖ ‖T (s)‖) = f(t) + f(s).

As T is a strongly continuous semigroup, there exist M ≥ 1 and β ∈ R such that ‖T (t)‖ ≤
Meβt. Hence t−1f(t) ≤ β + t−1 log(M). Now [59, Theorem 7.6.1] gives the second equality
in (2.8). For the first equality, compare with [59, Theorem 7.11.1].

Example 2.15. Note that the function g : t 7→ t−1 log ‖T (t)‖ is in general not a monotone
decreasing function. To see this, let us consider the following matrix in real Schur form,

A =



−1 −100 0 −150 0 200 −1000
1 −1 1 −10 25 11 −200

−1 400 −30 0 250
−1 −1 5 5 200

−1 −2 30
−1 −625
1 −1


,

where empty entries are filled with zeros. A maple-based computation returns
∥∥e2.5A

∥∥ =
0.8395 and

∥∥e3A
∥∥ = 30.54. Hence log(0.8395)/2.5 = −0.06998 < 1.13971 = log(30.54)/3, so

that g is not monotonically decreasing. The transient behaviour t 7→
∥∥eAt∥∥ is depicted in

Figure 7.3. �

Lemma 2.14 motivates the following definitions.

Definition 2.16. For a strongly continuous semigroup (T (t))t∈R+ , the initial growth rate
of T is given by α0(T ) := limt↘0

1
t

log ‖T (t)‖ , the asymptotic growth rate of T is given by
ω0(T ) := limt→∞

1
t

log ‖T (t)‖.
The notation ω0 is standard, to match this symbolism α0 is introduced as the initial growth
rate. From Lemma 2.14 we immediately get α0(A) ≥ ω0(A). Moreover the following
characterizations are available for the initial and asymptotic growth rates.

Corollary 2.17. Let T be a strongly continuous semigroup. Then

α0(T ) = inf
{
β ∈ R

∣∣ for all t ≥ 0, ‖T (t)‖ ≤ eβt
}
, (2.9)

ω0(T ) = inf
{
β ∈ R

∣∣ there exists M ≥ 1 such that for all t ≥ 0, ‖T (t)‖ ≤Meβt
}
. (2.10)

Proof. We only show (2.9) as (2.10) can be found in [38, Proposition IV.2.2]. By Lemma 2.14,
we have α0(T ) = supt>0

1
t

log ‖T (t)‖ . If β ∈ R is such that ‖T (t)‖ ≤ eβt for all t ∈ R+ then
α0(T ) ≤ supt>0

1
t

log eβt = β. Thus α0(T ) ≤ inf{β ∈ R | ∀t > 0, ‖T (t)‖ ≤ eβt}. Let us now
consider the semigroup (S(t))t∈R+ = (e−α0(T )tT (t))t∈R+ . This is a contraction semigroup,
as

‖S(t)‖ = e−α0(T )t ‖T (t)‖ = exp (log ‖T (t)‖ − α0(T )t)

= exp
(
t
(

1
t

log ‖T (t)‖ − α0(T )
))
≤ e0 = 1.

Hence α0(T ) ≥ inf{β ∈ R | ∀t > 0, ‖T (t)‖ ≤ eβt} which shows (2.9).
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With respect to our stability investigations we now have the following results.

Corollary 2.18. A strongly continuous semigroup T is exponentially stable if and only if
ω0(T ) < 0. It is a contraction semigroup if α0(T ) ≤ 0, and it is a uniform contraction
semigroup if α0(T ) < 0. If T is a uniform contraction semigroup which satisfies ‖T (t)‖ ≤
eβt, t ≥ 0, then (e−βtT (t))t∈R+ is a contraction semigroup.

A semigroup is uniformly continuous if and only if its generator is bounded. For unbounded
generators the initial growth rate might be +∞ if ‖T (s)‖ > γ > 1 for s ∈ (0, δ), and δ > 0
small. An example showing such behaviour will be presented in Example 2.38.
The relation between the growth rates of T and properties of the generator A is studied in
the following theorem. We only consider the case of bounded generators.

Theorem 2.19. Let A be a bounded linear operator on a Banach space X, and (T (t))t∈R+

be the uniformly continuous semigroup generated by A. Define

α(A) = sup {Reλ |λ ∈ σ(A)} , µ(A) = lim
h↘0

1
h
(‖I + Ah‖ − 1). (2.11)

Then the following holds,

α0(T ) = µ(A) ≥ α(A) = ω0(T ). (2.12)

Proof. We have eAtx = T (t)x for all x ∈ X and all t ∈ R+. Then by Lemma 2.14

ω0(T ) = inf
t>0

1

t
log ‖T (t)‖ = inf

t>0

1

t
log
∥∥eAtx∥∥ , x ∈ X, ‖x‖ = 1.

Now we need to know that α(A) = inft>0
1
t

∥∥eAt∥∥ . Gelfand’s formula for the spectral radius

ρ(A) := sup{|λ| |λ ∈ σ(A)} = lim
k→∞

k
√
‖Ak‖ (2.13)

applied to T (t) gives together with Lemma 2.14

ρ(T (t)) = lim
k→∞
‖T (kt)‖1/k = et limk→∞(kt)−1 log‖T (kt)‖ = eω0(T )t.

For bounded generators, the Spectral Mapping Theorem ([38, Lemma I.3.13]) yields{
eλt |λ ∈ σ(A)

}
= σ(T (t)).

Therefore there exists an eigenvalue λ0 of A such that the spectral radius ρ(T (t)) of the
semigroup T satisfies

ρ(T (t)) = eω0(T )t =
∣∣eλ0t

∣∣ = eReλ0t = eα(A)t.

Hence ω0(T ) = α(A). For the initial growth rate we have by Lemma 2.14

α0(T ) = sup
t>0

1
t

log
∥∥eAt∥∥ = lim

t↘0

1
t

log
∥∥eAt∥∥ = lim

t↘0

1
t

log(‖I + At‖)

= lim
t↘0

1
t
(‖I + At‖ − 1) = µ(A).

Here we approximated eAt by the linear part of its Taylor series, I + At and used log(1 +
r) ≈ r for |r| small. The inequality between α0(T ) and ω0(T ) in (2.12) follows from
Lemma 2.14.
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However, if A is unbounded then the domain of A is only a subset of X, and only the
inequalities ω0(T ) ≥ α(A) and α0(T ) ≤ µ(A) hold. We study a counterexample which
illustrates one of these gaps in the following subsection.

2.2 Asymptotic Growth Rates

Let us now turn our attention to the asymptotic growth rate of a strongly continuous
semigroup T with generator A. In in section we describe a method of constructing strongly
continuous semigroups with ω0(T ) > α(A). The spectral radii of the semigroup operators
T (t) are connected to the asymptotic growth rate of T via

ρ(T (t)) = eω0(T )t, t > 0,

which we already used in the proof of Theorem 2.19. This proof is also valid for unbounded
generators, see [38, Proposition IV.2.2]. For stability analysis one likes to connect the
spectrum of the generator A with the asymptotic growth rate, however one only obtains
the following result.

Theorem 2.20 ([38, Theorem IV.3.6]). The spectrum of a strongly continuous semigroup
T and the spectrum of its generator A satisfy

eσ(A)t ⊂ σ(T (t)) for all t > 0. (2.14)

More precisely, the following inclusions hold for all t ≥ 0,

eσP (A)t ⊂ σP (T (t)), eσC(A)t ⊂ σC(T (t)), eσR(A)t ⊂ σR(T (t)).

We will demonstrate that there exist semigroups where the generator has only a point
spectrum and which yield a proper subset in the spectral inclusion (2.14). An example
with ω0(T ) 6= α(A) is due to Zabczyk [152], see also Trefethen [137]. In the following
we present a detailed analysis of this example. For a given sequence of natural numbers
(nk)k∈N with nk ≥ 1 we consider the Hilbert direct sum of the spaces Cnk , denoted by
X =

⊕
k∈N Cnk . We now investigate semigroups on X.

Proposition 2.21. If (Tk(t))t∈R+, k ∈ N, are strongly continuous semigroups on Xk with
generator Ak and for each t ∈ R+ the sequence (‖Tk(t)‖)k∈N is bounded then T =

⊕
k∈N Tk is

a strongly continuous semigroup on X =
⊕

k∈NXk. Its generator is given by A =
⊕

k∈NAk
and has the domain D(A) =

⊕
k∈ND(Ak) ⊂ X.

Proof. Let us verify that T is a strongly stable semigroup. We have for s, t ≥ 0

T (s+ t) =
⊕
k∈N

Tk(s+ t) =
⊕
k∈N

Tk(s)Tk(t) =
(⊕
k∈N

Tk(s)
)(⊕

k∈N

Tk(t)
)

= T (s)T (t),

T (0) =
⊕
k∈N

Tk(0) =
⊕
k∈N

IXk = IX .
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Thus T is a semigroup. By boundedness, T (t) ∈ L(X) for all t ∈ R+. Moreover, for all
x = (xk)k ∈ X

lim
t↘0

(T (t)x− x) = lim
t↘0

(Tk(t)x
k − xk)k = 0

shows that T is strongly continuous. The domain of its generator A is given by

D(A) =

{
x ∈ X

∣∣∣∣ lim
h↘0

1
h
(T (h)x− x) exists

}
=
{
x = (xk)k

∣∣xk ∈ D(Ak)
}

=
⊕
k∈N

D(Ak)

and clearly, A =
⊕

k∈NAk.

Note that for stable Ak ∈ Cnk×nk , (Tk(t))t≥0 = (eAkt)t≥0 are uniformly continuous semi-
groups, however T =

⊕
k∈N Tk is generally only strongly continuous.

If the following condition is satisfied then the spectral abscissa α(A) = {Re s | s ∈ σ(A)}
of the generator A and the asymptotic growth rate of the semigroup do not coincide.

Theorem 2.22. Let A be a closed and densely defined linear operator on a Hilbert space
X that generates the semigroup (T (t))t∈R+. If the limit of the ε-pseudospectral abscissas
satisfies

lim
ε→0

αε(A) > α(A) (2.15)

then the asymptotic growth rate of the semigroup T satisfies α(A) < ω0(T ).

Proof. Let us suppose that the asymptotic growth rate of the semigroup (T (t))t∈R+ gen-
erated by A satisfies ω0(T ) < α̃ := limε→0 αε(A). If β ∈ (ω0(T ), α̃) then for every ε > 0
there exists ω ∈ R such that the resolvent of β + iω satisfies ‖R(β + iω, A)‖ > ε−1. Thus
the resolvent R(·, A) is unbounded on β + iR, hence (2.4) of Theorem 2.6 does not hold.
Therefore ω0(T ) ≥ α̃ > α(A).

Remark 2.23. For block-diagonal operatorsA =
⊕

k∈NAk we haveR(s, A) =
⊕

k∈NR(s, Ak)
and ‖R(s, A)‖ = supk∈N ‖R(s, Ak)‖. Therefore σε(A) =

⋃
k∈N σε(Ak), hence αε(A) =

supk∈N αε(Ak). If there exists sequence of matrices for which α(Ak) ≡ α is constant and
which satisfies, say, α1/k(Ak) > α + 1

2
, then this sequence can be used to construct an

operator which satisfies Theorem 2.22.

Our choice of the matrix sequence (Ak)k∈N such that A =
⊕

k∈N∗ Ak satisfies Theorem 2.22
will consist of Jordan blocks of growing dimensions.

Remark 2.24. We can regard these Jordan blocks as finite dimensional approximants of
an `2(C)-Toeplitz-operator which has a continuous spectrum, see [21, 20]. Let us consider
the Toeplitz operator J∞(λ) : `2(C) → `2(C), (xk) 7→ (λxk + xk+1) with λ ∈ C which is
composed of a multiplication operator and a shift operator on `2(C). Its spectrum consists
of all points which are enclosed by {a(eiϕ) |ϕ ∈ [0, 2π]} with a winding number of 1 where
a(t) = λ+ t is the symbol belonging to the Toeplitz operator J∞(λ). Here the spectrum is
a disc of radius 1 centered at λ. A finite dimensional approximation of J∞(λ) is given by
the Jordan block Jn(λ) of dimension n.
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We will derive properties of Jordan blocks by a direct analysis. Let Jn be the Jordan block
of size n for the eigenvalue 0 and set Jn(λ) = λIn + Jn. For an estimate of the norm of the
resolvent of Jn we use the Neumann series which consists only of finitely many terms since
Jn is nilpotent,

(sIn − Jn)−1 = s−1

n−1∑
k=0

(
Jn
s

)k
,

which is valid for all s 6= 0. Taking norms we have
∥∥Jkn∥∥ = 1 for k < n and therefore

∥∥(sIn − Jn)−1
∥∥ ≤ |s|−1

n−1∑
k=0

∥∥Jkn∥∥
|s|k

= |s|−1 |s|−n − 1

|s|−1 − 1
=

1− |s|−n

|s| − 1
, |s| 6= 0, 1.

Now consider the set {λ ∈ C | |λ| = 1− 1
n+1
}, n ∈ N∗. For each of its elements λ we have

‖(λI − Jn)−1‖ ≤ (n+1)
[(

1− 1
n+1

)−n − 1
]
. Note that (1− 1

n+1
)−n−1 ∈ [1, e−1]. Hence for

every n ∈ N∗ there exists ε > 0 small enough such that σε(Jn) ⊂ {λ ∈ C | |λ| < 1− 1
n+1
}.

Finally we present the construction of an example illustrating the gap between α(A) and
ω0(T ).

Example 2.25. Let us consider the diverging sequence xk = 2ik and set Ak = Jk(xk) for k =
1, 2, . . . We show that the associated block multiplication operator A =

⊕
Ak is unbounded

and has only a discrete spectrum given by σ(A) =
⋃∞
k=1 σ(Ak). To this end, note that

(xk)k∈N∗ is an unbounded sequence. Therefore, A is an unbounded operator. Moreover,
by the results derived above we see that the spectrum of σ(A) =

⋂
ε>0

⋃
k∈N∗ σε(Ak), see

Corollary 1.18, is just
⋃∞
k=1 σ(Ak). For this, note that the ε-pseudospectra of Ak are disjoint

for ε > 0 small enough. In particular, for every k ∈ N∗ there exists an ε > 0 such that

σε(Ak) = σε(xkI + Jk) ⊂ {λ ∈ C | |λ− xk| < 1− 1
k+1
}.

Hence the spectrum of the operator A consists only of a point spectrum. Now by Proposi-
tion 2.21, A generates the strongly continuous semigroup T which is again of block diagonal
form

T (t) =
∞⊕
k=1

e2i kteJkt, t ∈ R+.

Each row of eJkt contains the first terms of a Taylor expansion of the exponential series et.
Now consider the sequence (xk)k∈N = ((01, 02, . . . 0k−1,1k, 0k+1, . . . ))k∈N ⊂ X where 1k =
(1 . . . 1)> ∈ Rk matches an Ak block. Then T (xk)k∈N = (0, . . . , Ak1k yields

ω0(T ) ≥ lim
t→∞

sup
k∈N

t−1 log ‖T (t)xk‖ / ‖xk‖ = lim
t→∞

sup
k∈N

t−1 log
∥∥eAkt1k∥∥ = lim

t→∞
t−1 log et = 1.

The asymptotic growth rate is therefore at least 1, whereas the spectral abscissa α(A) =
supλ∈σ(A) Reλ = supk∈N α(Ak) = 0. �
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2.3 Initial Growth Rates

Let X be a Banach space over K = R or C with norm ‖·‖ . The dual space X∗ = L(X,K)
is the set of all bounded linear functionals which map X into K. Let us denote the value of
the functional y ∈ X∗ in x ∈ X by 〈y, x〉 ∈ K. The dual space is a Banach space equipped
with the dual norm

‖y‖∗ = sup {|〈y, x〉| | ‖x‖ ≤ 1} = sup {Re 〈y, x〉 | ‖x‖ ≤ 1} . (2.16)

Indeed, this is the operator norm for linear functionals 〈y, ·〉 : (X, ‖·‖)→ (K, |·|).

Definition 2.26. We call (x, y) ∈ X ×X∗ a dual pair (DP) if ‖x‖ ‖y‖∗ = 〈y, x〉 6= 0 and
we speak of a normed dual pair (NDP) if a dual pair (x, y) satisfies 〈y, x〉 = 1. If ‖x‖ = 1,
‖y‖∗ = 1 and 〈y, x〉 = 1 then (x, y) is a unitary dual pair (UDP). We call y ∈ X∗ a dual
vector of x ∈ X if (x, y) is a dual pair.

By the Hahn-Banach Theorem, the set of dual vectors y ∈ X∗ of a given x ∈ X is never
empty. We collect some properties of dual pairs in the following proposition.

Proposition 2.27. Let X be a Banach space and denote its dual space by X∗. For x ∈ X
and y, y′ ∈ X∗ we have

(i) If (x, y) is a dual pair then (αx, βy) is a dual pair for all α, β > 0. Moreover, if X
is a Banach space over C then (ζ−1x, ζy) is a dual pair for all ζ ∈ C, ζ 6= 0.

(ii) In a reflexive Banach space X, if (x, y) is a dual pair then (y, x) is a dual pair in X∗.

(iii) If (x, y) and (x, y′) are dual pairs then (x, θy+(1−θ)y′) are dual pairs for all θ ∈ (0, 1).

(iv) Every dual pair (x, y) with ‖y‖∗ = 1 satisfies the subgradient inequality

for all z ∈ X : ‖x+ z‖ ≥ ‖x‖+ Re 〈y, z〉. (2.17)

Proof. Item (i) follows directly from Definition 2.26 and properties of the norm. For (ii),
recall that a reflexive Banach space X is isomorphic to its bidual X∗∗ via z 7→ ẑ, ẑ : y 7→
〈y, z〉. Hence there exists an isomorphism between dual pairs (y, ẑ) ∈ X∗ ×X∗∗ and dual
pairs (z, y) ∈ X × X∗. To prove (iii) note that by definition of the dual norm (2.16),
|〈u, x〉| ≤ ‖x‖ ‖u‖∗ for all x ∈ X, u ∈ X∗. If (x, y) and (x, y′) form dual pairs then let us
consider u = θy + (1− θ)y′ ∈ X∗ for θ ∈ [0, 1]. We have

‖x‖ ‖u‖∗ ≥ 〈u, x〉 = θ ‖x‖ ‖y‖∗ + (1− θ) ‖x‖ ‖y′‖∗ = ‖x‖
(
θ ‖y‖∗ + (1− θ) ‖y′‖∗

)
≥ ‖x‖ ‖θy + (1− θ)y′‖∗ = ‖x‖ ‖u‖∗ .

(2.18)

Thus equality holds in (2.18), and therefore u is a dual vector of x. For item (iv), consider
the unitary dual pair (x, y). If we have a pair (u, y) ∈ X ×X∗ which only satisfies ‖u‖ = 1
and ‖y‖∗ = 1 then Re 〈y, u〉 ≤ 1. Setting u = x+z

‖x+z‖ ∈ X for z ∈ X, z 6= −x gives

1 = 〈y, x〉 ≥ Re 〈y, u〉 = Re

〈
y,

x+ z

‖x+ z‖

〉
for all z ∈ X \ {−x}.
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By multiplication with ‖x+ z‖ we obtain (2.17). The case z = −x is directly verified,
‖x‖+ Re 〈y, z〉 = ‖x‖ − 〈y, x〉 = 0.

Figure 2.2: Dual pairs and dual norms.

In terms of convex analysis [120], equation (2.17) shows that every dual vector y of x with
‖y‖∗=1 is a subgradient of the norm ‖·‖ at the point x. More precisely, Proposition 2.27 (iv)
implies that (x, y) is a DP if and only if the hyperplane {z ∈ X | 〈y, z〉 = ‖x‖ ‖y‖∗} is a
supporting hyperplane in x of the ball B(r) = {z ∈ X | ‖z‖ ≤ r} with radius r = ‖x‖. If
(x, y) is a UDP then y is an outer normal of B in x. We demonstrate this property in the
following examples.

Figure 2.3: Duals of
the ∞-norm.

We visualize some dual norms and dual pairs for norms in R2.
Consider a symmetric positive definite matrix P ∈ R2×2. Then
‖x‖P =

√
x>Px defines a norm on R2. Its dual norm is given by

‖y‖∗P = max {〈y, x〉2 | 〈x, Px〉2 = 1} = ‖y‖P−1 (2.19)

as 〈y, x〉2 is maximal on the unit sphere of (R2, ‖·‖P ) for x =

〈y, P−1y〉−1/2
2 P−1y with ‖x‖P = 1. Unitary dual pairs are given by

(x, Px) with ‖x‖P = 1, because these vectors satisfy 1 = ‖x‖P =
〈Px, x〉2 = 〈(Px), P−1(Px)〉2 = ‖Px‖2

P−1 . Hence ‖Px‖P−1 = 1.
Figure 2.2 shows the unit ball B and the dual unit ball B∗ of ‖·‖P
where P = ( 1 −.5

−.5 1 ). We see that if (x, y) is a UDP then y is an
outer normal of B in x. Moreover, the right image shows that ∂B∗

collects all possible dual vectors for all x ∈ ∂B so that the pair (y, x) is a unitary dual pair
with respect to the dual norm.

Example 2.28. Let us now consider the pair of dual norms ‖x‖1 = |x1|+ |x2| and ‖x‖∞ =
max{|x1| , |x2|}. For x ∈ {(±1, x2) with |x2| < 1 or (x1,±1) with |x1| < 1} its dual vector
is uniquely determined by y = (±1, 0) or y = (0,±1).
However, for x = (±1,±1) the duals are not uniquely determined, see Figure 2.3 for an
illustration. The unit box B∞ is shaded gray, and in the vertices the dual pairs are not
unique. Attaching all these dual vectors to the origin gives the unit ball of ‖·‖1. �
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For a given closed linear operator A in X consider x ∈ D(A) with ‖x‖ = 1. We are
interested in the direction in which Ax points with respect to the unit ball of ‖·‖ . This
motivates the following definition.

Definition 2.29. Let A be a closed linear operator on X. The initial growth of A in
x ∈ D(A) is given by

µ(x,A) = lim
h↘0

1
h

(‖x+ hAx‖ − ‖x‖) . (2.20)

For a closed linear operator A, we call µ(A) = sup{µ(x,A) |x ∈ D(A), ‖x‖ ≤ 1} the initial
growth rate of A. The closed linear operator A is called dissipative if µ(A) ≤ 0, it is called
strictly dissipative if µ(A) < 0.

We can rewrite limh↘0
1
h

(‖x+ hAx‖ − ‖x‖) as limt→∞ (‖tx+ Ax‖ − ‖tx‖). Then for s, t ≥
0,

‖(s+ t)x+ Ax‖ − (s+ t) ‖x‖ ≤ ‖sx+ Ax‖+ (t− (s+ t)) ‖x‖ = ‖sx+ Ax‖ − s ‖x‖ .

Thus the term ‖tx+ Ax‖−t ‖x‖ is monotonically decreasing in t. Additionally, ‖tx+ Ax‖−
‖tx‖ ≥ −‖Ax‖ for all t > 0, hence the limit in (2.20) exists. We therefore have

µ(x,A) = inf
s>0
‖(sIX + A)x‖ − s ‖x‖ . (2.21)

The term “initial growth rate” is slightly misleading, as we have not assumed that A
is a generator of a semigroup. However, if A is the generator of a uniformly continu-
ous semigroup the following lemma shows that we regain the initial growth rate used in
Theorem 2.19.

Lemma 2.30. If A ∈ L(A) is the generator of a uniformly continuous semigroup then
µ(A) = limh↘0 h

−1(‖I + Ah‖ − 1) is the initial growth rate of the semigroup (eAt)t∈R+.

Proof. If A is the generator of a uniformly continuous semigroup, then D(A) = X and

sup
‖x‖=1

µ(x,A) = sup
‖x‖=1

lim
t→∞

(‖(tI + A)x‖ − t ‖x‖)

= lim
t→∞

sup
‖x‖=1

(‖(tI + A)x‖ − t ‖x‖) = lim
t→∞

(‖A+ It)‖ − t) = µ(A)

as the limit limt→∞(‖(tI + A)x‖ − t) is monotone in t for all x ∈ X, ‖x‖ = 1. Therefore
the initial growth rate of a generator A with D(A) = X also satisfies (2.11).

The following result connects Definition 2.29 with the discussion of dual vectors.

Proposition 2.31. Given a closed linear operator A in X. Then for all x ∈ D(A), x 6= 0,

µ(x,A) = sup

{
Re
〈y, Ax〉
〈y, x〉

∣∣∣∣ y ∈ X∗ is a dual vector of x

}
. (2.22)

Hence the initial growth rate of A satisfies

µ(A) = sup

{
Re 〈y, Ax〉
〈y, x〉

∣∣∣∣x ∈ D(A) and (x, y) DP

}
= sup {Re 〈y, Ax〉 |x ∈ D(A) and (x, y) NDP} .
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Proof. Let us denote the right hand side of (2.22) by µ̃(x,A). We first show that µ̃(x,A) ≤
µ(x,A). Let y be a dual vector of x with ‖y‖∗ = 1. From (2.17) we have for all h > 0 that
‖x‖ + hRe 〈y, Ax〉 = 〈y, x〉 + hRe 〈y, Ax〉 = Re 〈y, x+ hAx〉 ≤ ‖x+ hAx‖, which implies
that Re 〈y, Ax〉 ≤ 1

h
(‖x+ hAx‖ − ‖x‖) for all h > 0, hence

µ̃(x,A) ≤ lim
h↘0

1
h

(‖x+ hAx‖ − ‖x‖) . (2.23)

To see the converse inequality µ̃(x,A) ≥ µ(x,A) let us fix x ∈ D(A) with ‖x‖ = 1. Then
for all t > 0 there exists yt ∈ X∗ such that Re 〈yt, (tI + A)x〉 = ‖(tI + A)x‖ and ‖yt‖∗ = 1.
With µ(x,A) = inf{‖sx+ Ax‖ − s ‖x‖ | s > 0}, see (2.21), the following inequalities are
valid for all t > 0

µ(x,A) + t ≤ ‖(tI + A)x‖ = tRe 〈yt, x〉+ Re 〈yt, Ax〉
≤ min{t+ Re 〈yt, Ax〉, tRe 〈yt, x〉+ ‖Ax‖}.

Hence 1+ 1
t
(µ(x,A)−‖Ax‖) ≤ Re 〈yt, x〉 ≤ 1 and µ(x,A) ≤ Re 〈yt, Ax〉. Now the unit ball

of X∗ is compact in the weak∗ topology of X∗, hence there exists a weak∗ accumulation
point of (yt)t∈R+ for t → ∞ named y′. This accumulation point satisfies Re 〈y′, x〉 = 1.
Hence

‖y′‖∗ ≤ 1, Re 〈y′, x〉 = 1, Re 〈y′, Ax〉 ≥ µ(x,A).

But this already implies that ‖y′‖∗ = 1 and 〈y′, x〉 = 1. Thus (x, y′) is a normed dual pair
with 〈y′, x〉 = 1 and µ(x,A) ≤ Re 〈y′, Ax〉. This shows µ̃(x,A) ≥ µ(x,A).

Hence a contraction semigroup has a dissipative generator, and a dissipative generator
corresponds to a contraction semigroup. Let us now consider a different characterization
of dissipativity.

Lemma 2.32 ([147, Theorem VII.4.15]). A closed linear operator A on X is dissipative if
and only if for all x ∈ D(A) and all λ > 0,

‖(λI − A)x‖ ≥ λ ‖x‖ . (2.24)

In particular, if (0,∞) is contained in the resolvent set of A then A is dissipative if and
only if for all x ∈ X and all λ > 0: ‖λR(λ,A)x‖ ≤ ‖x‖ . This characterises dissipativity
in terms of the resolvent, which we analyse further by stating a version of the theorem of
Hille-Yosida for contractions.

Theorem 2.33 ([147, Theorem VII.4.11]). The closed linear operator A is the generator
of a contraction semigroup (T (t))t∈R+ on X if and only if A is closed and densely defined,
every λ > 0 is contained in the resolvent set of A and satisfies ‖λR(λ,A)‖ ≤ 1.

Hence every generator of a contraction semigroup is dissipative. However for the converse
implication we need that the positive real half-line is contained in the resolvent set of
A which is not enforced by (2.24). The question when a dissipative operator is also the
generator of a contraction semigroup is answered by a famous theorem of Lumer and
Phillips.
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Theorem 2.34 ([4, Theorem 3.4.5]). Suppose that A is a densely defined closed linear
operator on a Banach space X. Then A is a generator of a strongly continuous contraction
semigroup (T (t))t∈R+ if and only if A is dissipative and the range (λI −A)[D(A)] = X for
some λ > 0.

Pazy [113, Corollary 1.4.4] notes the following corollary.

Corollary 2.35. Suppose that A is a densely defined closed linear operator on a Banach
space X. If both A and its adjoint A∗ are dissipative then A generates a contraction
semigroup.

If X is a Hilbert space then it can be identified with its dual X ' X∗. In particular,
‖x‖2 = 〈x, x〉 for all x ∈ X so that each x ∈ X has a uniquely determined dual, namely, x
itself.

Lemma 2.36. Suppose that X is a Hilbert space. The initial growth rate of a bounded
linear operator A ∈ L(X) is given by

µ(A) = 1
2
α(A+ A∗).

Proof. By Proposition 2.31 we have

µ(A) = sup
‖x‖=1

Re 〈x,Ax〉 = 1
2

sup
‖x‖=1

〈x, (A+ A∗)x〉 = 1
2
α(A+ A∗).

For a proof of α(A + A∗) = sup‖x‖=1 〈x, (A+ A∗)x〉 (the Rayleigh principle) in Hilbert
spaces, see [151, Theorem XI.8.2].

The dissipativity of A then only depends on properties of the self-adjoint linear operator
A+ A∗, see Definition 1.24.

Corollary 2.37. Let A ∈ L(X) be a linear operator on a Hilbert space X. Then the initial
growth rate µ of A with respect to the norm ‖·‖X satisfies

µ(A) ≤ 0 ⇐⇒ −(A+ A∗) is positive,

µ(A) < 0 ⇐⇒ −(A+ A∗) is coercive.

For strongly continuous semigroups the initial growth rate may be +∞ as the following
example shows.

Example 2.38. Consider the Hilbert space X =
⊕

k∈N R2 which is the direct sum of copies
of R2. Let us study the unbounded linear block-diagonal operator

A =
⊕
k∈N∗

(
−k 4k + 2
0 −k − 1

)
: X → X,

which is built up from stable 2× 2 matrices Ak. Each of these matrices satisfies a growth
bound 1.5 ≈ 4

e
≤ supt≥0

∥∥eAkt∥∥ ≤ √
37
3
≈ 2, see Theorem 4.8, but the maximum value of
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Figure 2.4: Norm of the matrix exponential for A =
⊕20

k=1Ak.

t 7→
∥∥eAkt∥∥ is attained at t∗k for which t∗k → 0 holds as k → ∞, which can be verified

numerically. The semigroup (T (t))t∈R+ = (eAt)t∈R+ generated by A will also satisfy 1.5 ≤
supt>0 ‖T (t)‖ ≤ 2, and therefore limt→0 ‖T (t)‖ > 1, hence T is not a uniformly continuous
semigroup, and µ(A) = α0(T ) = ∞, see Corollary 2.17 and Theorem 2.19. Figure 2.4
shows the spectral norm

∥∥eAt∥∥ for A =
⊕20

k=1Ak. �

Remark 2.39. Let A be the generator of a strongly continuous semigroup T . The initial
growth rate µ(A) collects the microscopic effects of t 7→ ‖T (t)‖ for t > 0 near zero, while
α(A) models the macroscopic or asymptotic effects. Hence if µ(A) differs significantly
from α(A), say µ(A) > 0 while α(A) < 0, then we expect non-trivial transient effects in
t 7→ ‖T (t)‖ for moderately sized t > 0 like multiple local maxima and minima. Note that
µ depends on the used norm, while α is independent of the norm.

2.3.1 Initial Growth Rates in Finite-Dimensional Spaces

We will now turn to the matrix case and study the initial growth rate associated with a
vector norm ‖·‖ of interest for matrices in Kn×n . In finite dimensions we identify y ∈ Kn

with the linear form fy ∈ (Kn)∗ : x 7→ y∗x.2 Hence the evaluation of a linear form 〈fy, x〉
with fy ∈ (Kn)∗, x ∈ Kn is identified with the inner product 〈x, y〉2 = y∗x for x, y ∈ Kn.

Let us collect some of the properties of the initial growth rate.

Proposition 2.40. Given matrices A,A′ on Kn×n and scalars z ∈ K, α ∈ R. The initial
growth rate µ(·) satisfies

(i) −µ(−A) ≤ Reλ ≤ µ(A), λ ∈ σ(A),

(ii) µ(αA) = |α|µ((sgnα)A),

(iii) |µ(A)| ≤ ‖A‖,

(iv) µ(A+ zI) = µ(A) + Re z,

(v) µ(A+ A′) ≤ µ(A) + µ(A′),

(vi) µ(A) = limt→∞(‖It+ A‖ − t).

2Note that y 7→ y∗ is not C-linear.
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Proof. From Proposition 2.31 we know that

µ(A) = sup{Re 〈Ax, y〉2 | ‖x‖ ‖y‖
∗ = 〈x, y〉2 = 1}.

Moreover, µ(−A) satisfies −µ(−A) = inf{Re 〈Ax, y〉2 | ‖x‖ ‖y‖
∗ = 〈x, y〉2 = 1}. Hence by

enlarging or restricting the conditions on the pair (x, y) we obtain the required statements.
For item (i), consider an eigenvector x corresponding to an eigenvalue λ ∈ σ(A). Then
for all dual vectors y of x, Re 〈Ax, y〉2 = Reλ〈x, y〉2 = Reλ ‖y‖∗ ‖x‖, which shows (i).
Items (ii) and (iv) hold as µ(αA) = µ(sgnα |α|A) = |α|µ((sgnα)A) and

µ(A+ zI) = sup
(x,y) NDP

Re 〈(A+ zI)x, y〉2 = sup
(x,y) NDP

Re (〈Ax, y〉2 + 〈zx, y〉2) = µ(A) + Re z.

Formula (vi) is found in Lemma 2.30. For (iii) let us replace the unitary dual pair (x, y)
by the normed pair (x, y) where ‖x‖ = 1 = ‖y‖∗ . Then

µ(A) ≤ sup
‖x‖=1=‖y‖∗

Re 〈Ax, y〉2 ≤ sup
‖x‖=1=‖y‖∗

‖y‖∗ ‖A‖ ‖x‖ = ‖A‖ .

Now t − ‖A‖ ≤ ‖It+ A‖ for all t ≥ 0 and hence by (vi) we have µ(A) ≥ −‖A‖ which
shows the lower bound in (iii).
The subadditivity (v) is again verified using Proposition 2.31,

µ(A+ A′) = sup
(x,y) NDP

Re 〈(A+ A′)x, y〉2

≤ sup
(x,y) NDP

Re 〈Ax, y〉2 + sup
(x,y) NDP

Re 〈A′x, y〉2 = µ(A) + µ(A′).

Hence all statements of Proposition 2.40 have been verified.

Items (ii) and (v) of Proposition 2.40 imply that µ is a convex function with

µ(αA+ (1− α)A′) ≤ αµ(A) + (1− α)µ(A′) for all A,A′ ∈ Kn×n and α ∈ [0, 1].

Items (iii) and (v) show that µ a continuous function, as µ(A + ∆) ≤ µ(A) + ‖∆‖ and
µ(A) ≤ µ(A+ ∆) + µ(−∆) ≤ µ(A+ ∆) + ‖∆‖.
A matrix A ∈ Cn×n generates a contraction semigroup with respect to ‖·‖ if the closed
unit ball B = {x ∈ Cn | ‖x‖ ≤ 1} is forward-invariant under the flow of ẋ = Ax. Hence for
every t > 0 the inclusion eAtB ⊂ B holds. Note that this only needs to be checked for an
infinitesimally small t > 0, i.e., we need a criterion which decides if for every initial value
x0 ∈ ∂B the derivative of the solution x(t, x0) of ẋ = Ax in t = 0, ẋ(0, x0), points inside or is
tangentially to the unit ball B. And indeed this information is provided by the initial growth
rate µ(A) as µ(x,A) ≤ 0 for all x ∈ ∂B is equivalent to limh↘0

1
h
‖x+ hAx‖ − ‖x‖ ≤ 0

which shows that ‖x+ hAx‖ ≤ ‖x‖ = 1 for h → ∞, hence Ax points inside or along the
unit ball. Thus B is forward-invariant under the flow of ẋ = Ax if µ(A) ≤ 0, where µ
satisfies

µ(A) = lim
t↘0

t−1 (‖I + tA‖ − 1) . (2.25)
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We have seen in Proposition 2.31 and Proposition 2.40 that this limit is well-defined since
t−1 (‖I + tA‖ − 1) is monotonically decreasing for t↘ 0 and since it is bounded from below
by −‖A‖ .
The following theorem recalls the formulas for some standard operator norms and gives
the corresponding initial growth rates.

Theorem 2.41. Let x = (xi) ∈ Cn and A = (aij) ∈ Cn×n. If µp(·) denotes the initial
growth rate with respect to the norm ‖·‖p (p = 1, 2,∞) then

‖x‖1 =
∑
i

|xi| , ‖A‖1 = max
j

∑
i

|aij| , µ1(A) = max
j

(
Re ajj +

∑
i 6=j

|aij|

)
,

‖x‖2 =

√∑
i

|xi|2, ‖A‖2 =
√

max
i
λi(A∗A), µ2(A) = 1

2
max
i
λi(A+ A∗),

‖x‖∞ = max
i
|xi| , ‖A‖∞ = max

i

∑
j

|aij| , µ∞(A) = max
i

(
Re aii +

∑
j 6=i

|aij|

)
.

The operator norms ‖·‖1 , ‖·‖∞ and ‖·‖2 are called (absolute) column-sum norm, (absolute)
row-sum norm and spectral norm, respectively.

Proof. We will show the formulas for the initial growth rates. Note that the spectral norm
is self-dual, therefore

µ2(A) = sup
‖x‖=1

Re 〈x,Ax〉2 = 1
2

sup
‖x‖=1

x∗(A+ A∗)x = 1
2
λmax(A+ A∗),

where the last equality follows from the Rayleigh-Ritz Theorem for Hermitian matrices,
see [70]. For the 1- and ∞-norm case we use the fact that the real part of z ∈ C can be
represented by Re z = limr→∞ |z + r| − r. By setting r = t−1 in (2.25) we obtain

µ1(A) = lim
t→0

t−1 ‖I + At‖ − t−1 = lim
r→∞
‖rI + A‖1 − r

= max
j

(
lim
r→∞
|ajj + r| − r +

∑
i 6=j

|aij|

)
= max

j

(
Re ajj +

∑
i 6=j

|aij|

)
.

Analogously, µ∞ = maxi(Re aii +
∑

j 6=i |aij|).
The following proposition is a direct consequence of the characterization of dissipativity in
Lemma 2.32 and the rule µ(A− βI) = µ(A)− β of Proposition 2.40.

Proposition 2.42. Suppose ‖·‖ is an operator norm on Kn×n. Then µ(A) is the least
upper exponential bound for

∥∥eAt∥∥, µ(A) = min
{
µ ∈ R

∣∣∀t ≥ 0 :
∥∥eAt∥∥ ≤ eµt

}
.

This characterization also holds for uniformly continuous semigroups on a Banach space
X, as

∥∥eAt∥∥ ≤ e‖A‖t for t ∈ R+, see also (2.9) and Theorem 2.19.
If the matrix norm under consideration is not an operator norm, dissipativity and µ(A) ≤ 0
are not equivalent as the following example shows.
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Example 2.43. Suppose that Cn×n is endowed with the Frobenius norm ‖A‖F =
√∑

i,j |aij|
2

which is a matrix norm, but not an operator norm. Furthermore, if A is a matrix of rank
1 then ‖A‖F = ‖A‖2 . Hence if A ∈ Cn×n has a simple uniquely determined rightmost
eigenvalue then

∥∥eAt∥∥
F
≈
∥∥eAt∥∥

2
for t large since the dominant eigenmotion “survives”

asymptotically, see Proposition 3.14. For A =
( −5 36

0 −20

)
the transient behaviour t 7→

∥∥eAt∥∥
is depicted in Figure 2.5 for both the Frobenius and the spectral norm. The initial growth

Figure 2.5: Transient motion and the Frobenius norm.

rate of A with respect to ‖·‖F (which is negative here) is not an upper exponential bound
for
∥∥eAt∥∥

F
. However, for large t,

∥∥eAt∥∥
F

is a good approximation of
∥∥eAt∥∥

2
. �

If the initial growth rate is negative then its absolute value can be interpreted as a dissi-
pativity radius, as the following result implies.

Lemma 2.44. Let A ∈ Kn×n and ‖·‖ be an operator norm on Kn×n. Suppose that A is
dissipative with µ(A) < 0. If ∆ ∈ Kn×n, ‖∆‖ ≤ δ then∥∥e(A+∆)t

∥∥ ≤ e(µ(A)+δ)t, t ≥ 0.

Hence A + ∆ is dissipative, if δ ≤ |µ(A)| . On the other hand, if δ > |µ(A)| then A + ∆
with ∆ = δI is not dissipative.

Proof. The subadditivity of the initial growth rate and Proposition 2.42 give the estimate∥∥e(A+∆)t
∥∥ ≤ eµ(A+∆)t ≤ e(µ(A)+µ(∆))t ≤ e(µ(A)+δ)t.

By Proposition 2.40 (iv) we have µ(A + δI) = µ(A) + δI and for δ > |µ(A)| and ∆ = δI,
the initial growth rate µ(A+ ∆) > 0, hence A+ ∆ is not dissipative.

Hence if A is dissipative, matrix perturbations ∆ ∈ Kn×n with norm ‖∆‖ ≤ |µ(A)| will not
destroy dissipativity, µ(A + ∆) ≤ 0. On the other hand, for δ > |µ(A)| the perturbation
∆ = δI satisfies µ(A+ ∆) > 0.
Let us return to the discussion of duality issues related to dissipativity. In the following
〈·, ·〉2 denotes the standard Euclidean inner product in Kn while ‖·‖ is an arbitrary vector
norm on Kn. Let us denote the unit sphere by S = {x ∈ Kn | ‖x‖ = 1}.
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Figure 2.6 illustrates the unit balls of dual norms and a pair of dual vectors (x, y) ∈ S×S∗.
A small calculation shows that the line connecting x with y/‖y‖22 is tangent to the unit ball
B in x, as y is an outer normal of B in x.

Figure 2.6: Dissipativity.

Now if A is strictly dissipative with

max
(x,y) NDP

Re 〈y, Ax〉2 < 0

then all z = Ax = ẋ point inside the unit ball B. In other
words, if (x, y) is a unitary dual pair with respect to ‖·‖,
the angle spanned by z = Ax and the outer normal y is
obtuse. Figure 2.6 depicts allowed directions for a given x.
If A is a dissipative matrix with max(x,y) NDP Re 〈y, Ax〉2 ≤
0 then there may exist x ∈ ∂B such that Ax spans a right
angle with the outer normal y, hence Ax is tangentially
to the unit ball B.
As a different interpretation of Proposition 2.31, the initial
growth rate for a general norm corresponds to a right-
most point of the numerical range of A (also called field

of values). The numerical range of A with respect to the norm ‖·‖ is defined as follows,

W‖·‖(A) =

{
〈Ax, y〉2
〈x, y〉2

∣∣∣∣ (x, y) ∈ Cn × Cn is a dual pair of ‖·‖
}
⊂ C. (2.26)

∆W‖·‖(A) is the set of all Rayleigh quotients of dual pairs, its numerical abscissa is defined
by the initial growth rate with respect to the norm ‖·‖,

n‖·‖(A) = sup
{

Rew
∣∣w ∈ W‖·‖(A)

}
and equals the initial growth rate with respect to the norm ‖·‖, n‖·‖ = µ‖·‖. There exists a
well-studied object which is closely related to the numerical range associated with ‖·‖∞ ,
W∞(·). This is the object of the following theorems and propositions.

Theorem 2.45 (Gershgorin’s Theorem). For A ∈ Kn×n set Ri =
∑

j 6=i |aij|, i = 1, . . . , n,
and define the ith Gershgorin disk by Gi(A) = {z ∈ C | |z − aii| ≤ Ri}. Then

σ(A) ⊂ G(A) :=
n⋃
i=1

Gi(A).

Each connected component of G(A) contains at least one eigenvalue of A.

For a proof, see [70]. We will now have a closer look at the Gershgorin set G(A).

Proposition 2.46. For a given matrix A ∈ Cn×n the Gershgorin set G(A) is contained
in the numerical range W∞(A) of A associated with ‖·‖∞, and the numerical range is
contained in the convex hull of the Gershgorin set, that is,

G(A) ⊂ W∞(A) ⊂ conv G(A). (2.27)



2.3. INITIAL GROWTH RATES 35

Proof. Let us first describe dual vectors of x ∈ Cn with respect to ‖·‖∞ . Note that its dual
norm is ‖·‖∗∞ = ‖·‖1. We introduce the index set I(x) := {i ∈ {1, . . . , n} | ‖x‖∞ = |xi|}
which collects all critical indices of x. Then the set of all dual vectors of x with respect to
‖·‖∞ is given by

D(x) :=

∑
i∈I(x)

αixie
i

∣∣∣∣∣∣
∑
i∈I(x)

αi > 0, αi ≥ 0 for all i ∈ I(x)

 ,

where ei is the i-th unit vector in Cn. This can be seen as follows. For every y ∈ D(x),
its dual norm is given by ‖y‖∗∞ = ‖y‖1 =

∑
i∈I(x) αi |xi| = ‖x‖∞

∑
i∈I(x) αi > 0 and

〈y, x〉2 =
∑

i∈I(x) αix̄ixi = ‖x‖2
∞
∑

i∈I(x) αi = ‖x‖∞ ‖y‖1 . Hence the pair (x, y) is a dual

pair by Definition 2.26. Conversely, assume that y is a dual vector of x. Then 〈x, y〉2 =∑n
i=1 ȳixi = ‖x‖∞ ‖y‖1 = maxi |xi|

∑n
i=1 |yi| has to hold. But generally, we only have for

x, y ∈ Cn with 〈x, y〉2 ∈ R+ that

n∑
i=1

ȳixi =

∣∣∣∣∣
n∑
i=1

ȳixi

∣∣∣∣∣ ≤
n∑
i=1

|yi| |xi| ≤ max
i
|xi|

n∑
i=1

|yi| . (2.28)

To obtain equality in (2.28), we must have yi = 0 for all indices i with ‖x‖∞ 6= |xi|.
Collecting all those indices i with |xi| = ‖x‖∞ in the set I(x), we rewrite (2.28) as∑

i∈I(x) ȳixi ≤
∑

i∈I(x) |yi| |xi| . Again, to obtain equality, yi must be a nonnegative multiple

of xi. As y is a dual vector of x, at least one yi 6= 0 which shows that y ∈ D(x). In the
case that I(x) = {i} the dual vectors y of x satisfy y = αxie

i for α > 0. We now show
that every z ∈ G(A) can be represented by a Rayleigh quotient z = 〈Ax, y〉2/〈x, y〉2 where
(x, y) is a dual pair with respect to ‖·‖∞. For z ∈ G(A) there exist an index i0 and ζ ∈ C,
|ζ| ≤ 1 such that z = ai0i0 +(

∑
j 6=i0 |ai0j|)ζ. By introducing ζj ∈ C such that ai0j = |ai0j| ζ̄j,

|ζj| = 1, we have

z = ai0i0 +
∑
j 6=i0

ai0j(ζζj), |ζζj| ≤ 1 for all j = 1, . . . , n.

The pair (x, ei0) of vectors x = (ζζ1, . . . , 1, . . . , ζζn)> with a 1-entry in the i0-th component
is a normed dual pair associated with ‖·‖∞ because ‖x‖∞ = 1 as |ζζj| ≤ 1, and because
‖ei0‖1 = 1, 〈ei0 , x〉2 = 1 by construction. Hence z = 〈ei0 , Ax〉2/〈ei0 , x〉2 ∈ W∞(A) and
therefore G(A) ⊂ W∞(A).

On the other hand, for every z ∈ W∞(A) there exists a dual pair (x, y) such that z =
〈Ax,y〉2
〈x,y〉2

.

Since y ∈ D(x), it is given by y =
∑

i∈I(x) αixie
i for the index set I(x) defined above and

αi ≥ 0,
∑

i∈I(x) αi > 0. For each i0 ∈ I(x) the vector yi0 = xi0e
i0 is a dual vector of x.

Since | xj
xi0
| ≤ 1 for all j ∈ {1, . . . , n} the associated Rayleigh quotient satisfies

〈Ax, yi0〉2
〈x, yi0〉2

=
x̄i0
x̄i0xi0

(
n∑
j=1

ai0jxj

)
= ai0i0 +

∑
j 6=i0

ai0j
xj
xi0
∈ G(A). (2.29)
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Hence we obtain for z =
〈Ax,y〉2
〈x,y〉2

∈ W∞(A),

z =
〈Ax, y〉2
〈x, y〉2

=

∑
i∈I(x) 〈Ax, αiyi〉2∑
j∈I(x) 〈x, αjyj〉2

=
∑
i∈I(x)

αi
〈x, yi〉2∑

j∈I(x) αj〈x, yj〉2
〈Ax, yi〉2
〈x, yi〉2

,

where
〈Ax,yi〉

2

〈x,yi〉2
∈ G(A) by (2.29). Therefore, each z ∈ W∞(A) is given by a convex combi-

nation of elements in G(A) and thus W∞(A) ⊂ conv G(A).

The numerical range of A ∈ Cn×n associated with any norm always contains the spectrum
of A, hence the first statement of Theorem 2.45 follows immediately when x in the Rayleigh
quotient is set to an eigenvector of A.

Remark 2.47. We conclude from (2.29) that we obtain the Gershgorin set if we consider
Rayleigh quotients of dual pairs (x, y) where the dual vector y of x is a scalar multiple of
a unit vector, that is,

G(A) =

{
〈Ax, y〉2
〈x, y〉2

∣∣∣∣ (x, y) DP of ‖·‖∞ , y = xi0e
i0 for some i0

}
. (2.30)

This equation allows the following interpretation. Let us consider the unit sphere S∞ =
{x ∈ Cn | ‖x‖∞ = 1} ⊂ Cn as a CW-complex, see [75]. If we delete all its components of
dimensions less than n − 1 we get a set of open faces. These faces consist of points with
uniquely determined dual vectors. Using only those points for the Rayleigh quotients, we
arrive at (2.30). Hence each Gershgorin disk Gi(A) corresponds to those Rayleigh quotients
which correspond to dual pairs with y = ei as dual vector.

From Proposition 2.31 and Proposition 2.46 we get the following characterization of the
initial growth rate with respect to the ∞-norm.

Corollary 2.48. For all A ∈ Cn×n,

µ∞(A) = max{Re z | z ∈ W∞(A)} = max{Re z | z ∈ G(A)}. (2.31)

Proof. We have sup{Re z | z ∈ G(A)} = sup{Re z | z ∈ conv G(A)}, and hence (2.31) follows
from (2.27).

Definition 2.49. A matrix A = (Aij) ∈ Cn×n is called diagonally dominant (with negative
real parts of the diagonal elements) if

for all i = 1, . . . , n : Re aii +
∑
j 6=i

|aij| ≤ 0, (2.32)

it is called strictly diagonally dominant if the strict inequality holds in (2.32).

An application of Corollary 2.48 gives the following result.
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Corollary 2.50. A (strictly) diagonally dominant matrix A ∈ Cn×n is (strictly) dissipative
with respect to ‖·‖∞, µ∞(A) ≤ 0 (µ∞(A) < 0, respectively). Moreover, its Gershgorin disks
are located in the open (closed) left half-plane, G(A) ⊂ C̄− (G(A) ⊂ C−).

Proof. From z ∈ G(A) it follows that Re z ≤ maxi

(
Re aii +

∑
j 6=i |aij|

)
= µ∞(A). Hence

if A is (strictly) diagonally dominant, then µ∞(A) ≤ 0 (µ∞(A) < 0), such that G(A) ⊂ C̄−
(G(A) ⊂ C−, respectively).

Example 2.51. Let us consider the matrix A =
( −4 1 1

2 −1 0
1 0 −7

)
. Its Gershgorin set contains two

disks of radius 2 centered at −4 and −1 and a disk of radius 1 centered at −7, while the
spectrum is given by σ(A) = {−0.4171,−4.251,−7.332}. Figure 2.7 shows the spectrum,
the Gershgorin set, and the numerical range with respect to the ∞-norm shaded in gray.
Note that, unlike the Euclidean numerical range W2, the set W∞ is not necessarily a convex

−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

Figure 2.7: Numerical range W∞(A) and Gershgorin disks G(A).

set. �

For later references, we collect the characterizations of the initial growth rate in the fol-
lowing corollary.

Corollary 2.52. The initial growth rate µ(A) of A ∈ Kn×n associated with the vector
norm ‖·‖ is characterized as follows

µ(A) = d
dt+

∥∥eAt∥∥ ∣∣
t=0

= lim
h↘0

1
h
(
∥∥eAh∥∥− 1) = lim

h↘0

1
h

log
∥∥eAt∥∥ (2.33)

= lim
h↘0

1
h

(‖I + Ah‖ − 1) = lim
r→∞

(‖rI + A‖ − r) (2.33a)

= lim
h↘0

1
h

(∥∥(I + h
k
A)k
∥∥− 1

)
= lim

h↘0

1
h

(∥∥(I − h
k
A)−k

∥∥− 1
)
, k = 1, 2, 3, . . . , (2.33b)
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µ(A) = max
(x,y) DP

Re 〈Ax, y〉2
〈x, y〉2

= max
(x,y) DP

Re
y∗Ax

y∗x
, (2.33c)

µ(A) = inf
{
ω ∈ R

∣∣∀t ≥ 0
∥∥eAt∥∥ ≤ eωt

}
(2.33d)

= inf

{
ω ∈ R

∣∣∣∣ ∀α > ω ∀z ∈ C :
∥∥(αI − A)−1z

∥∥ ≤ 1

α− ω
‖z‖
}
. (2.33e)

Proof. The characterizations (2.33) and (2.33a) are given in Theorem 2.19 and Defini-
tion 2.29. Equation (2.33b) follows from (2.33) by replacing eAt with the product formu-
lation (I − t

k
A)−k from Theorem 2.7 and with (I + t

k
A)k. We can identify the terms of

(2.33b) with the initial growth rate as for all k ∈ N, k ≥ 1, (I − t
n
A)−n = I + At + O(t2)

and (I + t
n
A)n = I +At+O(t2). Equation (2.33c) is due to Proposition 2.31 while (2.33d)

is derived in Proposition 2.42. The last characterization (2.33e) is an application of The-
orem 2.34 to A − ωI, namely, A − ωI is dissipative if ‖(λ̃ + ω)I − A)x‖ ≥ λ̃ ‖x‖ for all
λ̃ > 0. Setting α = λ̃+ ω and z = (αI − A)−1x gives (2.33e).

2.4 Liapunov Norms

Liapunov theory plays an important role in many fields of applied mathematics. Here the
initial growth rate serves as an indicator if the semigroup T = (eAt)t∈R+ forms a contraction
with respect to the norm under consideration. The same fact can also be interpreted in
the following way: The norm is a Liapunov function for the system ẋ = Ax. We will prove
this and related facts in the current section.

Definition 2.53. Let A ∈ Kn×n. If ‖·‖ is a vector norm on Kn such that the associated
initial growth rate satisfies µ‖·‖(A) ≤ 0 then ‖·‖ is called a Liapunov norm for A. It is
called a strict Liapunov norm if µ‖·‖(A) < 0.

If ‖·‖ is a Liapunov norm for A then it generates a contraction semigroup, hence A is
marginally stable, and if the norm is a strict Liapunov norm, then A is exponentially
stable and generates a uniform contraction semigroup which follows from Proposition 2.42.
Let us recall the definition of a Liapunov function.

Definition 2.54. A Liapunov function for the linear system ẋ = Ax is a continuous
function V : Kn → R for which the following properties hold:

1. V is proper at 0, i.e., the set {x ∈ Kn |V (x) ≤ ε} is compact for all ε > 0.

2. V is positive definite, V (0) = 0 and V (x) > 0 for all x 6= 0.

3. For each initial value x0 6= 0 there exists a time τ > 0 so that the solution x(t, x0) of
ẋ = Ax satisfies V (x(t, x0)) ≤ V (x0) for t ∈ (0, τ) and V (x(τ, x0)) < V (x0).

It is well-known that the existence of a Liapunov function for ẋ = Ax implies that this
system is asymptotically stable, see Sontag [128]. We now have a canonical candidate for
a Liapunov function, namely, the Liapunov norm.
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Lemma 2.55. If ‖·‖ is a strict Liapunov norm for A ∈ Kn×n then it is a Liapunov function
for the system ẋ = Ax.

Proof. Since ‖·‖ is a norm, it is clearly positive definite and has compact level sets. Now
by the characterization of µ in (2.33d), we have

∥∥eAtx∥∥ ≤ eµ(A)t ‖x‖ for all x ∈ Kn. As
µ(A) < 0, A generates a uniform contraction with respect to ‖·‖ , or in other words, ‖·‖ is
strictly decaying along the solutions of ẋ = Ax. Thus the norm is a Liapunov function for
ẋ = Ax.

In most cases, however, the norm of interest is not a Liapunov norm for the system under
investigation. We therefore have to deal with two different norms, a given one and a suitable
Liapunov norm. To compare these different norms on Cn we introduce the following notion.

Definition 2.56. Suppose ν and ‖·‖ are norms on Cn. The eccentricity of norms of ν(·)
with respect to ‖·‖ is given by

ecc(ν) = ecc(ν, ‖·‖) =
max‖x‖=1 ν(x)

min‖x‖=1 ν(x)
. (2.34)

The eccentricity measures the deformation of the unit balls of these two norms with respect
to each other. Clearly,

ecc(ν, ‖·‖) =
maxx 6=0

ν(x)
‖x‖

minx 6=0
ν(x)
‖x‖

=
maxx 6=0

‖x‖
ν(x)

minx 6=0
‖x‖
ν(x)

= ecc(‖·‖ , ν). (2.35)

This notion can now be employed to compare the transient behaviour under different
norms. We obtain from Proposition 2.42 the following exponential bound.

Corollary 2.57. Let A ∈ Cn×n and given two norms ‖·‖ , ν(·) on Cn. If µν(·) denotes the
initial growth rate with respect to ν(·) we obtain∥∥eAt∥∥ ≤ ecc(ν, ‖·‖)eµν(A)t, t ≥ 0. (2.36)

Proof. Proposition 2.42 gives the exponential estimate ν(eAt) ≤ eµν(A)t for t ≥ 0. For all
y ∈ Cn, y 6= 0 we obtain by considering the ν-norm of the normed vector y/‖y‖ that

‖y‖ min
‖x‖=1

ν(x) ≤ ν(y) ≤ ‖y‖ max
‖x‖=1

ν(x). (2.37)

This implies for the associated operator norms ‖T‖ , ν(T ) of any T ∈ Cn×n

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

≤ sup
x 6=0

(
min‖x‖=1 ν(x)

)−1
ν(Tx)(

max‖x‖=1 ν(x)
)−1

ν(x)
= ecc(ν, ‖·‖)ν(T ). (2.38)

Setting T = eAt gives the desired result.
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In particular, if ν is a strict Liapunov norm for A, then µν(A) < 0, and (2.36) guarantees
asymptotic stability. Let us study the following special setup for Corollary 2.57.

Proposition 2.58. Given a vector norm ‖·‖ on Kn and an invertible matrix W ∈ Gln(K).
Define ν(·) = ‖W ·‖. The eccentricity of ν is given by the condition number of W ,

κ(W ) := ecc(ν, ‖·‖) = ‖W‖
∥∥W−1

∥∥ , (2.39)

and the weighted initial growth rate satisfies

µ‖·‖,W (A) := µν(A) = µ‖·‖(WAW−1). (2.40)

Proof. The eccentricity of ν is given by ecc(ν) =
max‖x‖=1‖Wx‖
min‖x‖=1‖Wx‖ . Now, max‖x‖=1 ‖Wx‖ is the

operator norm of W and
(
min‖x‖=1 ‖Wx‖

)−1
= max‖Wx‖=1 ‖x‖ = max‖y‖=1 ‖W−1y‖ is the

operator norm of W−1 such that (2.39) holds. For the initial growth let us determine the
operator norm associated with ν,

ν(A) = sup
x 6=0

ν(Ax)

ν(x)
= sup

x 6=0

‖WAx‖
‖Wx‖

= sup
y 6=0

‖WAW−1y‖
‖y‖

=
∥∥WAW−1

∥∥ ,
where we used y = W−1x. The characterization (2.33a) of the initial growth rate provides
us with

µν(A) = lim
h→0

h−1(ν(I + Ah)− 1) = lim
h→0

h−1(
∥∥W (I + Ah)W−1

∥∥− 1)

= lim
h→0

h−1(
∥∥I +WAW−1h

∥∥− 1) = µ‖·‖(WAW−1),

which shows (2.40).

Surprisingly, there always exists a norm which realizes the best possible exponential bound.
To see this, let us define the following constants, which measure transient motions.

Definition 2.59. Suppose A ∈ Kn×n and ‖·‖ is a given operator norm on Kn×n. For any
β ≥ α(A) the transient growth or transient amplification of (eAt)t≥0 corresponding to the
exponential rate β is defined by

Mβ(A) = inf
{
M ∈ R

∣∣ ∀t ≥ 0 : ‖eAt‖ ≤Meβt
}
. (2.41)

We set Mβ(A) =∞ if there is no M which satisfies the inequality in (2.41).

Now, Mβ(A) = M0(A−βI) so that there is no loss of generality by only considering β = 0.

Definition 2.60. Given a norm ‖·‖ on Kn and a stable matrix A ∈ Kn×n.

1. A norm ν(·) on Kn is called transient norm of A if µν(A) ≤ 0 and ecc(ν, ‖·‖) =
M0(A) = supt≥0

∥∥eAt∥∥ .
2. The Feller norm on Kn induced by the matrix A is defined by ‖x‖A = supt≥0

∥∥eAtx∥∥ .
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This norm is named after W. Feller who used such a norm construction in his proof [41]
of the Hille-Yosida Generation Theorem 2.6. Comparing with Definition 2.53, we see that
each transient norm is also a Liapunov norm.

Lemma 2.61. The Feller norm ‖·‖A induced by a stable matrix A ∈ Kn×n is a transient
norm of A.

Proof. It is easily verified that ‖·‖A is indeed a norm, the triangle inequality holds because

‖x+ y‖A = sup
t≥0

∥∥eAt(x+ y)
∥∥ ≤ sup

t≥0

(∥∥eAtx∥∥+
∥∥eAty∥∥) ≤ ‖x‖A+‖y‖A for all x, y ∈ Kn.

The eccentricity of ‖·‖A is given by ecc(‖·‖A) =
sup‖x‖=1 supt≥0‖eAtx‖
inf‖x‖=1 supt≥0‖eAtx‖

. We now show that

inf‖x‖=1 supt≥0

∥∥eAtx∥∥ = 1. If A is an exponentially stable matrix then for an arbitrary
x ∈ Rn, supt≥0

∥∥eAtx∥∥ is attained in finite time, say in t0 ≥ 0. Then we have for y = eAt0x
that

∥∥eAty∥∥ ≤ ‖y‖ for all t ∈ R+. Now consider the case that A is only marginally stable.
If K = C then we choose an eigenvector corresponding to a purely imaginary eigenvalue
iω ∈ σ(A). Then

∥∥eAtx∥∥ = ‖eiωtx‖ = ‖x‖. If K = R and A ∈ Rn×n is marginally stable
then there exists a complex conjugate pair ±iω of eigenvalues of A. Let x ∈ Cn be an
eigenvector associated with iω. For all t ≥ 0 we have

2
∥∥eAtRex

∥∥ =
∥∥eAt(x+ x̄)

∥∥ =
∥∥eiωtx+ eiωtx̄

∥∥ = 2 ‖cos(ωt)Rex− sin(ωt)Imx‖ ,

which is a periodic oscillation, hence it attains its maximum in finite time t0. Arguing as
above, the trajectory starting in y = eAt0Rex now satisfies

∥∥eAty∥∥ ≤ ‖y‖ for all t ≥ 0.
Hence the eccentricity of ‖·‖A equals the transient amplification,

M0(A) = sup
t≥0

∥∥eAt∥∥ = ecc ‖·‖A . (2.42)

To determine the initial growth of A with respect to ‖·‖A note that for all t ≥ 0∥∥eAtx∥∥
A

= sup
s≥0

∥∥eA(s+t)x
∥∥ = sup

s≥t

∥∥eAs∥∥ ≤ sup
s≥0

∥∥eAs∥∥ = ‖x‖A ,

thus A generates a contraction with respect to ‖·‖A and the initial growth rate satisfies
µA(A) ≤ 0.

More precisely, we have the following result for the initial growth rate with respect to the
Feller norm.

Corollary 2.62. Given a stable matrix A ∈ Kn×n. Then the initial growth rate of A with
respect to the Feller norm ‖·‖A satisfies µA(A) = min{µ(A), 0}.

Proof. If µ(A) ≤ 0 then by Proposition 2.42,
∥∥eAtx∥∥ ≤ eµ(A)t ‖x‖ ≤ ‖x‖ for all x ∈ Kn

and all t ≥ 0. Hence ‖x‖A = supt>0

∥∥eAtx∥∥ = ‖x‖ and therefore µA(A) = µ(A). Now,
for µ(A) > 0 Lemma 2.61 shows that µA(A) ≤ 0 Moreover, if µ(A) > 0 there exist
x0 ∈ Kn and t0 > 0 such that

∥∥eAt0x0

∥∥ = ‖x0‖A > ‖x0‖. But for h > 0 with h < t0,
supt>h

∥∥eAtx0

∥∥ = supt>0

∥∥eAtx0

∥∥ = ‖x0‖A and hence µA(A) = 0.
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Therefore if µ(A) ≥ 0 then the resulting Feller norm is a Liapunov norm, but not a strict
Liapunov norm. Otherwise, if µ(A) < 0 then the original norm ‖·‖ which coincides with
‖·‖A is already a strict Liapunov norm. The following lemma shows that the unit ball of
a Feller norm is of simple structure.

Lemma 2.63. Suppose that A ∈ Kn×n is stable. Then the closed unit ball BA of the
associated Feller norm ‖·‖A is given by

BA =
⋂
t≥0

e−AtB, (2.43)

where B is the closed unit ball of ‖·‖ .

Proof. By definition, x ∈ BA holds if and only if for all t ≥ 0, eAtx ∈ B, or equivalently,
x ∈ e−AtB which gives (2.43).

2.4.1 Transient Norms and Duality

Let us now investigate duality issues for transient norms. For dual norms we obtain the
following result.

Theorem 2.64. Suppose that ‖·‖ is a vector norm on Kn with associated initial growth
rate µ(·) and let µ∗(·) denote the initial growth rate with respect to the dual norm ‖·‖∗ on
Kn. Then for all matrices A ∈ Kn×n the following statements hold

1. µ(A) = µ∗(A∗).

2. µ2(A) ≤ 1
2
(µ(A) + µ∗(A)).

Proof. The first statement follows directly from Proposition 2.31,

µ(A) = max
‖x‖=1

max
‖y‖∗=1,〈x,y〉2=1

Re 〈Ax, y〉2, µ∗(A∗) = max
‖y‖∗=1

max
‖x‖=1,〈x,y〉2=1

Re 〈A∗y, x〉2.

Now as Re 〈Ax, y〉2 = Re 〈A∗y, x〉2 the equality µ∗(A) = µ(A∗) is proved. The second
statement follows from the first, because

µ(A) + µ∗(A) = µ(A) + µ(A∗) ≥ µ(A+ A∗) ≥ α(A+ A∗)

= λmax(A+ A∗) = 2µ2(A) = µ2(A+ A∗),

where we used that µ is a subadditive function, which is bounded from below by the
spectral abscissa α(B), see Proposition 2.40 (i) and (v). In case of Hermitian matrices the
spectral abscissa is an eigenvalue.

This theorem shows that given any norm, the initial growth rate for the spectral norm is
the best lower bound for all mean values between the initial growth rate of a norm and
the initial growth rate of its dual norm. For the following pair of dual norms, 1-norm
and ∞-norm, we have µ∗1(A) = µ∞(A) for all A ∈ Kn×n. Part 2 of Theorem 2.64 has the
following consequence.
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Corollary 2.65. Suppose that A ∈ Kn×n satisfies µ1(A) + µ∞(A) ≤ 0. Then A generates
a contraction semigroup with respect to the spectral norm, such that

µ2(A) ≤ 1
2
(µ1(A) + µ∞(A)) ≤ 0.

Estimates involving µ1 and µ∞ will be studied in more detail in Chapter 5.
Now that we have treated the initial growth with respect to dual norms let us consider the
eccentricities of dual norms.

Proposition 2.66. For vector norms ν(·), ‖·‖ on Kn it holds that

ecc(ν, ‖·‖) = ecc(ν∗, ‖·‖∗).

Proof. It suffices to show that ecc(ν∗, ‖·‖∗) ≤ ecc(ν, ‖·‖) since the bidual norms equal the
original norms, hence

ecc(ν, ‖·‖) = ecc(ν∗∗, ‖·‖∗∗) ≤ ecc(ν∗, ‖·‖∗) ≤ ecc(ν, ‖·‖) (2.44)

implies equality. To this end, let us prove that max‖y‖∗=1 ν
∗(y) = maxν(x)=1 ‖x‖ and

min‖y‖∗=1 ν
∗(y) ≥ minν(x)=1 ‖x‖. To show the first of these claims note that by definition

max
‖y‖∗=1

ν∗(y) = max
‖y‖∗=1

max
ν(x)=1

|y∗x| = max
ν(x)=1

max
‖y‖∗=1

|y∗x| = max
ν(x)=1

‖x‖ . (2.45)

To show the second claim, we define α = max{β | ν(βz) ≤ 1 for all ‖z‖ = 1}. Then we
have α = minν(u)=1 ‖u‖ . Now consider min‖y‖∗=1 ν

∗(y) = min‖y‖∗=1 maxν(x)≤1 |y∗x|. Let us
choose a special x in the previous formula. For this, let z be a dual vector of y which
satisfies ‖z‖ = 1 and y∗z = ‖y‖∗ . By definition of α we have ν(αz) ≤ 1. Hence the special
choice x = αz yields

min
‖y‖∗=1

ν∗(y) = min
‖y‖∗=1

max
ν(x)≤1

|y∗x| ≥ min
‖y‖∗=1

α |y∗z| = α = min
ν(u)=1

‖u‖ . (2.46)

Combining (2.45), (2.46) and (2.35) we get

ecc(ν∗, ‖·‖∗) =
max‖y‖∗=1 ν

∗(y)

min‖y‖∗=1 ν∗(y)
≤

maxν(x)≤1 ‖x‖
minν(x)≤1 ‖x‖

= ecc(‖·‖ , ν) = ecc(ν, ‖·‖).

Hence equality follows in (2.44).

Now, if ‖·‖ = ‖·‖2 is given then the dual norm of a transient norm ν satisfies by Proposi-
tion 2.66 ecc(ν∗, ‖·‖2) = ecc(ν, ‖·‖2). Hence we can expect that ν∗ is also a transient norm,
but now for A∗. This is indeed true as the following corollary shows.

Corollary 2.67. Suppose that ‖·‖ = ‖·‖2, i.e., all eccentricities are measured with respect
to the Euclidean norm. Then the dual of a transient norm ν(·) of A is a transient norm
of A∗.
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Proof. By Proposition 2.66 we have ecc(ν, ‖·‖2) = ecc(ν∗, ‖·‖2). Part 1 of Theorem 2.64
shows that µ∗ν(A

∗) = µν(A) ≤ 0. The transient amplification satisfies

M0(A) = sup
t≥0

∥∥eAt∥∥
2

= sup
t≥0

∥∥eA∗t∥∥
2

= M0(A∗).

Hence ν∗ is a transient norm of A∗.

Suppose that A ∈ Kn×n is stable and let us consider the norm ‖̃·‖A := ((‖·‖∗)A∗)∗, that
is, we start with the dual norm of ‖·‖ and construct the Feller norm with respect to A∗.

This is a transient norm for A∗, hence by Corollary 2.67 its dual ‖̃·‖A is a transient norm.
This provides a second method of creating transient norms besides ‖·‖A itself. Let us now
analyse this alternative method for the construction of transient norms. The following

proposition shows how the unit ball B̃A of ‖̃·‖A is obtained from the trajectories of the
system ẋ = Ax.

Proposition 2.68. Suppose that A ∈ Kn×n is a stable matrix. Let B be the closed unit

ball of ‖·‖. The closed unit ball B̃A of the norm ‖̃·‖A := ((‖·‖∗)A∗)∗ is given by

B̃A = conv
{
eAtx

∣∣ t ≥ 0, x ∈ B
}

= conv
⋃
t≥0

eAtB, (2.47)

where conv denotes the closed convex hull and B is the closed unit ball of ‖·‖.
Proof. Recall that the dual set of a convex set K ⊂ Kn is given by

K∗={y ∈ Kn | ∀x ∈K : Re 〈y, x〉2≤ 1} .

Hence the dual of the unit ball B is the unit ball B∗ of the dual norm. For a fixed t ≥ 0
the dual set of eAtB is therefore given by e−A

∗tB∗, as x ∈ eAtB, y ∈ e−A
∗tB∗ satisfy

Re 〈y, x〉2 = Re
〈
eA
∗ty, e−Atx

〉
2
≤ 1 by duality of B and B∗. The closed unit ball of the

norm (‖·‖∗)A∗ is given by B∗A∗ =
⋂
t≥0 e

−A∗tB∗, see Lemma 2.63. Its dual set can now be
computed using [120, Corollary 16.5.2], which shows that the dual of a closed convex hull
of the union of convex sets Ci is given by the intersection of the dual convex sets C∗i , and
therefore

B∗A∗ =
⋂
t≥0

e−A
∗tB∗ =

(
conv

⋃
t≥0

(
e−A

∗tB∗
)∗)∗

=

(
conv

⋃
t≥0

eAtB

)∗
=
(
B̃A

)∗
.

Hence the unit ball of ‖̃·‖A is given by (2.47).

Let us compare the unit balls for both transient norms ‖·‖A and ‖̃·‖A. They are given by

BA =
{
x ∈ B

∣∣ eAtx ∈ B for all t ≥ 0
}
, B̃A = conv

{
eAtx

∣∣x ∈ B, t ≥ 0
}

(2.48)

hence the first unit ball consists of all initial vectors for which the trajectory remains
entirely in B while the latter unit ball is the smallest ball containing all trajectories starting
in B, i.e., the first is the largest A-invariant ball contained in B, while the latter is the
smallest A-invariant ball containing B. It is easy to see that the following inclusions hold,
BA ⊂ B ⊂ B̃A.
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Figure 2.8: Unit balls of transient norms.

Example 2.69. Consider the stable matrix A =
( −5 36

0 −20

)
. The unit ball for its Feller norm,

BA, and the unit ball of the transient norm, B̃A, when starting from a Euclidean norm are
shown in Figure 2.8. Both norms form Liapunov norms for ẋ = Ax since their unit balls
are invariant under the flow of A. Note that parts of the unit ball BA and of the unit ball
B̃A consist of trajectories of ẋ = Ax. Hence, these norms are not analytic as they contain
segments of the unit circle and of trajectories as parts of their boundaries. �

2.4.2 Common Liapunov Norms

We already noted in Lemma 2.44 that if µ(A) ≤ −δ < 0 then µ(A+∆) < 0 for all ∆ ∈ Kn×n,
‖∆‖ < δ. This implies that the norm ‖·‖ is a Liapunov function for all perturbed systems
ẋ = (A + ∆)x as long as the norm of a perturbation is bounded by δ. To generalize this
concept, we introduce linear time-invariant differential inclusions, see Smirnov [126] and
Vinter [144, Chapter 2]. We consider a set of matrices A ⊂ Kn×n. The differential inclusion
generated by this set is written formally as

ẋ ∈ Ax. (2.49)

An absolute continuous function x : R+ → Kn is called a solution of (2.49) if there exists a
locally integrable function v ∈ L1

loc(R+,Kn) with v(t) ∈ {Ax(t) |A ∈ A} almost everywhere

in R+ such that x(t) = x(t0) +
∫ t
t0
v(s)ds for t, t0 ∈ R+.

A linear differential inclusion is exponentially stable if there exist constants M ≥ 1 and
β < 0 such that ‖x(t)‖ ≤Meβt ‖x(0)‖ for all t ∈ R+ and all solutions x(·).
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It is well-known that the closure of the solution set of (2.49) (with respect to the norm
‖f‖∞ = supt≥0 ‖f(t)‖) coincides with the solution set of the differential inclusion ẋ ∈
(conv A)x (Theorem of Filippov-Ważewski).
We will now investigate under which condition we can switch between the different system
matrices in A without loosing stability, or in other words, under which conditions the
differential inclusion ẋ ∈ Ax is stable. If the Liapunov function is a Liapunov norm, we
can answer this question affirmatively. Before we present a proof of this fact, let us extend
the inequalities of Proposition 2.42 (i) to time-varying differential equations. The following
theorem allows us to compute that solutions of the differential equation (2.49) exist on R+

if supA∈A µ(A) is finite.

Theorem 2.70 (Ważewski inequalities). Consider the differential equation ẋ(t) = A(t)x(t)
on t ∈ R+ where A(t) : R+ → Kn×n is measurable matrix-valued function. If µ is the initial
growth rate associated with a vector norm ‖·‖ on Kn and supt≥0 µ(A(t)) is finite, we have
for all t ∈ R+ and all initial values x(0) = x0 ∈ Kn

e
R t
0 −µ(−A(θ))dθ ‖x0‖ ≤ ‖x(t, x0)‖ ≤ e

R t
0 µ(A(θ))dθ ‖x0‖ . (2.50)

Proof. Suppose that x(t) is a solution of x(t) = x(0)+
∫ t

0
A(s)x(s)ds with x(0) = x0 and life

span Imax = [0, tmax). Then x is absolutely continuous on Imax, hence v(t) = ẋ(t) = A(t)x(t)
is a locally integrable function. Starting with the integral formulation of a solution, we
obtain for t ∈ Imax and for small enough h > 0 that

x(t+ h) = x(t) +

∫ h

0

v(t+ θ)dθ = x(t) +

∫ h

0

A(t+ θ)x(t+ θ)dθ

Hence taking norms,

‖x(t+ h)‖ =

∥∥∥∥x(t) +

∫ h

0

A(t+ θ)x(t+ θ)dθ

∥∥∥∥ =

∥∥∥∥x(t) +

∫ h

0

A(t+ θ)(x(t) +O(h))dθ

∥∥∥∥
≤
∥∥∥∥I +

∫ h

0

A(t+ θ)dθ

∥∥∥∥ ‖x(t)‖+O(h2),

‖x(t+ h)‖ − ‖x(t)‖ ≤
(∥∥∥∥I +

∫ h

0

A(t+ θ)dθ

∥∥∥∥− 1

)
‖x(t)‖+O(h2).

As A is a measurable function, limh↘0

∫ h
0
A(t+θ)dθ = A(t) almost everywhere. Exploiting

the monotonicity of h−1(‖I + hA(t)‖ − 1) as h↘ 0 we get

d
dt+
‖x(t)‖ ≤ µ(A(t)) ‖x(t)‖ a.e.

Analogously, the left derivative of ‖x(t)‖ satisfies

d
dt−
‖x(t)‖ ≥ −µ(−A(t)) ‖x(t)‖ a.e.
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Figure 2.9: Vectorfields of ẋ = A1x and ẋ = A2x.

Using integrating factors we obtain for t ∈ Imax

d
dt−

[
e
R t
0 µ(−A(θ))dθ ‖x(t)‖

]
≤ 0, d

dt+

[
e−

R t
0 µ(A(θ))dθ ‖x(t)‖

]
≥ 0,

from which (2.50) follows for all t ∈ Imax. As supt≥0 µ(A(t)) < ∞, we have Imax = R+,
whence (2.50) holds on R+.

Corollary 2.71. Given a closed set of matrices A ⊂ Kn×n and suppose that there exists
a vector norm ‖·‖ such that the associated initial growth rate satisfies µ(A) < 0 for all
A ∈ A. Then the differential inclusion

ẋ ∈ (conv A)x (2.51)

is exponentially stable and all solutions x satisfy the contraction property ‖x(t)‖ < ‖x(0)‖
for t > 0.

Proof. As supA∈A µ(A) is bounded, a solution x(t) of (2.51) exists on R+. Then we find an

integrable function v(·) such that x(t) = x(0) +
∫ t

0
v(θ)dθ. We find a measurable selection

A(t) ∈ conv A such that v(t) = A(t)x(t) for almost all t ≥ 0, see [144, Theorem 2.3.11]. By
Theorem 2.70 any solution is exponentially bounded with a negative decay rate, since by
convexity µ(A(t)) < 0 holds almost everywhere on R+, and therefore

∫ t
0
µ(A(θ))dθ < 0.

Example 2.72. Consider the two matrices A1 = ( 0 0
1 −1 ) and A2 = ( −1 1

0 0 ). Then one can
easily see that any solution x(t, x0) of the differential inclusion ẋ ∈ {A1, A2}x satisfies
‖x(t;x0)‖ ≤

√
2 ‖x0‖ with respect to the Euclidean norm, see Figure 2.9. A common

Liapunov norm is given by the maximum norm ‖x‖∞ = maxi |xi| . �

Remark 2.73. The convex hull of a set of exponentially stable matrices does not necessarily
contain only exponentially stable matrices. In particular, if A ∈ Kn×n is an exponentially
stable matrix with µ2(A) > 0 then conv{A,A∗} contains the instable matrix 1

2
(A+ A∗).
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The following result which extends Corollary 2.71 can be found in Molchanov and Pyat-
nitskij [107].

Theorem 2.74. The differential inclusion (2.49) is exponentially stable if and only if there
exists a common Liapunov norm for A ⊂ Kn×n. A suitable Liapunov norm is given by

ν(x) = max
{∣∣〈x, yi〉

2

∣∣ ∣∣ i = 1, . . . ,m
}

for a set of vectors yi ∈ Kn, i = 1, . . . ,m with span{yi | i = 1, . . .m} = Kn such that there
exists γ > 0 with

sup
A∈A

µν(x,A) ≤ −γ ‖x‖2 for all x ∈ Kn.

2.5 Notes and References

Most of the material on semigroup theory used here can be found in the extensive literature
on one-parameter semigroups, see e.g. [38, 113, 59]. The asymptotic growth rate is discussed
in all of these references. Theorem 2.22 is a consequence of the following theorem.

Theorem 2.75 (Prüss). Let X be a Hilbert space and A a closed linear operator on X. If
A is the generator of a strongly continuous semigroup (T (t))t∈R+ then

ω0(T ) = lim
ε→0

αε(A).

In this formulation, the result is due to Trefethen [137]. Prüss [118] uses the following
characterization of the asymptotic growth bound,

ω0(T ) = inf

{
ω > α(A)

∣∣∣∣ sup
Reλ>ω

∥∥(λI − A)−1
∥∥ <∞} ,

hence for each ω > ω0 the resolvent is uniformly bounded on C≥ω = {z ∈ C |Re z ≥ ω}.
Note that Theorem 2.75 does not hold in arbitrary Banach spaces, see the comments on [38,
Theorem V.1.11].
The discussion of the initial growth rate is not a standard topic, see [31, Exercises I.9.17–
21]. The concept of the initial growth rate originates with works of Dahlquist [30] and
Lozinskii [100], where it is coined logarithmic norm or logarithmic derivative but ideas
for the spectral norm can already be found in Ważewski [145]. Bauer [11] discusses the
relation to generalized fields of values. An interesting result connecting the resolvent with
the numerical range is the following,

Theorem 2.76 ([113, Theorem I.3.9]). Let A be a closed linear operator with dense domain
in a Banach space X. If λ ∈ C, λ 6∈ W‖·‖(A) then λI − A is one-to-one and has closed
range. Moreover if Σ0 is a component of W‖·‖(A)C satisfying %(A) ∩ Σ0 6= ∅, then the
spectrum of A is contained in ΣC

0 and

‖R(λ,A)‖ ≤ dist(λ, W̄‖·‖(A))−1.
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More properties of the initial growth rate are given in Ström [134]. Vidyasagar [143] uses
the initial growth rate under the name matrix measure and shows Ważewski’s inequalities
for an arbitrary norm. For an application of the initial growth rate to DAE systems, see
Higueras and Söderlind [58]. The description of the initial growth rate via the dual norm
is new, although a description of dissipative operators in terms of dual vectors is given in
Engel and Nagel [38]. The related concept of semi-scalar products is used in Yosida [151] to
characterize contraction semigroups. If A is a dissipative operator then −A is sometimes
called accretive for which characterizations are available in Kato [77].
The book of Arendt et al. [4] is devoted to the study of Laplace transformations and offers
lots of additional material. For example, Theorem 2.7 is only a special case of the Post-
Widder inversion formula. The notion of a Liapunov norm is introduced in [83]. For a
discussion of dual vectors in finite dimensions see Horn and Johnson [70]. The generalized
numerical ranges are introduced in [11]. For a relation between the Gershgorin set and the
spectral numerical range W2(·) see [71].
The transient amplification M0(A) has been introduced in Pritchard [117]. This article
contains the ideas of many topics we discuss in the following chapters.
As already mentioned, we have traced back the usage of the transient norm ‖x‖A to
Feller [41]. However, as Daleckĭı and Krĕın [31, pp. 29, 68] note, the family of Liapunov
norms

‖x‖A,p =

(∫ ∞
0

∥∥eAtx∥∥p)1/p

, p ≥ 1,

has been introduced in lectures given by Krĕın in 1947–1948, but these ideas were published
as late as 1964 in [87]. Here the Feller norm is just a special case, ‖·‖A = ‖·‖A,∞ . The dual

concept, the transient norm ‖̃·‖A, remains as of now unnamed. The notion of eccentricity
for ellipses is found in classical geometry. For an application to stability issues, see for
example Sarybekov [123], where the condition number of a quadratic Liapunov matrix is
introduced as quality of stability of the associated system matrix. Wirth [150] introduces
the concept of eccentricity for general norms.
For a discussion of differential inclusions see [6, 126]. A proof of the Ważewski inequali-
ties (2.50) is found in Vidyasagar [142, Theorem 3.5.1] and Gil’ [46, Corollary 4.2.5], see
also the original article of Ważewski [145]. Note that the estimates for linear systems ob-
tained from Theorem 2.70 perform better than estimates based upon Gronwall’s Lemma
as the latter works with ‖A‖ which is always larger than µ(A).
This thesis only discusses continuous-time linear dynamical systems. For results on discrete-
time systems, see Varga [140] and Higham [56].
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Chapter 3

Bounds for the Transient
Amplification

The matrix exponential of A ∈ Kn×n carries all the information of the solutions of the
linear time-invariant differential equation ẋ = Ax, information on both the short-term or
transient behaviour and on the long-term or asymptotic behaviour. In this chapter we
introduce a concept of stability that takes transient effects into account as we do not only
prescribe a growth rate β but also a transient bound M , hence expanding the notion of
exponential stability.
Moreover, we present old and new results for bounding the matrix exponential. We consider
some upper bounds for the norm of the matrix exponential,

∥∥eAt∥∥ . These bounds presented
here may be roughly grouped into three types:

• bounds using the spectrum of A,

• bounds using quadratic Liapunov functions, and

• bounds using the resolvent of A.

We show that bounds which depend on the spectrum of A are relatively weak when the
matrix under consideration is highly nonnormal. After that we consider some results which
deal with the singular value decompositions of A and of eAt. As a third method we consider
quadratic Liapunov functions, where we show how the theory derived in Chapter 2 fits into
the classical results on quadratic Liapunov functions. Finally, we take a look at bounds
obtained from the resolvent.

3.1 (M,β)-Stability

We introduce a stability definition which does not only take asymptotic effects, but also
transient effects into account. One can argue that this is a suitable requirement in the
presence of physical constraints. Moreover, it is important to detect and handle overshoot
phenomena.

51
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Definition 3.1. Suppose M ≥ 1, β ∈ R are given constants. The system matrix A ∈ Kn×n

of a linear time-invariant system

ẋ(t) = Ax(t), t ≥ 0, (3.1)

is said to be (M,β)-stable with respect to the operator norm ‖·‖ if it satisfies∥∥eAt∥∥ ≤Meβt for t ≥ 0. (3.2)

It is called strictly (M,β)-stable, if∥∥eAt∥∥ < Meβt for t > 0,

and uniformly (M,β)-stable if there exists β′ < β such that (3.2) holds with β replaced by
β′. The set of all (M,β)-stable generators in Kn×n is denoted by G(M,β).

In the case M = 1, β ≤ 0 every matrix A ∈ G(M,β) generates a contraction semigroup.
This has already been studied in Chapter 2. Unlike asymptotic stability or marginal
stability in the sense of Liapunov, these stability notions depend on the chosen norm on
Kn×n.
Using a transient norm as defined in Definition 2.60 we get the following description of
(M,β)-stability.

Proposition 3.2. The matrix A ∈ Kn×n is (M,β)-stable if and only if there exists a
Liapunov norm ν for A such that

µν(A) ≤ β, ecc ν ≤M.

Proof. If A ∈ G(M,β) then A − βIn is stable and the function ν(x) := ‖x‖A−βI =

supt≥0 e
−βt
∥∥eAtx∥∥ is finite and defines a norm. The eccentricity of this norm is given

by ecc ν = sup
∥∥e(A−βI)t

∥∥ ≤ M , see (2.42). Moreover µν(A − βI) ≤ 0 by Corollary 2.62,
hence µν(A) ≤ β. Hence we have found a suitable norm satisfying the conditions of the
lemma. The converse implication is clear from Corollary 2.57.

Let us now discuss uniform (M,β)-stability. Alternative proofs for the following proposi-
tions can be found in [67].

Proposition 3.3. Given M ≥ 1, β ∈ R. The matrix A ∈ Kn×n is uniformly (M,β)-stable

if and only if
A is strictly (M,β)-stable with α(A) < β for M > 1,

{
µ(A) < β for M = 1.

Proof. Let us first study the case M = 1. If µ(A) < β then A is uniformly (1, β)-stable:
It suffices to choose β′ = µ(A). Conversely, if

∥∥eAt∥∥ ≤ eβ
′t, t > 0, and β′ < β then

µ(A) ≤ β′ < β, see Proposition 2.42. In case M > 1, uniform (M,β)-stability implies
strict (M,β)-stability. Clearly, α(A) ≤ µ(A) < β holds by Proposition 2.40. Conversely, if
A is strictly (M,β)-stable with α(A) < β then we set

M∗ = inf{M ≥ 1 |
∥∥e(A−βI)t∥∥<M for all t>0}.
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By construction we have M∗ ≤ M . Let us suppose that M∗ = M holds. To obtain strict
(M,β)-stability limt→∞

∥∥e(A−βI)t
∥∥ = M has to hold, i.e., the supremum of

∥∥e(A−βI)t
∥∥ is

obtained for t → ∞. This contradicts the exponential stability of A − βI. Hence the
maximum of

∥∥e(A−β)t
∥∥ is attained for a finite t∗ ≥ 0. By continuity of the norm and of

the matrix exponential there exists β′ < β such that
∥∥eAt∥∥ ≤ Meβ

′t, t ≥ 0. Hence A is
uniformly (M,β)-stable.

Let us investigate the topological properties of the set of (M,β)-stable matrices, see [75]
for the used topological notions.

Proposition 3.4. Suppose that M ≥ 1, β < 0 are given constants. Then the set G(M,β)
of complex (M,β)-stable matrices is closed and its interior is given by

G̊(M,β) =
{
A ∈ Cn×n ∣∣A is uniformly (M,β)-stable

}
=
⋃
β′<β

G(M,β′).

Especially, for A ∈ G(M,β) we have the following perturbation result for all ∆ ∈ Cn×n∥∥e(A+∆)t
∥∥ ≤MeβteM‖∆‖t, t ≥ 0. (3.3)

Proof. For every converging sequence Ak ∈ G(M,β) with limk→∞Ak = A, the continuity
of the operator norm and the exponential gives

∥∥eAt∥∥ = limk→∞
∥∥eAkt∥∥ ≤ Meβt for all

t ≥ 0, hence A ∈ G(M,β) and therefore G(M,β) is closed. If A is not uniformly (M,β)-
stable then A belongs to the boundary of G(M,β) because A+ εI 6∈ G(M,β) for all ε > 0.
Let us therefore assume that A is uniformly (M,β)-stable, i.e., there exists β′ < β with∥∥eAt∥∥ ≤ Meβ

′t, t ≥ 0. By Proposition 3.2 we find a norm ν such that ecc ν ≤ M and the
associated growth rate satisfies µν(A) ≤ β′. Then for ∆ ∈ Kn×n we obtain using properties
of the initial growth rate, see Proposition 2.40,∥∥e(A+∆)t

∥∥ ≤ ecc ν · eµν(A+∆)t ≤ ecc ν · e(µν(A)+µν(∆))t ≤ ecc ν · e(µν(A)+ν(∆))t, t ≥ 0.

Now by (2.35) and (2.38) we can bound the operator norm ν(∆) by

ν(∆) ≤ ecc(‖·‖ , ν) ‖∆‖ = ecc(ν, ‖·‖) ‖∆‖ ≤M ‖∆‖ ,

which shows (3.3). Therefore for every ∆ ∈ Kn×n with ‖∆‖ ≤ M−1(β − β′), the matrix
A+ ∆ is (M,β)-stable. Therefore A is an interior point of G(M,β). Thus each uniformly

(M,β)-stable matrix is contained in G̊(M,β), and clearly G(M,β′)⊂ G̊(M,β) for β′<β.

If A ∈ G(M,β′) and ∆ ∈ Kn×n commute then we can improve (3.3), namely,∥∥e(A+∆)t
∥∥ =

∥∥eAte∆t
∥∥ ≤ ∥∥eAt∥∥∥∥e∆t

∥∥ ≤Meβ
′teµ(∆)t ≤Me(β′+‖∆‖)t, t ≥ 0.

Here µ(·) is the initial growth rate with respect to ‖·‖ .
Example 3.5. Consider the matrix A = ( −1 2

0 −1 ) studied in Example 2.13. We have seen that
α(A) = −1, µ2(A) = 0, and

∥∥eAt∥∥
2
< 1 holds for all t > 0. Hence A is strictly (1, 0)-stable.

But it is not uniformly (1, 0)-stable by Proposition 3.3 since µ2(A) = 0. Thus A ∈ G(1, 0)
lies on the boundary of G(1, 0). In particular, for every ε > 0 the initial growth rate of
Aε = ( −1 2

ε −1 ) is given by µ2(Aε) = ε > 0 which has been computed using Theorem 2.41.
Therefore for t > 0 close to 0,

∥∥eAεt∥∥
2
6< 1. �
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We now have a closer look at the transient growth Mβ(A) of A defined in Definition 2.59. It
is easy to see that Mβ(A) = M0(A−βI). For a stable A ∈ Kn×n the transient growth equals
the eccentricity of the Feller norm associated with A, see Lemma 2.61 and equation (2.42).
Let us first note the following monotonicity property.

Lemma 3.6. Let A ∈ Kn×n. Then for β′ ≥ β > α(A),

1 ≤Mβ′(A) ≤Mβ(A) <∞.

Proof. If β > α(A) then A−βI is exponentially stable, and
∥∥e(A−βI)t

∥∥ is uniformly bounded

for all t ≥ 0. Thus Mβ(A) = supt≥0

∥∥e(A−βI)t
∥∥ is finite. For β ≤ β′ we have

Mβ′(A) = sup
t≥0

∥∥∥e(A−β′I)t
∥∥∥ = sup

t≥0

(
e−(β′−β)t

∥∥e(A−βI)t∥∥) ≤ sup
t≥0

∥∥e(A−βI)t∥∥ = Mβ(A)

as β′ ≥ β, and thus e−(β′−β)t ≤ 1 for all t ≥ 0.

Unfortunately, M0(A) does not depend continuously on A, as the following example shows.

Example 3.7. Consider the sequence of marginally stable matrices

Ak =
1

k

(
0 −1
µ2 0

)
for k →∞, µ > 1.

Its transient growth associated with the spectral norm is M0(Ak) = µ as

eAkt = cos(µ
k
t)I + sin(µ

k
t)

(
0 −µ−1

µ 0

)
,

and therefore supt≥0

∥∥eAkt∥∥
2

=
∥∥∥( 0 −µ−1

µ 0 )
∥∥∥

2
= µ. But for k → ∞, we have Ak → 0

and M0(limk Ak) = M0(0) = 1 < µ = limkM0(Ak). Starting with the Euclidean norm,
the Feller norm associated with Ak is given by ‖x‖Ak =

√
x∗Px with P =

(
µ2 0
0 1

)
. As

the Feller norm associated with the zero matrix is the Euclidean norm, we also have a
discontinuity with respect to the formation of transient norms. If we consider the norm of
the trajectories over a finite time interval and define the norm νA,T (x) = supt∈[0,T ]

∥∥eAt∥∥ for
some T <∞, then the Feller norm is obtained by limT→∞ νA,T = νA. However, for fixed T ,
limk→∞ νAk,T = ‖·‖2 . Hence the discontinuity is due to the fact that we consider an infinite
time horizon. This only creates problems if we deal with marginally stable matrices. �

One can show that A 7→M0(A) is lower semicontinuous on the set of stable matrices. The
situation changes if we only consider exponentially stable matrices, as then M0(A) is finite
and the map A 7→M0(A) is continuous.

Theorem 3.8 ([67, Proposition 5.5.5]). The transient growth A 7→ M0(A) is lower semi-
continuous on the set of all stable matrices, and continuous on the set of all exponentially
stable matrices.
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3.2 Bounds from the Spectrum

Strictly speaking, there are no bounds on M0(A) which only depend on the spectrum, some
additional information from the eigenvectors is always needed. If an eigenvector basis is
available, then we obtain the following classical bound. Suppose that there exists V ∈ Cn×n

such that AV = V Λ where Λ = diag(λi), i.e., A is diagonalizable. Then

eAt = eV ΛV −1t = V eΛtV −1 = V diag(eλit)V −1, t ≥ 0.

If ‖·‖ is a matrix norm on Cn×n which satisfies

‖Λ‖ = max
i
|λi| for every diagonal matrix Λ = diag(λi) (3.4)

(especially, if ‖·‖ is an operator norm induced from a monotonic norm, see Lemma 1.9)
then we have ∥∥eAt∥∥ ≤ ‖V ‖∥∥V −1

∥∥ eα(A)t. (3.5)

Hence the transient growth with respect to the asymptotic growth rate α(A), Mα(A)(A) =
supt≥0

∥∥e(A−α(A)I)t
∥∥ is bounded by the condition number κ(V ) := ‖V ‖ ‖V −1‖ of an eigenvec-

tor basis V ∈ Cn×n. Note that it is not required that V consists of unit length eigenvectors
of A. By introducing a suitable diagonal scaling matrix D the condition number κ(V D)
can be reduced. For a discussion of this topic, see Balakrishnan and Boyd [9] where an
optimization strategy involving linear matrix inequalities (LMI) is presented.
The bound in (3.5) has the advantage that it is readily computable, but if A is not diag-
onalizable, this bound is of no use. Moreover, as we are mostly interested in nonnormal
matrices, the condition numbers of the eigenvector matrix V tend to be large. Neverthe-
less, if α(A) is negative and of large modulus this upper bound quickly decays and can be
used to identify an interval I = [0, t1] which has to contain the maximum of t 7→

∥∥eAt∥∥.

Corollary 3.9. Let A ∈ Kn×n be stable and AV = V Λ with Λ = diag(λi), λi ∈ σ(A). If

t1 = − log κ(V )
α(A)

then
∥∥eAt∥∥ ≤ 1 for t ≥ t1.

Let us generalize the bound (3.5) to non-diagonalizable matrices where we now fix the
norm to be the spectral norm. Instead of diagonalizing A ∈ Cn×n itself we transform a
scalar multiple δ−1A with δ > 0 into Jordan canonical form, whence A = δVδJδV

−1
δ . Let

us split Jδ into the diagonal matrix δ−1Λ, where diag(Λ) contains the eigenvalues of A, and
the nilpotent matrix N = (nij) which only contains non-zero entries in the first off-diagonal
ni,i+1 ∈ {0, 1}, i = 1, . . . , n − 1. Then we have A = Vδ(Λ + δN)V −1

δ . The matrix Λ + δN
has the same Jordan structure as A. Hence we can choose Vδ in such way that the order
of the Jordan blocks stays the same regardless of δ. Then N is independent of δ. As N is
nilpotent there exists k ≤ n such that Nk−1 6= 0 and Nk = 0. Moreover,

∥∥N `
∥∥

2
= 1 for all

` = 1, . . . , k − 1. As the matrices Λ and N commute, we have for all δ > 0 that∥∥eAt∥∥
2

=
∥∥∥eVδ(Λ+δN)V −1

δ t
∥∥∥

2
≤ ‖Vδ‖2

∥∥V −1
δ

∥∥
2

∥∥eΛt
∥∥

2

∥∥eδNt∥∥
2

≤ κ2(Vδ)e
α(A)t

k−1∑
`=0

(δt)`, t ≥ 0.
(3.6)
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Example 3.10. Consider the matrix A = ( −1 γ
0 −1 ). Then Vδ = diag(γ/δ, 1) and κ(Vδ) =

max(|γ| /δ, δ/ |γ|). Hence the minimal condition number κ2(Vδ) = 1 is attained at δ = |γ|.
Figure 3.1 illustrates some bounds for γ = 5. �

Figure 3.1: Growth bounds (3.6) for a non-diagonalizable matrix.

Unfortunately, the computation of a Jordan normal form is numerically intractable so that
bounds of this type are of little practical use. We therefore need a different approach for
non-diagonalizable matrices. Let us assume that the matrix norm is invariant under unitary
transformations. Then we can replace A by its Schur form without loosing information.
The following bound utilizes the upper triangular structure of the Schur form. Let us first
introduce a measure of nonnormality based upon the Schur form.

Definition 3.11. The departure from normality of a matrix A ∈ Cn×n with respect to a
unitarily invariant norm ‖·‖ on Cn×n is defined by

dep(A) := min

{
‖N‖

∣∣∣∣ There exists an unitary U ∈ Cn×n such that U∗AU = D +N ,
where D is diagonal and N is strictly upper triangular.

}
.

This measure of normality was introduced by Henrici [54]. The following bound can be
found in [138] without direct reference to the departure from normality.

Proposition 3.12. Let A ∈ Cn×n and ‖·‖ be a monotonic unitarily invariant norm on
Cn. Then the associated operator norm satisfies for all t ≥ 0,

∥∥eAt∥∥ ≤ eα(A)t

n−1∑
k=0

(t dep(A))k

k!
. (3.7)

Proof. The result is based on the fact that the matrix exponential of a perturbed matrix
A1 +∆1 may be interpreted as a solution of the matrix-valued differential equation Ẋ(t) =
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A1X(t) + ∆1X(t) with X(0) = In. The variation-of-constants formula then gives

e(A1+∆1)t = eA1t +

∫ t

0

eA1(t−θ)∆1e
(A1+∆1)θdθ. (3.8)

This equation can be expanded recursively. But if ∆1 is nilpotent then this process termi-
nates after finitely many steps. As the norm is unitarily invariant, we may assume without
loss of generality that A is given in a Schur form where the strictly upper triangular part
N has the smallest norm with respect to all Schur forms of A. Hence its norm is the
departure of normality of A. Writing A = D + N, we have decomposed A into a diag-
onal and a nilpotent part where D = Diag(A) is the diagonal matrix with the diagonal
entries of A and N = A−Diag(A) is strictly upper triangular. Repeated use of (3.8) with
A1 = D,∆1 = N gives

e(D+N)t = eDt +

∫ t

0

eD(t−t1)Ne(D+N)t1dt1

= eDt +

∫ t

0

eD(t−t1)NeDt1dt1 +

∫ t

0

eD(t−t1)N

∫ t1

0

eD(t1−t2)Ne(D+N)t2dt2dt1.

Continuing this process we obtain

e(D+N)t = eDt +
n−1∑
k=1

Ak +Rn, where (3.9)

Ak(t) =

∫ t

0

∫ t1

0

. . .

∫ tk−1

0

eD(t−t1)NeD(t1−t2)N . . .NeDtkdtk . . . dt1,

Rn(t) =

∫ t

0

∫ t1

0

. . .

∫ tn−1

0

eD(t−t1)NeD(t1−t2)N . . .Ne(D+N)tndtn . . . dt1.

As all the factors eD(ti−tj)N are strictly upper triangular, the product of n of these terms
is 0, and so Rn(t) = 0. By Lemma 1.9,

∥∥eDt∥∥ = eα(A)t.
The norm of the innermost integral of Ak is bounded by∥∥∥∥∫ tk−1

0

eD(tk−1−tk)NeDtkdtk

∥∥∥∥ ≤ ∫ tk−1

0

eα(A)(tk−1−tk) ‖N‖ eα(A)tkdtk

= eα(A)(tk−1) ‖N‖
∫ tk−1

0

dtk = eα(A)(tk−1) ‖N‖ tk−1.

Hence ‖Ak(t)‖ ≤ eα(A)t(k!)−1(‖N‖ t)k. Taking norms in (3.9) therefore gives (3.7).

The advantage of this bound is that it equals 1 in t = 0, hence it is better suited for the
approximation of

∥∥eAt∥∥ than purely exponential estimates of the form Meβt. Moreover,
every Schur form of A gives rise to such a bound (3.7). However, the computation of the
best bound via the departure from normality may not be tractable for higher dimensions
as all possible Schur forms have to be tested. A simplification occurs when considering
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the Frobenius norm ‖A‖F = (
∑

ij |aij|
2)1/2. Here the departure from normality is constant

over all Schur forms. Henrici [54] derives the following formula

depF (A) =

√
‖A‖2

F −
∑

λi∈σ(A)

|λi|2,

which in case of a real spectrum reduces to depF (A) =
√
‖A‖2

F − traceA2.

We also note that for A ∈ C2×2, the Frobenius-departure from normality coincides with
the spectral departure from normality, depF (A) = dep2(A) as the strictly upper triangular
matrix is of rank 1, and so its Frobenius and spectral norm are equal. However, the bound
in Proposition 3.12 is not valid for the Frobenius norm, as ‖I‖F 6= 1. An estimate of the
spectral norm of eAt in terms of the Frobenius-departure from normality is found in [46,
Corollary 2.1.6].

Example 3.13. Let us reconsider the matrices Aγ discussed in Example 3.10. The depar-
ture from normality is given by dep2(Aγ) = |γ| and Proposition 3.12 yields the estimate∥∥eAγt∥∥

2
≤ e−t(1 + |γ| t) which coincides with the best bound obtained from (3.6). Let us

now take a look at the matrix

A =

−4 32 −72
−2 6

−1

 with a departure from normality dep2(A) = 78.90.

Note that this moderate departure from normality leads to an upper bound in (3.7) which
is way off, see Figure 3.2 (note the logarithmic scale). �

Figure 3.2: Bound based upon the departure of normality.

We assume now that A ∈ Cn×n has n linearly independent eigenvectors and that the
eigenvalue with the largest real part is uniquely determined, i.e.

α(A) = Reλ1 > Reλ2 ≥ Reλ3 ≥ · · · ≥ Reλn.
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Let us denote the eigenpairs of A by (λi, v
i) where vi ∈ Cn, ‖vi‖ = 1 is an eigenvector of A

associated with the eigenvalue λi. Then for each initial value x0 =
∑n

i=1 aiv
i the solution

x(t, x0) of ẋ = Ax, x(0) = x0 satisfies

∥∥x(t, x0)
∥∥ =

∥∥∥∥∥eAt
n∑
i=1

aiv
i

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

aie
λitvi

∥∥∥∥∥
≤ eα(A)t

(
|a1|+

n∑
i=2

e−(α(A)−Reλi)t |ai|

)
→ eα(A)t |a1| as t→∞.

(3.10)

From this calculation we immediately get the following result.

Proposition 3.14. Let A ∈ Cn×n such that A is diagonalizable with AV = V Λ, Λ =
diag(λ1, . . . , λn) and the leading eigenvalue λ1 with Reλ1 = α(A) is uniquely determined.
Then ∥∥eAt∥∥ ≈ eα(A)t sup

‖x‖=1

∣∣e>1 V −1x
∣∣ , t� 0.

Proof. From (3.10) we conclude that we have to extract the first coordinate of x ∈ Cn with
respect to the transformation induced by the matrix V = [v1 . . . vn]. This projection is
given by π1 : x =

∑n
i=1 αiv

i 7→ α1, or, equivalently, π1(x) = e>1 V
−1x. Maximization over

all x with ‖x‖ = 1 yields that
∥∥eAt∥∥− eα(A)t sup‖x‖=1

∣∣e>1 V −1x
∣∣→ 0 as t→∞.

Clearly, the rate of this approximation is influenced by the difference Re (λ1 − λ2) > 0,
the larger this value the more dominant the eigenmotion corresponding to α(A) becomes
compared to the eigenmotions of smaller eigenvalues.

Example 3.15. Consider the matrix A =
( −5 36

0 −20

)
which we studied in Example 2.69. Then

V =
(

1 −12
0 5

)
is a matrix consisting of eigenvectors of A. Here sup‖x‖2=1

∣∣e>1 V −1x
∣∣ = 2.6

while the spectral condition number of V is 33.97. This condition number can be reduced
by renormalizing V , but then still κ(V ) = 5. Figure 3.3 shows that the norm of the matrix
exponential of A is approximated well by the bound of Proposition 3.14 for large t. �

Figure 3.3: Bound based upon the dominant eigenvalue.
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We have seen in this section that estimates for the norm of the matrix exponential not
only require knowledge of (parts of) the spectrum, but also information about the eigen-
vectors. Moreover, the bounds derived in this section are mostly of interest for asymptotic
approximations.

3.3 Bounds from Singular Value Decompositions

In this section we fix the matrix norm to be the spectral norm. Let us recall the definition
of the singular value decomposition.

Theorem 3.16 (Singular Value Decomposition). If A ∈ Km×n is a matrix of rank r then
there exist unitary or orthogonal matrices (if K = C or K = R, respectively)

U = [u1, . . . , um] ∈ Km×m and V = [v1, . . . , vn] ∈ Kn×n

such that

U∗AV =

(
Σ 0
0 0

)
m×n

where Σ = diag(σ1, . . . , σr) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The σk are called the singular values of A, and uk and vk are the kth left singular vector
and the kth right singular vector of A, respectively. Here we are only interested in the
case n = m. The singular value decomposition (SVD) allows us to decompose each matrix
A ∈ Kn×n into a sum of rank-one matrices,

A =
n∑
k=1

σkukv
∗
k, where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and v∗i vj = u∗iuj = δij. (3.11)

Hence Avk = σkuk and A∗uk = σkvk hold for k = 1, . . . , n. Moreover, this implies that vk
is an eigenvector corresponding to the eigenvalue σ2

k of A∗A and analogously that uk is an
eigenvector corresponding to the eigenvalue σ2

k of AA∗. The spectral norm of A is given
by ‖A‖2 = σ1(A). The dyadic decomposition (3.11) can now be used in two possible ways
for obtaining exponential bounds.

• We decompose A and derive results from the Campbell-Baker-Hausdorff Theorem.

• We use a SVD of eAt and get conditions for local maxima of
∥∥eAt∥∥

2
.

Before we enter this analysis let us consider the case when A is a scalar multiple of an
idempotent matrix P = P 2 (especially if A is a rank-one matrix). We need the following
lemma.

Lemma 3.17. Suppose that f : C → C is an entire function defined by its Taylor series

f(s) =
∑∞

k=0
f (k)(0)
k!

sk. Then the associated matrix-valued function f : Cn×n → Cn×n, A 7→∑∞
k=0

f (k)(0)
k!

Ak satisfies for idempotent matrices P ∈ Cn×n, P = P 2, and s ∈ C

f(Ps) = f(0)(I − P ) + Pf(s).
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Proof. The matrix-valued function s 7→ f(Ps) is defined on C. It is given by

f(Ps) =
∞∑
k=0

f (k)(0)

k!
(Ps)k = f(0)I + P

∞∑
k=1

f (k)(0)

k!
sk

= f(0)I + P (f(s)− f(0)) = (I − P )f(0) + Pf(s).

Application of this lemma to the matrix exponential gives the following result.

Proposition 3.18. Let λ ∈ C and P ∈ Cn×n with P = P 2. Then

eλPt = (I − P ) + Peλt, t ≥ 0.

If Reλ < 0 this implies that

lim
t→∞

eλPt = I − P.

Every idempotent matrix P defines a projection x 7→ Px from Kn onto imP along the
complementary subspace kerP .

The following corollary gathers some facts for rank-one matrices.

Corollary 3.19. Let A=σuv∗ ∈ Cn×n be the SVD of a rank-one matrix. Then A has only
one non-trivial eigenvalue given by λ := traceA=σv∗u. Its associated right eigenvector is
given by the left singular vector u, and the left eigenvector is given by the right singular
vector v. The matrix exponential of A is given by

eAt = (I − A
traceA

) + A
traceA

et traceA.

Proof. The trace is the sum of all eigenvalues. But if there is only one nonzero eigenvalue,
then for n ≥ 2 we have traceA ∈ σ(A) = {0, traceA}. Now traceA = σ traceuv∗ =
σ
∑n

i=1 uiv̄i = σv∗u. The right eigenvector corresponding to λ = traceA is given by u, as
Au = (σuv∗)u = λu, and, analogously, the left eigenvector is given by v. The spectrum
of P = A

traceA
is given by {0, 1}, and P is idempotent, P 2 = uv∗

v∗u
uv∗

v∗u
= v∗u

v∗u
uv∗

v∗u
= P. For

the matrix exponential of A, we have A = (traceA)P and hence by Proposition 3.18,
eAt = (I − P ) + Pet traceA.

Hence the matrix exponential eAt is a continuous deformation from eA·0 = In to the pro-
jection onto the complement, limt→∞ e

At = I − A
traceA

, if A is of rank 1.

Corollary 3.20. Suppose that A = σuv∗ ∈ Cn×n is a matrix of rank one where σ > 0 and
u, v ∈ Cn, ‖u‖2 = 1 = ‖v‖2 satisfy Re v∗u < 0. Then

∥∥eAt∥∥
2

is a monotonously increasing
function as t→∞ and

sup
t≥0

∥∥eAt∥∥
2

= |v∗u|−1 .
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Proof. We set P = A
traceA

. To show that the norm of the matrix exponential of A is convex,
we first show that the function

g(a) = ‖Pa+ (I − P )‖2 = ‖aI + (1− a)(I − P )‖2 , a ∈ R, (3.12)

is convex. Namely, for θ ∈ (0, 1) and a 6= b, a, b ∈ R

g(θa+ (1− θ)b) = ‖(θa+ (1− θ)b) I + (θ + (1− θ)− θa− (1− θ)b) (I − P )‖2

= ‖θ (aI + (1− a)(I − P )) + (1− θ) (bI + (1− b)(I − P ))‖2

≤ θg(a) + (1− θ)g(b).

Let us now determine the minimum of g. Note that g(1+ b) = ‖I + bP‖2 ≥ 1 for all b ∈ R.
Let us assume that ‖I + bP‖2 < 1 then I − (I + bP ) = bP would be invertible, which
contradicts rankP = 1. Hence a local minimum of g is attained in b = 0, as g(1) = ‖I‖2 = 1.
With λ = traceA and a = eλt we obtain from (3.12) and Corollary 3.19 that

∥∥eAt∥∥
2

= g(eλt)

holds by Proposition 3.18. The convexity of g implies that
∥∥eAt∥∥

2
is a monotone increasing

function for t ≥ 0. By Proposition 3.18, limt→∞
∥∥eAt∥∥

2
= ‖I − P‖2 holds. Since P is

idempotent there exists a unitary transformation U such that UPU∗ = ( I P
′

0 0 ). Now by
Corollary 4.3 (see below) we have ‖I − P‖2 = ‖P‖2 . For the norm of P = uv∗

v∗u
, consider

P ∗P = vv∗

|u∗v|2 from which we see that v is an eigenvector for the sole nonzero eigenvalue

|v∗u|−2 ≥ (‖u‖ ‖v‖)−2 = 1. Hence if Re traceA < 0 then supt≥0

∥∥eAt∥∥
2

= limt→∞
∥∥eAt∥∥

2
=

‖I − P‖2 = |v∗u|−1 ≥ 1.

Hence the transient amplification M0(A) is given by the inverse of the cosine of the angle
spanned by the left and right singular vectors, which are also eigenvectors associated with
the nonzero eigenvalue of A, see Corollary 3.19. This quantity |v∗u|−1 is also called the
condition number of the associated eigenvalue, see [56].

3.3.1 Decomposing A

Let us now return to general matrices and consider the spectral norm of the matrix expo-
nential. Given two matrices A ∈ Cn×n and B ∈ Cn×n, [A,B] = AB−BA denotes their Lie
bracket or commutator. We may write the product of the matrix exponential eAt and eBt

as the matrix exponential of a matrix-valued function C(t). This result is known as the
Campbell-Baker-Hausdorff formula [124, Theorem I.IV.7.4]. The first terms of the Taylor
series of C(t) with eC(t) = eAteBt are given by

C(t)=(A+B)t+ 1
2
[A,B]t2+ 1

12
([A, [A,B]]+[B, [B,A]])t3+ 1

24
[A, [[A,B], B]]t4+O(t5). (3.13)

Then we find the following approximation.

Proposition 3.21. Given A ∈ Kn×n. Then

log
∥∥eAt∥∥

2
= 1

2
λmax

(
(A+ A∗)t+ 1

2
[A∗, A]t2

+ 1
12

([A∗, [A∗, A]] + [A, [A,A∗]])t3 + 1
24

[A∗, [[A∗, A], A]]t4 +O(t5)
)
.

(3.14)
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Proof. The spectral norm of the matrix exponential of A is given by the square root of
the largest eigenvalue of eA

∗teAt. There exists a Hermitian matrix function C(t) such that
eA
∗teAt = eC(t) where C(t) is obtained from (3.13) by replacing A with A∗ and B with A.

Hence the spectral norm of eAt is given by√
λmax(eC(t)) = e

1/2λmax(C(t)),

which proves (3.14).

For convenience, let us compute all the Lie brackets in (3.14),

[A∗, A] = A∗A− AA∗,
[A∗, [A∗, A]] + [A, [A,A∗]] = A∗2A+ A∗A2 − 2A∗AA∗ + A2A∗ + AA∗2 − 2AA∗A,

[A∗, [[A∗, A], A]] = A∗2A2 − 2(A∗A)2 − A2A∗2 + 2(AA∗)2.

If we now partition A = A0 +A1 with A0 = σ1u1v
∗
1 and A1 =

∑
k>1 σkukv

∗
k where σk, uk, vk

stem from a singular value decomposition (Theorem 3.16), then [A∗0, A1] = 0 = [A∗1, A0].
The Lie bracket [A∗, A] then simplifies to

[A∗, A] = [(A0 + A1)∗, A0 + A1] = A∗0A0 − A0A
∗
0 + A∗1A1 − A1A

∗
1 = [A∗0, A0] + [A∗1, A1].

Iteration of this decomposition on the tail A1 gives us the following result.

Proposition 3.22. Suppose that A ∈ Kn×n has a singular value decomposition given by
A =

∑n
i=1 σiuiv

∗
i . Then

∥∥eAt∥∥
2

= e1/2λmaxC(t) where

C(t) =
n∑
k=1

σk(ukv
∗
k + vku

∗
k)t+ σ2

k(vkv
∗
k − uku∗k)t2 +O(t3).

Proof. Consider the dyadic decomposition A =
∑n

k=1 σkukv
∗
k and set Ak = σkukv

∗
k, k =

1, . . . , n. Then

A+ A∗ =
n∑
k=1

Ak + A∗k =
n∑
k=1

σk(ukv
∗
k + vku

∗
k). (3.15)

The Lie bracket [A∗, A] now satisfies

[A∗, A] =
n∑
k=1

[A∗k, Ak] =
n∑
k=1

σ2
k(vkv

∗
k − uku∗k) (3.16)

as [A∗k, Aj] = 0 for k 6= j. Using these explicit formulas (3.15) and (3.16) in Proposition 3.21
gives the required result.

The bounds derived in Propositions 3.21 and 3.22 are only valid for small t > 0. Moreover,
the expansion (3.14) is an extension of the growth bound

∥∥eAt∥∥
2
≤ eµ2(A)t presented in

Proposition 2.42.
However, there seems to be more to this topic. When trying to generalize Corollary 3.20
to matrices of full rank, numerical experiments show the following remarkable behaviour.
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Conjecture 3.23. Let A ∈ Kn×n be a stable matrix with SVD A =
∑n

i=1 σiuiv
∗
i . Then

under suitable conditions maxt≥0

∥∥eAt∥∥ ≈ |v∗i ui|−1 where i ∈ {1, . . . , n} minimizes |σiv∗i ui| .

There always seems to be an index i ∈ {1, . . . , n} such that the term |v∗i ui|
−1 is of the right

order of magnitude when compared with M0(A). It is not clear how to choose this index
to achieve a good match. The method given in Conjecture 3.23 works quite well, but may
fail miserably, if the singular vectors become perpendicular. Let us illustrate the problems
related to this conjecture with the following example.

Example 3.24. We consider the following parameterized family of matrices

Aτ =

−1.5 0 0
0 −1 0
0 0 −0.5

+ τ

0 5 −12
0 0 1
0 0 0

 , τ ∈ R. (3.17)

The spectrum of Aτ is constant for all τ . As τ enters linearly into the departure from
normality dep(A) we expect some interesting transient behaviour. Figure 3.4 shows some
experiments. The dashed line is the bound predicted by the Conjecture 3.23, while the
dotted lines provide the values |u∗i vi|

−1 for all other indices. From these images we deduce
that in this example the approximation performs well for τ ∈ [0, 1.5] and τ ≥ 5. However,
in the suboptimal regions it seems that some dotted line can take over the role of the
best approximation. Near τ = 2.18 and τ = 2.52, |v∗i ui|

−1 is infinite, as the left and right
singular values become orthogonal. �

In accordance with the notions for the sensitivity analysis of eigenvectors, [48, Section 7.2.2],
we may call the term |v∗i ui|

−1 the condition of the singular value σi.

3.3.2 Decomposing eAt

Let us now consider singular decompositions of eAt. As σ1(eAt) =
∥∥eAt∥∥

2
we can find

conditions for critical points of t 7→
∥∥eAt∥∥

2
. Let us first note the following fact about the

SVD of parameter-dependent matrices.

Theorem 3.25. Let T : I → Kn×n be an analytical function and I ⊂ R an open interval.
Then there exist continuous and piecewise real analytic functions σi : I → R+, i = 1, . . . , n,
with

σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) ≥ 0, i = 1, . . . , n, t ∈ I, (3.18)

and piecewise analytic functions ui, vi : I → Kn, i = 1, . . . , n with

ui(t)
∗uj(t) = δij and vi(t)

∗vj(t) = δij for all i, j = 1, . . . , n, t ∈ I,

such that

T (t) =
n∑
k=1

σk(t)uk(t)vk(t)
∗, t ∈ I. (3.19)
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Figure 3.4: SVD approximations for supt≥0

∥∥eAτ t∥∥
2
.
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Moreover for each t0 ∈ I, the one-sided limits and derivatives

lim
t↘t0

f(t), lim
t↗t0

f(t), lim
t↘t0

ḟ(t), lim
t↗t0

ḟ(t)

exist for all functions f = σi, ui, vi, i = 1, . . . , n.

Proof. In [67, Theorem 4.3.17] (iii) it was shown that there exists an analytical pseudo-SVD
on any open interval I. Those functions differ from the functions defined in the theorem
by relaxing (3.18), the pseudo-singular values only need to satisfy σ̃i : I → R without any
restriction on the ordering on the positivity. Enforcing the positivity of σi by replacing
one of the singular vectors by its negative value, and enforcing the ordering by resorting
the indices, we obtain piecewise analytic functions.

In the following, if we use the term SVD for parameter-dependent functions, we always
associate it with a piecewise analytic dyadic decomposition of the form (3.19). This de-
composition is not necessarily uniquely determined.

Lemma 3.26. For A ∈ Kn×n let the SVD of T (t) = eAt, t > 0, be given by (3.19). Then
we have

µk(t) = µk(t, A) := uk(t)
∗(A∗ + A)uk(t) = vk(t)

∗(A∗ + A)vk(t).

Moreover,
∑n

k=1 µk(t) = 2Re traceA. For β ∈ R, the SVD of S(t) = e(A−βI)t is given by
S(t) =

∑n
k=1 e

−βtσk(t)uk(t)v
∗
k(t) and µk(t, A− βI) = µk(t, A)− 2β.

Proof. The vectors uk, vk satisfy the equations T (t)vk(t) = σk(t)uk(t), T (t)∗uk(t) =
σk(t)vk(t) for all k = 1, . . . , n. Moreover, the matrices T (t) and A commute for all
t ≥ 0. Hence, if we suppress the dependence on t we conclude from T ∗AT = T ∗TA
and T ∗A∗T = A∗T ∗T that

u∗k(A+ A∗)uk = σ−2
k v∗kT

∗(A+ A∗)Tvk

= σ−2
k (v∗kT

∗TAvk + v∗kA
∗T ∗Tvk) = v∗k(A+ A∗)vk.

As the (uk)k=1,...,n form an orthonormal basis of Kn, we obtain for all t > 0

n∑
k=1

µk(t) =
n∑
k=1

uk(t)
∗(A+ A∗)uk(t) =

n∑
k=1

(uk(t)
∗Auk(t) + uk(t)

∗A∗uk(t))

= traceA+ traceA∗ = 2Re traceA.

It is easy to see that the dyadic decomposition of S(t) = e(A−βI)t is given by S(t) =∑n
k=1(e−βtσk(t))uk(t)vk(t)

∗. Therefore the singular vectors are invariant under scalar shifts
A A−βI and µk(t, A−βI) = uk(t)

∗(A−βI+A∗−βI)uk(t) = µk(t, A)−2βuk(t)
∗uk(t) =

µk(t, A)− 2β shows the behaviour of µk under scalar shifts of A.

By definition, we have that λmin(A+ A∗) ≤ µk(t) ≤ λmax(A+ A∗) for all k = 1, . . . , n and
all t > 0.
Let us now show how µk(t) can be used for the further analysis.
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Proposition 3.27. Given A ∈ Kn×n. The singular values σk(t) of T (t) = eAt are absolutely
continuous and satisfy for almost all t > 0 the differential equation

d
dt
σ2
k(t) = µk(t)σ

2
k(t). (3.20)

Proof. The functions σk(t), k = 1, . . . , n, are absolutely continuous on [0, t] for all t > 0, as
they are continuous and piecewise analytic by Theorem 3.25. Again, to save space we drop
the dependence on t. Almost everywhere on R+ the derivative of σ2

k = σkv
∗
kT
∗uk = v∗kT

∗Tvk
is given by

σ̇2
k = v̇∗kT

∗Tvk + v∗kṪ
∗Tvk + v∗kT

∗Ṫ vk + v∗kT
∗T v̇k

= 2Reσ2
kv
∗
kv̇k + v∗kT

∗(A∗ + A)Tvk = v∗kT
∗(A∗ + A)Tvk,

since the singular vectors vk are of unit length, v∗kvk = 1, so that v∗kv̇k = 0. Now, σ2
k satisfies

the differential equation d
dt
σ2
k = v∗kT

∗(A+A∗)Tvk = σ2
ku
∗
k(A+A∗)uk = σ2

kµk for almost all
t > 0.

Note that the differential equation (3.20) is equivalent to

σ̇k(t) := d
dt
σk(t) = 1/2µk(t)σk(t). (3.20’)

Proposition 3.28. If λk(A) denote the eigenvalues of A ∈ Kn×n with real parts decreas-
ingly ordered for k = 1, . . . , n then

lim
t→0

µk(t) = λk(A+ A∗), for all t0 ≥ 0, lim
t→∞

1

t

∫ t

t0

µk(θ) dθ = 2Reλk(A).

Proof. Let us first consider the case t → ∞. The following result on the asymptotic
behaviour of singular values of matrix powers is due to Yamamoto, for a proof see [71,
Theorem 3.3.21],

lim
j→∞

σk(B
j)

1/j = |λk̂(B)| , k = 1, . . . , n, (3.21)

where |λ1̂| ≥ |λ2̂| ≥ · · · ≥ |λn̂| are sorted with respect to the modulus. Setting B = eA in
(3.21) gives us

lim
j→∞

1
j

log σk(e
Aj) = log

∣∣λk̂(eA)
∣∣ = Reλk(A). (3.22)

For t ∈ R+ with t = j + τ , j ∈ N, τ ∈ [0, 1), we obtain σk(e
At) ≤ σk(e

Aj)
∥∥eAτ∥∥ using a

Weyl inequality for singular values given in [71, Theorem 3.3.16 (d)]. As
∥∥eAτ∥∥ is uniformly

bounded for τ ∈ (−1, 1), limj→∞
∥∥eAτ∥∥1/j

= 1. Hence

lim sup
t→∞

1
t

log σk(e
At) ≤ lim sup

j→∞

1
j

log

(
σk(e

Aj) sup
τ∈[0,1)

∥∥eAτ∥∥)

= lim
j→∞

1
j

log

(
σk(e

Aj) sup
τ∈[0,1)

∥∥eAτ∥∥) = Reλk(A),
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Writing t = j − τ , j ∈ N, τ ∈ [0, 1) gives σk(e
At) ≥ σk(e

Aj)
∥∥eAτ∥∥−1

, thus

lim inf
t→∞

1
t

log σk(e
At) ≥ lim inf

j→∞
1
j

log

(
σk(e

Aj) inf
τ∈[0,1)

∥∥eAτ∥∥−1
)

= lim
j→∞

1
j

log

(
σk(e

Aj) inf
τ∈[0,1)

∥∥eAτ∥∥−1
)

= Reλk(A).

Therefore (3.22) is also valid for real t, and limt→∞
1
t

log σk(e
At) = Reλk(A), see also [47].

Rewriting (3.20) as an integral equation, we obtain σ2
k(t) = σ2

k(t0)e
R t
t0
µk(θ)dθ

for t ≥ t0 ≥ 0.
The asymptotic growth rate of σk(t) is given by

lim
t→∞

1

t
log σk(t) = lim

t→∞

1

2t
log σ2

k(t) = lim
t→∞

1

2t

∫ t

t0

µk(θ)dθ (3.23)

for any t0 ∈ R+ and t ≥ t0. By (3.22), equation (3.23) can be rewritten as

lim
t→∞

1

t

∫ t

t0

µk(θ)dθ = 2 lim
t→∞

1

t
log σk(t) = 2Reλk(A).

Let us now consider t = 0. The function t 7→ eAt is analytic for all t ∈ R, hence by
Theorem 3.25 uk(0) and vk(0) are well-defined, moreover we have σ1(0) = · · · = σk(0) =
· · · = σn(0) = 1. We show that there exists an eigenvector wk of unit length corresponding
to the kth largest eigenvalue of A + A∗, i.e., (A + A∗)wk = λk(A + A∗)wk, such that
wk = uk(0). To see this, note that the differential equation (3.20) is satisfied for the one-
sided derivative d

dt+
σ2
k(t) in t = 0 and that the vector uk(t) is by definition an eigenvector

of T (t)T ∗(t) corresponding to the eigenvalue σ2
k(t) for t > 0. For small t > 0 we can

approximate σ2
k(t) by 1 + µk(0)t+O(t2) and T (t) by I + At+O(t2). Then

T (t)T ∗(t)uk(t) = ((I+At)(I+A∗t)+O(t2))uk(t) = (I+(A+A∗)t+O(t2))uk(t)

T (t)T ∗(t)uk(t) = σ2
k(t)uk(t) = (1 + µk(0)t+O(t2))uk(t).

(3.24)

Now, consider 1
t
T (t)T ∗(t)uk(t) = 1

t
σ2
k(t)uk(t). In the limit for t↘ 0 we obtain from (3.24)

that the vector wk = uk(0) satisfies (A + A∗)wk = µk(0)wk. Hence, wk is an eigenvector
corresponding to an eigenvalue µk(0) = limt→0 µk(t) of A+A∗. As σ2

k(t) = 1+µk(0)t+O(t2)
the µk(t) are decreasingly ordered for small enough t > 0 to retain the order of the singular
values. Hence µk(0) = λk(A + A∗) is an eigenvalue of A + A∗ with associated eigenvector
uk(0) = wk. The analogous argument for vk also shows that limt↘0 vk(t) = wk.

If the limits limt→∞ µk(t) exist, then we have limt→∞ µk(t) = 2Reλk(A). Numerical expe-
rients suggest that this is always true, but a rigorous proof of the existence of these limits
is still missing.
For t > 0, the vectors vk(t) and σk(t)uk(t) of eAt are the initial and final vectors of
the trajectory for which the amplification in [0, t] corresponds to the associated singular
values σk(t). Here we have x(t, vk(t)) = T (t)vk(t) = σk(t)uk(t), and so ‖x(t, vk(t))‖2 =
σk(t) ‖uk(t)‖2 = σk(t).
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Especially for the largest singular value, σ1(t0) =
∥∥eAt0∥∥

2
and T (t0)v1(t0) = σ1(t0)u1(t0) =∥∥eAt0∥∥u1(t0), so that the solutions x(t, x0) of ẋ = Ax satisfy

‖x(t0, v1(t0))‖2 =
∥∥eAt0v1(t0)

∥∥
2

= σ1(t0) ‖u1(t0)‖2 = σ1(t0) =
∥∥eAt0∥∥

2
. (3.25)

Let us take a closer look at the term µ1(t) = u1(t)∗(A + A∗)u1(t). We get from Proposi-
tion 3.28 and Theorem 2.41 that 1/2µ1(0) equals the initial growth rate of A with respect
to the spectral norm. Moreover, we can use it to detect local extrema of σ1(t).

Proposition 3.29. If t0 > 0 is an isolated local maximizer for σ1 : t 7→
∥∥eAt∥∥

2
then

µ1(t0) = 0 and there is a sign change from µ1(t0−) > 0 to µ1(t0+) < 0. If t0 > 0 is a local
minimizer for σ1 then 0 ∈ [µ1(t0−), µ1(t0+)]. Here µ1(t0−) and µ1(t0+) are the left and
right limits of µ1(t) in t0.

Proof. In a local maximum, the function σ1(t) =
∥∥eAt∥∥

2
is differentiable. To this end, note

that for two continuously differentiable functions f, g : I → R the function h = max{f, g}
is differentiable in local maxima, as f(t) > g(t) and ḟ = 0 implies ḣ = 0. If f(t) = g(t) in a
local maximum of h, then both f and g attain a local maximum in t, and ḟ(t) = 0 = ġ(t).
Now σ1(t) is the maximum of n continuously differentiable functions by Theorem 3.25. Its
derivative is given by σ̇1(t) = 1

2
σ1(t)µ1(t), as by Proposition 3.27, σ̇2

1(t) = 2σ1(t)σ̇1(t) =
σ2

1(t)µ1(t). This function is therefore well-defined in local maxima. In particular, for local
maxima attained at t0 > 0, µ1(t0) = 0 since σ1(t) > 0. As a necessary condition for isolated
local maxima of σ1 the sign of µ1(t) changes from +1 to −1 when passing through t = t0.
Local minima of σ1, however, may not be differentiable. They can only be detected by a
sign change of µ1(t) from −1 to +1 when t > 0 passes through a local minimum located
at t = t0.

Example 3.30. We compute µ1(t) for the matrix A =
⊕8

k=1
−9

k(k+1)

(
k+1 6k+3

0 k

)
. Figure 3.5

shows the norm of eAt and the function µ1(t). Here the zeros of µ1 correspond to local
maxima of

∥∥eAt∥∥
2

which are barely noticeable, while minima coincide with jumps of µ1.
In these minima the order of the singular values changes. �

The brute-force computation of M0(A), α(A) < 0, requires the knowledge of
∥∥eAt∥∥

2
for

all t from a sufficiently large interval [0, T ]. A rough bound for T can be obtained from
Corollary 3.9 or from proposition 3.14.

The results obtained in this section show that the singular vectors corresponding to the
largest singular value of eAt provide enough information to compute a derivative of the
singular value function σ1(t) =

∥∥eAt∥∥
2
, and hence to implement a Newton method to

determine local maxima. Moreover, Proposition 3.28 supplies us with an indicator that
the transient phase is over when µk ≈ 2Reλk holds for all k = 1, . . . , n.

Note that the singular vectors of eAt corresponding to σ1(t) are necessarily needed for the
computation of σ1(t) =

∥∥eAt∥∥
2
.
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Figure 3.5: µ1(t) and local maxima of
∥∥eAt∥∥

2
.

3.4 Bounds via Liapunov Functions

In this section we connect our previous discussion of the initial growth rate with some
classical results on quadratic Liapunov functions. Let us denote the set of all complex
Hermitian matrices by Hn(C) ⊂ Cn×n and the set of real symmetric matrices by Hn(R) ⊂
Rn×n. Both cases are treated by considering Hn = Hn(K), K = R or C. Suppose that we
have found a positive definite Hermitian solution P � 0 of the Liapunov equation

PA+ A∗P = −Q (3.26)

for given A ∈ Kn×n and Q � 0. We can use our knowledge of the initial growth rate to
derive estimates of

∥∥eAt∥∥
2

based upon (3.26). Let us associate with the matrix A the linear

Liapunov operator LA : Hn → Hn, P 7→ PA + A∗P = −Q and its inverse L−1
A (−Q) = P ,

which always exists when A is exponentially stable. The inner product with weight P,
〈x, y〉P = y∗Px, defines the P -norm ‖·‖P =

√
〈·, ·〉P .

Lemma 3.31. Given P � 0. If R ∈ Cn×n satisfies P = R∗R then the initial growth rate
µP (A) corresponding to the elliptical norm ‖·‖P is given by

µP (A) = max
x 6=0

Re 〈Ax, x〉P
〈x, x〉P

= −1
2

min
x 6=0

〈x,Qx〉2
〈x, Px〉2

= 1
2
λmax

(
(RAR−1) + (RAR−1)∗

)
.

(3.27)

where Q = −LA(P ).

Proof. By Proposition 2.31 we have to determine the dual norm of ‖·‖P and the associated
dual vectors of x ∈ Kn. The dual norm of ‖·‖P is given by ‖·‖P−1 , see (2.19), and a
unitary dual pair is uniquely determined by (x, y) where ‖x‖P = 1 and y = Px. Hence
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µP (A) = maxx 6=0
Re 〈Ax,Px〉2
〈x,Px〉2

= maxx 6=0
Re 〈Ax,x〉P
〈x,x〉P

. Using PA + A∗P = −Q we can write

Re 〈x,Ax〉P = 1
2
〈x, (PA+ A∗P )x〉2 = −1

2
〈x,Qx〉2. If we set y = Rx where R satisfies

R∗R = P (e.g. let R be a Cholesky factor or a symmetric square root of A) then

−
〈x, x〉Q
〈x, x〉P

=
〈(R−1)∗(PA+ A∗P )R−1y, y〉2

〈y, y〉2
=
〈(RAR−1 + (R−1)∗A∗R∗)y, y〉2

〈y, y〉2
.

By the Rayleigh-Ritz Theorem [70], maximizing the last quotient over all y 6= 0 gives the
largest eigenvalue of RAR−1 + (RAR−1)∗

From the quotient (3.27) we obtain an estimate for the initial growth rate in the following
situation.

Corollary 3.32. Given an exponentially stable matrix A ∈ Cn×n, a positive definite matrix
P � 0 and β ∈ R such that PA+ A∗P � 2βP . Then µP (A) ≤ β.

The quotient min
〈x,Qx〉2
〈x,Px〉2

can also be interpreted as the generalized eigenvalue of a Hermitian

matrix pencil, see [44, Chapter X].

Proposition 3.33 ([44, Theorem X.22]). Given a Hermitian matrix pencil (Q,P ) ∈
Hn ×Hn with P � 0. Then the pencil is regular, i.e., det(Q− λP ) 6≡ 0 and its character-
istic equation det(Q− λP ) = 0 always has n real roots λ1, . . . , λn, counting multiplicities.
Moreover, there exist Z ∈ Kn×n and Λ = diag(λi) ∈ Rn×n such that QZ = PZΛ and
Z∗PZ = In.

We call σ(Q,P ) := {λ ∈ C | det(Q−λP ) = 0} the spectrum of the Hermitian pencil (Q,P ),
its elements are called generalized eigenvalues of (Q,P ). For these pencils, a counterpart
of the Rayleigh-Ritz Theorem holds true.

Proposition 3.34 ([44, Theorem X.13]). For a Hermitian matrix pencil (Q,P ) ∈ Hn×Hn

with P � 0, the largest and smallest generalized eigenvalues are given by

λmax(Q,P ) = max
x 6=0

x∗Qx

x∗Px
, λmin(Q,P ) = min

x 6=0

x∗Qx

x∗Px
. (3.28)

Hence the initial growth rate µP (A) associated with the positive definite matrix P ∈ Hn

is given by the maximal generalized eigenvalue of the matrix pencil (−(PA + A∗P ), P ).
As this pencil is regular, we can rewrite the spectrum of the pencil as the spectrum of a
matrix, σ(−(PA + A∗P ), P ) = σ(−(A + P−1A∗P )) = σ(−(PAP−1 + A∗)). The matrix
A + P−1A∗P is not Hermitian any more. From these remarks about matrix pencils we
extract yet another way of computing the initial growth rate with respect to P , namely,

µP (A) = 1
2
λmax(−(A+ P−1A∗P )) = −1

2
λmin(A+ P−1AP ).

By properties of the initial growth rate, µP (A) ≤ 0 implies that (eAt)t∈R+ is a contraction
semigroup in the P -norm since

∥∥eAtx∥∥
P
≤ eµP (A)t. For an estimate with respect to the

spectral norm we have to compute the eccentricity of ‖·‖P .
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Theorem 3.35. Let A ∈ Kn×n and Q ∈ Hn. Suppose that there exists P � 0 which
solves (3.26). Then ∥∥eAt∥∥

2
≤
√
κ2(P )eµP (A)t, t ≥ 0.

Here κ2(P ) denotes the condition number of P defined by κ2(P ) = ‖P‖2 ‖P−1‖2 .

Note that we do not assume that A is stable. Hence Q is not necessarily positive semidef-
inite, thus µP (A) may also be positive.

Proof. In order to apply Corollary 2.57, we only have to show that the eccentricity of ‖·‖P
when compared with ‖·‖2 is given by κ2(P )1/2. This follows from

λmin(P )〈x, x〉2 ≤ 〈x, x〉P ≤ λmax(P )〈x, x〉2, x ∈ Cn, x 6= 0, (3.29)

where λmin(P ) and λmax(P ) denote the minimal and maximal eigenvalue of P, respectively.
However, for the eigenvectors corresponding to the maximal and minimal eigenvalues of P ,

equality holds in either of the two inequalities of (3.29). Hence, ecc ‖·‖P = λmax(P )
1/2

λmin(P )1/2
. The

statement of the theorem then follows from Corollary 2.57.

The following definition determines the set of matrices which satisfy Theorem 3.35.

Definition 3.36. A matrix A ∈ Kn×n is called quadratically (M,β)-stable if there exists a
positive definite P ∈ Hn with κ(P )1/2 ≤M and µP (A) ≤ β.

If the norm ‖·‖ under consideration is the spectral norm, we can interpret (3.5) as a special
case of Theorem 3.35.

Corollary 3.37. Suppose that A ∈ Kn×n is diagonalizable with an invertible matrix V ∈
Cn×n of left eigenvectors satisfying V ∗A = ΛV ∗, Λ = diag(λi), λi ∈ σ(A). Then

∥∥eAt∥∥
2
≤

κ2(V )eα(A)t, t ≥ 0.

Proof. Setting P = V V ∗ gives PA+ A∗P = V (Λ + Λ̄)V ∗ = −Q. Hence for y = V ∗x

µP (A) = 1
2

max
x 6=0

〈x,−Qx〉2
〈x, Px〉2

= 1
2

max
y 6=0

〈
y, (Λ + Λ̄)y

〉
2

〈y, y〉2
= 1

2
λmax(Λ + Λ̄) = α(A).

Moreover, the square root of the condition number of P is given by
√
κ2(P ) = κ2(V ) =

‖V ‖2 ‖V −1‖2. The corollary now follows from Theorem 3.35.

Example 3.38. Consider the matrix A = ( −5 36
0 −20 ) which we already studied in Exam-

ple 3.15. Figure 3.6 shows an ellipse which is invariant under the flow of ẋ = Ax.
The associated quadratic form is induced by the Hermitian matrix P = ( 125 40

40 317 ) � 0,
hence the transient growth is bounded by κ(P )1/2 = 5

3
. Here the initial growth rate

µP (A) equals 0 as there exist trajectories which enter the ellipse tangentially, and there-
fore Q = −(PA+ A∗P ) = 50( 25 −70

−70 196 ) is only semidefinite. �

If both P ∈ Hn and Q ∈ Hn are positive definite and related via a Liapunov equation
LA(P ) = −Q then we can compare the initial growth rates induced by the elliptical norms
associated with P and Q, respectively.
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Figure 3.6: Flow-invariant ellipse.

Theorem 3.39. Suppose that A ∈ Kn×n is an exponentially stable matrix and P � 0 and
Q � 0 solve LA(P ) = −Q. Then we have

−µQ(−A) ≤ −µP (−A) ≤ µP (A) ≤ µQ(A).

Proof. Let us first consider the inequality µP (A) ≤ µQ(A). Theorem 3.35 implies for the
inner product with weight Q that〈

eAtx, eAtx
〉
Q
≤ e2µQ(A)t〈x, x〉Q, (3.30)

where µQ(A) may also be positive. As both P and Q are positive definite, Lemma 3.31

shows that µP (A) = −1
2

minx6=0
〈x,Qx〉
〈x,Px〉 < 0 always holds. If therefore µQ(A) ≥ 0 then

µQ(A) > µP (A) is trivially satisfied. Let us therefore assume that µQ(A) < 0. Note that

− d
dt

〈
eAtx, eAtx

〉
P

= −2Re
〈
eAtx,AeAtx

〉
P

=
〈
eAtx, eAtx

〉
Q
, x ∈ Kn, t ≥ 0.

By using this equality in the integration of (3.30) we obtain

〈
eAtx, eAtx

〉
P

=

∫ ∞
t

〈
eAsx, eAsx

〉
Q
ds ≤

∫ ∞
t

e2µQ(A)sds〈x, x〉Q = − 1

2µQ(A)
e2µQ(A)t〈x, x〉Q.

This integral is well-defined as µQ(A) < 0. Hence for t = 0 and all x 6= 0

〈x, x〉P ≤ −
1

2µQ(A)
〈x, x〉Q ⇐⇒ µQ(A) ≥ −1

2
min
x 6=0

〈x, x〉Q
〈x, x〉P

= µP (A).

The lower bound follows analogously by considering〈
e−Atx, e−Atx

〉
Q
≤ e2µQ(−A)t〈x, x〉Q ⇐⇒

〈
eAtx, eAtx

〉
Q
≥ e−2µQ(−A)t〈x, x〉Q. (3.31)
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If µQ(−A) > 0 then an integration of (3.31) provides us with 〈x, x〉P ≥
1

2µQ(−A)
〈x, x〉Q.

Hence −µQ(−A) ≤ −1
2

〈x,x〉Q
〈x,x〉P

. Taking the minimum of this quotient over all x 6= 0, we have

−µQ(−A) ≤ 1
2

min
x6=0

−〈x, x〉Q
〈x, x〉P

= −µP (−A) < 0.

The case µQ(−A) ≤ 0 is again trivial, as −µP (−A) = −1
2

maxx6=0
〈x,Q,x〉
〈x,Px〉 < 0. The inequality

−µP (−A) ≤ µP (A) is found in Proposition 2.40 (i).

Let us now study the effect of using Theorem 3.39 iteratively.

Theorem 3.40. Let A ∈ Kn×n be exponentially stable. Consider the Hermitian matrix
sequence (Pi)i∈N ⊂ Hn of Liapunov solutions PiA + A∗Pi = −Pi−1/ ‖Pi−1‖ . Then for a
generically chosen initial value P0 � 0

lim
i→∞

µPi(A) = α(A), lim
i→∞
−µPi(−A) = −α(−A).

Proof. The construction of the matrix sequence (Pi) corresponds to an inverse power
method without shifts applied to the linear operator −LA, see Wilkinson [148] and Stew-
art [132] for a general discussion. This method converges to some subspace spanned
by eigenvectors which are associated with eigenvalues of A that minimize the distance
to the origin. If such an eigenvalue λ∗ which located nearest to the origin is uniquely
determined, i.e. {λ∗} = {λ ∈ σ(A) | |λ| = minλ′∈σ(A) |λ′|} then the convergent sub-
space is of dimension 1. Hence the inverse power method converges to an eigenvector
P∗ of −LA corresponding to the eigenvalue λ∗. If λ∗ is of higher geometric multiplic-
ity then the convergent eigenvalue depends on the choice of the initial value P0. Now,
P0 � 0 is positive definite and as −L−1

A : Hn
+ → Hn

+ retains the positive-definiteness,
all Pi � 0. Thus if the limit P∗ = limi→∞ Pi exists it is a Hermitian matrix. But Her-
mitian eigenvectors P ∈ Hn of L(A) are associated with real eigenvalues λ ∈ R as
λP = PA + A∗P = (PA + A∗P )∗ = λ̄P. The spectrum of the Liapunov operator LA

as an operator on Kn×n is given by σ(LA) = {λ1 + λ̄2 |λ1, λ2 ∈ σ(A)}, see [90, Theorem
12.2.1]. As A is exponentially stable, min dist(−σ(LA), 0) is attained for λ∗ = −2α(A).
Therefore the inverse power method converges. Let us now study the limit of the spectra
1
2
σ(PiA + A∗Pi) as i→∞. Let us assume that A is given in (complex) Schur form where

the real parts of the eigenvalues are increasingly ordered along the diagonal. If Ri is a
Cholesky decomposition of the positive definite Hermitian matrix Pi = R∗iRi then R is an
upper triangular matrix, and hence the product

RiAR
−1
i , i ∈ N, (3.32)

is upper triangular, too. By construction its diagonal coincides with the diagonal of A.
Now Pi converges to an eigenvector P∗ associated with the eigenvalue 2α(A) of LA.
As the diagonal of (3.32) is constant, it must converge to the diagonal matrix of A,
RiAR

−1
i → diag(λ1, . . . , λn). Hence limi→∞

1
2
σ(PiA+A∗Pi) = {Reλ |λ ∈ σ(A)} and espe-

cially limi→∞ µPi(A) = α(A), limi→∞−µPi(−A) = −α(−A).
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Unfortunately, if the optimal eigenvalue λ∗ = −2α(A) is of simple multiplicity then P∗ is
of rank one, and κ(Pi) → ∞ as i → ∞ which is unacceptable. Instead, let us now try to
optimize the condition number. We pose the following problem.

Problem 3.41. For a given stable matrix A ∈ Kn×n find a positive definite solution P ∈
Hn of the Liapunov inequality PA+ A∗P � 0 with minimal condition number,

κ∗ = inf{κ(P ) |LA(P ) � 0}.

As the condition number only fixes the ratio between the largest and smallest eigenvalue
of P we cannot expect uniqueness (modulo scalar multiples) for dimensions n ≥ 3.
The problem of finding a quadratic Liapunov norm with minimal eccentricity may be recast
as a semidefinite program with linear matrix inequality constraints. This formulation can
be readily used with available numerical solvers.

Problem 3.42. For a given matrix A ∈ Kn×n find a solution (κ, P ) ∈ R+ × Hn of the
following semidefinite program

Minimize κ ≥ 1 under In � P � κIn, P = P ∗, PA+ A∗P � 0.

The solution set will be empty if A is not stable as the Liapunov inequality is never satisfied
for positive definite P ∈ Hn. Unfortunately, the numerical treatment of Problem 3.42 runs
into difficulties even for moderate matrix dimensions. We use the following proposition to
show that for the optimal solution pair (P ′, Q′) of (3.26) P ′ is positive definite and Q′ is
only semidefinite which causes numerical problems.

Proposition 3.43. Suppose that A ∈ Kn×n is stable and that the Hermitian pairs (P1, Q1),
(P2, Q2) satisfy

P1A+ A∗P1 = −Q1, P2A+ A∗P2 = −Q2,

with P1 � 0, P2 � 0, κ(P2) < κ(P1), Q1 � 0, Q1 +Q2 � 0. Then κ(P1 + P2) < κ(P1).

Proof. Under the conditions of the proposition, both (P1, Q1) and (P1 + P2, Q1 + Q2) are
pairs of a positive definite matrix and a semidefinite matrix that satisfy the Liapunov
equation (3.26). We therefore have to show that κ(P1 + P2) ≤ κ(P1). As P1 and P2 are
both positive definite Hermitian matrices we have

κ(P1 + P2) =
λmax(P1 + P2)

λmin(P1 + P2)
≤ λmax(P1) + λmax(P2)

λmin(P1) + λmin(P2)
. (3.33)

Now, from κ(P2) < κ(P1) we obtain

κ(P2) =
λmax(P2)

λmin(P2)
<
λmax(P1) + λmax(P2)

λmin(P1) + λmin(P2)
<
λmax(P1)

λmin(P1)
= κ(P1). (3.34)

This yields κ(P1 + P2) < κ(P1). Therefore P ′ = P1 + P2 yields a smaller condition number
than P1.
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In [82] it was noted that the choice P2 = λIn with an appropriate scaling factor λ leads to a
condition number κ(P1 +P2) which is less or equal to the condition number κ(P1). Suppose
that A+A∗ 6≺ 0 and Q1 � 0, then for P2 = λIn, λ > 0, we have Q2 = −LA(P2) = −λ(A+
A∗). Since κ(P2) = 1 and κ(P1) > 1 Proposition 3.43 yields that the condition number
estimate of the sum P1 + P2 is always improved provided Q1 +Q2 = Q1 − λ(A+A∗) � 0.
Hence one should choose λ to be the smallest positive generalized eigenvalue of the matrix
pencil (Q1, A+ A∗). With this choice, Q′ = Q1 − λ(A+ A∗) is singular.
Let us generalize this procedure. We assume that (P1, Q1) is a pair of positive definite
Hermitian matrices which satisfy the Lyapunov equation (3.26). If Q′ ∈ Hn is some search
direction then we have to determine λ′ ∈ R such that the conditions of Proposition 3.43
hold for Q2 = λ′Q′. We obtain the following update step.

Lemma 3.44. Suppose that A ∈ Kn×n is stable. Given Hermitian matrices Q1 and Q2

which satisfy the conditions of Proposition 3.43, we set λ̃ to the smallest nonnegative gener-
alized eigenvalue of the matrix pencil (Q1,−(Q1+Q2)), λ̃ = min(σ (Q1,−(Q1 +Q2))∩R+).
Then the positive definite Hermitian matrix

P̃ = P1 + λ̃P2

satisfies κ(P̃ ) ≤ κ(P1), and yields a positive semidefinite Q̃ = −LA(P̃ ) ∈ Hn.

However, it is unclear how to determine a feasible search direction. Moreover, a different
strategy should be used if Q1 is singular. Concluding from this lemma an optimal solution
of Problem (3.42) is attained for a singular Q. This may be one of the reasons for the bad
performance of the numerical solvers.
Furthermore, there is a gap between the exponential estimates obtained from quadratic
Liapunov functions and the transient amplification M0(A) = supt≥0

∥∥eAt∥∥ as the following
example shows.

Example 3.45. For a given k ∈ N consider the matrix A = ( −1 50k
0 −51 ). The spectral norm of

the matrix exponential for a real 2×2 matrix in upper triangular form A = ( λ1 α
0 λ2

), λ1 6= λ2,
is given by∥∥eAt∥∥ = 1

2

∣∣eλ1t − eλ2t
∣∣ (√coth(1

2
(λ1 − λ2)t)2 + ( α

λ1−λ2
)2 +

√
1 + ( α

λ1−λ2
)2
)
,

see Proposition 4.4. For β = −1 we get the monotonously increasing function∥∥e(A−βI)t∥∥ = 1
2
(1− e−50t)

(√
coth(25t)2 + k2 +

√
1 + k2

)
t→∞−−−→

√
1 + k2

as limx→∞ coth(x) = 1. Hence, M =
√

1 + k2 is the smallest possible bound for strict
(M,β)-stability with β = −1. Now let us examine which bound can be obtained using
Theorem 3.35. The strict Liapunov inequality PA+A∗P +2P ≺ 0 is unsolvable, but there
exist matrices P � 0 which solve PA+A∗P � −2P . The matrix P = ( p1 p3p3 p2 ) is a solution
of this inequality if and only if

kp1 − p3 = 0, kp3 − p2 < 0.
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If we fix p1 = 1 then necessarily p3 = k and p2 > k2. With this choice, P is positive definite.
Other solutions are positive scalar multiples of solutions representable in such a manner.
Let us now compute the condition number of P . The condition number for a 2 × 2 real
positive definite symmetric matrix P is given by

κ(P ) =
λmax(P )

λmin(P )
=

traceP

2 detP

(
traceP +

√
(traceP )2 − 4 detP

)
− 1, (3.35)

which can be obtained by expressing λmax(P ) and λmin(P ) in terms of trace(P ) = λmax(P )+
λmin(P ) and det(P ) = λmax(P )λmin(P ). By writing p2 = k2 + α we get

κ(α) =
1 + k2 + α

2α

(
(1 + k2 + α) +

√
(1 + k2 + α)2 − 4α

)
− 1

=
1 + k2 + α

2α

(
(1 + k2 + α) +

√
(α + (k2 − 1))2 + 4k2

)
− 1,

which attains its minimum of k2 + 2k
√

1 + k2 + (1 + k2) at α̃ = 1 + k2. Therefore the best
bound obtainable by Theorem 3.35 is

√
κ(α̃) = k +

√
1 + k2 . �

In this example there is a gap of k between this Liapunov bound and the minimal bound
M . More interestingly, the quotient of both bounds approaches 2. It is an open question
if in general this “quadratic Liapunov performance” quotient is bounded by the dimension
of the space,

sup
A∈Kn×n stable

(
inf
{√

κ(P )
∣∣∣P � 0, PA+ A∗P � 0

})(
sup
t≥0

∥∥eAt∥∥)−1
?
= n.

3.5 Bounds from the Resolvent

The resolvent of A ∈ Cn×n is given by R(s, A) = (sIn − A)−1. It may be used for an
alternative definition of the matrix exponential via

eAt = lim
k→∞

(
I − At

k

)−k
= lim

k→∞

(
k
t
R
(
k
t
, A
))k

, t > 0, (3.36)

that is, eAt is defined as the limiting product of implicit Euler steps. This limit is defined
for k large enough such that I − A t

k
is invertible, which is guaranteed for k > tρ(A). Let

us recall the characterization (2.33b) of Corollary 2.52. We rephrase it in the following
proposition.

Proposition 3.46. Suppose that A ∈ Kn×n then for each fixed k ∈ N∗,

µ(A) = d
dt+

∥∥(I − A t
k
)−k
∥∥ ∣∣

t=0
.
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For an example, see Figure 2.1 where different resolvent approximations of eAt indeed have
the same initial growth rate. Note also that the resolvent of A and the matrix exponential
of A are connected via a Laplace transformation, see Corollary 2.9. We can rewrite the
inverse Laplace transformation in form of a Cauchy integral formula for operators,

eAt = 1
2πi

∫
Γ

estR(s, A)ds,

where Γ is any positively oriented, piecewise smooth simple closed curve encircling the
spectrum of A.

Now consider a full block perturbation structure ∆ = (Cn×n, ‖·‖), cf. Section 1.3. If the
operator norm ‖·‖ is induced from a semi-algebraic vector norm (for example, a p-norm
with rational p) then the boundary of the ε-pseudospectrum for ε > 0 is piecewise analytic,
see Karow [76, Corollary 3.2.2]. Hence the contour Γ of an ε-pseudospectrum is rectifiable
and defines a piecewise smooth simple curve encircling the spectrum of A. This contour
may contain several connected components, but this causes no problem for the following
result. Namely, using this contour we obtain for all ε > 0

∥∥eAt∥∥ ≤ 1

2π

∫
∂σε(A |∆)

eRe st ‖R(s, A)‖ ds =
1

2πε

∫
∂σε(A |∆)

eRe stds, t ≥ 0.

If the length of the contour is known this provides the basis of further estimates, see
Embree and Trefethen [37]. We now shed some light on the theorems of Hille-Yosida and
Kreiss-Spijker.

3.5.1 Kreiss Matrix and Hille-Yosida Generation Theorems

The Hille-Yosida-Theorem links the (M,β)-stability of A to properties of the resolvent
R(s, A), see [38] and the discussion in Chapter 2. One may be interested in the transient
amplification only in certain directions of the state space. Hence we use structure matrices
to take this into account. We now present a structured version of the Hille-Yosida Theorem
for the matrix case.

Definition 3.47. Suppose that the structure matrices B ∈ Cn×` and C ∈ Cq×n are given.
A matrix A ∈ Cn×n is said to be structured (M,β)-stable if β > α(A) and∥∥CeAtB∥∥ ≤Meβt, t ≥ 0.

The structured transient bound is given by

Mβ(A,B,C) = sup
t≥0

∥∥Ce(A−βI)tB
∥∥ .

Note that always Mβ(A,B,C) ≥ ‖CB‖ .
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Theorem 3.48 (Hille-Yosida, structured version). The matrix A ∈ Cn×n is structured
(M,β)-stable for the given structure matrices B ∈ Cn×` and C ∈ Cq×n if and only if for
all k ∈ N. and for Re s > β∥∥CR(s, A)kB

∥∥ =
∥∥C(sI − A)−kB

∥∥ ≤ M

(Re s− β)k
. (3.37)

Proof. Let A be structured (M,β)-stable. Then for t = 0 we have ‖CB‖ ≤M hence (3.37)
holds for k = 0. Now let k ∈ N∗ be arbitrary. Using the Laplace transformation we have
for all Re s > β > α(A) that

(sI − A)−k =
1

(k − 1)!

∫ ∞
0

tk−1e(A−sI)tdt.

Therefore we obtain for all y ∈ C` that

∥∥C(sI − A)−kBy
∥∥ ≤ 1

(k − 1)!

∫ ∞
0

tk−1e−Re st
∥∥CeAtBy∥∥ dt

≤ M

(k − 1)!

∫ ∞
0

tk−1e(β−Re s)t ‖y‖ dt =
M

(Re s− β)k
‖y‖ ,

where 1
(k−1)!

∫∞
0
tk−1e−γtdt = 1

γk
follows from repeated partial integration. Hence (3.37)

holds. Conversely, if (3.37) holds for all k ∈ N then we use the representation (3.36). To
this end, fix t > 0 and set s = k

t
+ β. Then sI−A

s−β = I − (A − βI) t
k
, and (3.37) now gives

for all k ∈ N

M ≥

∥∥∥∥∥C
(
sI − A
s− β

)−k
B

∥∥∥∥∥ =

∥∥∥∥∥C
(
I − (A− βI)

t

k

)−k
B

∥∥∥∥∥ −−−→k→∞

∥∥Ce(A−βI)tB
∥∥ .

Therefore A is structured (M,β)-stable.

For a formulation which also works for operators in Banach spaces, see Theorem 2.6. The
main issue in the proof of the operator-theoretic version is to establish (3.36).
In order to use Theorem 3.48 for the test whether a matrix is structured (M,β)-stable all
powers of the resolvent have to be checked, so that this test is of little practical use. In
contrast, the Kreiss-Spijker Theorem does not require higher powers of the resolvent to be
known. We also present a structured version.

Theorem 3.49 (Kreiss-Spijker, structured version). Suppose A ∈ Cn×n is a stable matrix
and B ∈ Cn×` and C ∈ Cq×n are given structure matrices. Define the Kreiss constant
k(A,B,C) = supRe s>0(Re s) ‖C(sI − A)−1B‖. Then

k(A,B,C) ≤M0(A,B,C) ≤ (en)k(A,B,C), (3.38)

where e = exp(1) = 2.718 . . .
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The main part of this proof is Spijker’s Lemma. We present here a version due to
Aptekarev [3]. We start with some remarks about the Riemannian sphere, defined by
S2 = {(x1, x2, x3)> ∈ R3 |x2

1 + x2
2 + x2

3 = 1}. The north pole of this sphere is N = (0, 0, 1)>

and the south pole is S = (0, 0,−1)>. For each x = (x1, x2, x3)> ∈ S2 there exists a
rotation G ∈ SO3 such that Gx = S, i.e., the axis given by (x,−x) becomes vertical. To
see this, consider

G =

1− x2
1

1−x3
− x1x2

1−x3
x1

− x1x2

1−x3
1− x2

2

1−x3
x2

−x1 −x2 −x3

 . (3.39)

Some computations show that G−1 = G> and det(G) = 1, hence G ∈ SO3, and Gx =
(0, 0,−1)> = S.
The sphere S2 can be identified with Ĉ = C ∪ {∞} via the stereographic projection

ϕ : S2 \ {N} : (x1, x2, x3)> 7→ 1
1−x3

(x1 + ix2), ϕ(N) =∞.

Let us study the map ϕ(Gϕ−1(·)) : Ĉ→ Ĉ. We want to identify this map with a linear frac-
tional transformation (LFT) µ(z) = αz+β

γz+δ
for suitable α, β, γ, δ ∈ C. Note that each LFT is

uniquely determined by specifying the image of three points, see [28, Proposition III.3.9].
Hence let us determine the LFT µ which satisfies µ(1) = ϕ(Ge1), µ(i) = ϕ(Ge2) and
µ(0) = ϕ(−Ge3). From this equations we obtain after some calculations α = δ = 1 − x3

and β = −δ̄ = −(x1 + ix2). Hence µ(z) = (1−x3)z−(x1+ix2)
(x1−ix2)z+(1−x3)

is a LFT which corresponds to a

rotation of the form (3.39), so that c = ϕ(x) is mapped into µ(c) = 0 and ϕ(−x) into ∞.
The map c 7→ ϕ(−ϕ−1(c)) in Ĉ is called the antipodal map. It is given by c 7→ −c̄−1 as

ϕ((−x1,−x2,−x3)>) = 1
1+x3

(−x1 − ix2) = −(ϕ((x1, x2, x3)>))
−1
,

since the inverse of 1
1−x3

(x1 + ix2) for (x1, x2, x3)> ∈ S2 is given by 1
1+x3

(x1 − ix2).
The following lemma provides us with the main tool for the proof of Spijker’s Lemma. A
rational function of degree n is the quotient of two coprime polynomials for which at least
one has the maximal degree n.

Lemma 3.50. Suppose that q is a complex rational function of degree n ≥ 1. Then there
exist linear fractional transformations µ1 and µ2, such that

µ2 ◦ q ◦ µ1(z) = zr(z),

where r is a complex rational function of degree n−1. These LFTs are given by µ1(z) = z−c
c̄z−1

and µ2(z) = αz−β
β̄z+ᾱ

for suitable α, β, c ∈ C.

Proof. A solution c ∈ C of

q(c̄ −1) = −q(c)
−1
. (3.40)

always exists as (3.40) contains only rational expressions in c̄. Hence after expanding
the left hand side of (3.40) with powers of c̄ and then expanding with the denominators
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we obtain a non-trivial polynomial equation in c̄. Note that if c solves (3.40) then so
does c̄−1. Thus this equation always has a solution c with |c| < 1. The case |c| = 1
is impossible, as this would imply q(c)q(c) = −1. For µ1(z) = c−z

1−c̄z we therefore have
µ1 : 0 7→ c and ∞ 7→ c̄−1. Now by (3.40), ζ := q ◦ µ1(0) and q ◦ µ1(∞) are antipodal
points on the Riemannian sphere. By our previous discussion there exists a linear fractional
transformation

µ2(z) =
αz − β
β̄z + ᾱ

, α = (1 + |ζ|2)−
1/2, β = αζ, (3.41)

which maps these antipodal points ζ and −ζ̄−1 into 0 and ∞, respectively, as we have

µ2 ◦ q ◦µ1(0) = µ2(ζ) =
αζ − αζ
ᾱ |ζ|2 + ᾱ

= 0, µ2 ◦ q ◦µ1(∞) = µ2(−ζ̄ −1) =
−αζ̄ −1 − αζ
−ᾱζ̄ ζ̄ −1 + ᾱ

=∞.

Therefore a z term factors out from the rational function µ2 ◦ q ◦µ1(z). It remains to show
that the rational function r given by zr(z) = µ2 ◦ q ◦ µ1(z) has rank n− 1. Here the linear
fractional transformations do not change the degree of q. Hence µ2 ◦ q ◦µ1 is also of degree
n. By factoring out z we have eliminated a pole at∞ and a root at 0, hence the remaining
rational function r is of degree n− 1.

Before we proceed let us comment on the definition of the contour integral. If ϕ(t) :
[a, b] → Ĉ, a < b, is a parameterized curve with traceϕ = Γ ⊂ Ĉ = C ∪ {∞} then∫

Γ
|g(s)| ds :=

∫ b
a
|g(ϕ(s))| |ϕ′(t)| dt. With the convention a < b this integral is independent

of the orientation of the curve. Let us demonstrate this by integrating the great circle
R̂ = R ∪ {∞}, ∫

R̂
|f(s)| ds =

∫ 1

−1

|f(artanh t)|
1− t2

dt =

∫ ∞
−∞
|f(t)| dt.

Here artanh : (−1, 1)→ R, x 7→ 1
2

log 1+x
1−x is the inverse function of tanh.

Wegert and Trefethen [146] call the following theorem “Spijker’s lemma on the Riemannian
sphere”.

Theorem 3.51. Suppose that q is a complex rational function of degree n. Then

Ln(q) := 2

∫
S

|q′(s)|
1 + |q(s)|2

ds ≤ 2πn, S =
{
eiθ ∈ C

∣∣ θ ∈ [−π, π]
}
.

Proof. Let n ≥ 1. By Lemma 3.50 there exist two linear fractional transformations µ1 and
µ2 such that µ2 ◦ q ◦ µ1(z) = zr(z) holds. Then we have Ln(q) = Ln(µ2 ◦ q ◦ µ1) since
Ln(q̂ ◦ µ1) = Ln(q̂) and Ln(µ2 ◦ q̃) = Ln(q̃) for any rational functions q̂, q̃ of degree n. To
show the first fact Ln(q̂ ◦µ1) +Ln(q̂), note that µ1 given by z 7→ c−z

1−c̄z maps the unit sphere
S into itself, and µ1 is self-inverse with µ1 ◦ µ1(z) = z. To this end, note that for z ∈ S,

|µ1(z)|2 =
c− z
1− c̄z

· c̄− z̄
1− cz̄

=
|z|2 − c̄z − cz̄ + |c|2

1− c̄z − cz̄ + |c|2 |z|2
= 1,
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and for z ∈ C,

µ1 ◦ µ1(z) =
(
c− c−z

1−c̄z

) (
1− c̄ c−z

1−c̄z

)−1
= (c− cc̄z − c+ z)(1− c̄z − cc̄+ c̄z)−1 = 1−cc̄

1−cc̄z = z.

Hence, instead of parameterizing S via t 7→eit, t∈ [−π,π] we can use t 7→µ1(eit), t∈ [−π,π].

Ln(q̂ ◦ µ1) = 2

∫
S

|(q̂ ◦ µ1)′(s)|
1 + |q̂(µ1(s))|

ds = 2

∫ π

−π

|q̂ ′(µ1 ◦ µ1(eit))µ′1(µ1(eit))|
1 + |q̂(µ1 ◦ µ1(eit))|

∣∣ieitµ′1(eit)
∣∣ dt

= 2

∫ π

−π

|q̂ ′(eit)|
1 + |q̂(eit)|

∣∣ieitµ′1(eit)µ′1(µ1(eit))
∣∣ dt = 2

∫ π

−π

|q̂ ′(eit)|
1 + |q̂(eit)|

∣∣ieit∣∣ dt = L2(q̂),

since µ′1(z)µ′1(µ1(z)) = (µ1 ◦µ1)′(z) = 1. The second fact Ln(µ2 ◦ q̃) = Ln(q̃) can be verified
using the following formulas derived from (3.41),

µ′(z) =
1

(β̄z + ᾱ)2
and 1 + |µ(z)|2 =

1 + |z|2

(β̄z + ᾱ)(βz̄ + α)
,

from which we obtain

Ln(µ2 ◦ q̃) = 2

∫
S

|µ′(q̃(s)) q̃′(s)|
1 + |µ2(q̃(s))|2

ds = 2

∫
S

∣∣β̄q̃(z) + ᾱ
∣∣2∣∣β̄q̃(z) + ᾱ
∣∣2 |q̃′(s)|

1 + |q̃(s)|2
ds = Ln(q̃).

We therefore have

Ln(q(s)) = Ln(sr(s)) = 2

∫
S

|r(s) + sr′(s)|
1 + |r(s)|2

ds ≤ 2

∫
S

(
|s| |r

′(s)|
1 + |r(s)|2

+
|r(s)|

1 + |r(s)|2

)
ds

≤ Ln−1(r) + 2

∫
S

|r(s)|
1 + |r(s)|2

ds ≤ Ln−1(r(s)) + 2π,

because |s| = 1 for s ∈ S and x
1+x2 = (x + 1

x
)−1 ≤ 1

2
for all x ≥ 0. Now, L0 = 0 and

therefore an induction over n proves the theorem.

The standard formulation of Spijker’s Lemma is now a corollary.

Corollary 3.52. Suppose that r is a complex rational function of degree n. Then∫
S
|r′(s)| ds ≤ 2πn sup

z∈S
|r(z)| . (3.42)

Proof. Consider the polynomial q(z) = ‖r‖−1
∞ r(z) where ‖r‖∞ = supz∈S |r(z)| . Then∫

S
|q′(s)| ds ≤ 2

∫
S

|q′(s)|
1 + |q(s)|2

ds since
2

1 + |q(z)|2
≥ 1 as |q(z)| ≤ 1 for all z ∈ S. (3.43)

By Theorem 3.51 we have
∫

S |q
′(s)| ds ≤ 2

∫
S
|q′(s)|

1+|q(s)|2 ds ≤ 2πn, and a multiplication with

‖r‖∞ gives (3.42).
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But as the Kreiss Theorem in its classical form (“Ein Satz über Matrizen” in [88]) is only
for matrix powers, we need the following reformulation of Spijker’s Lemma for the matrix
exponential case.

Corollary 3.53. Let r(s) be a complex rational function of degree n ≥ 1. For a given
α ∈ R set Γα = {z ∈ Ĉ | z = α + iω}. If supz∈Γα |r(z)| <∞ then∫

Γα

|r′(s)| ds ≤ 2πn sup
z∈Γα

|r(z)| . (3.44)

Proof. The linear fractional transformation given by µ(z) = (α+1)z−(1−α)
z+1

maps the unit

circle S onto Γα. We set ξ : [−π, π] → S, t 7→ eit. Define γ : [−π, π] → Γα, t 7→ µ ◦ ξ(t)
(here γ(±π) = ∞). By assumption, r(s) = p(s)

q(s)
is a proper rational function of degree

n. Then the degree of the numerator is deg(p′q − pq′) ≤ 2n − 2 as the coefficient of the
leading power cancels out. Therefore the degrees of the numerator and denominator of r′

differ by at least 2. Hence the integral in the left hand side of (3.44) is well-defined. Now
r′ ◦ µ(s) = (r ◦ µ)′(s)µ′(s)−1. Setting s = γ(t) gives

L :=

∫
Γα

|r′(s)| ds =

∫ π

−π
|r′ ◦ γ(t)| |γ′(t)| dt =

∫ π

−π
|r′ ◦ (µ ◦ ξ)(t)| |(µ ◦ ξ)′(t)| dt

=

∫ π

−π

∣∣(r ◦ µ)′(ξ(t))(µ′ ◦ ξ(t))−1
∣∣ |(µ′ ◦ ξ(t)) ξ′(t)| dt

=

∫ π

−π
|(r ◦ µ)′(ξ(t))| |ξ′(t)| dt =

∫
S
|(r ◦ µ)′(s)| ds.

Now, we can apply Corollary 3.52 to the rational function r ◦ µ which is also of degree n.
Hence

L ≤ 2πn sup
z∈S
|r ◦ µ(z)| = 2πn sup

z∈Γα

|r(z)| .

We now have a suitable version of Spijker’s Lemma in form of Corollary 3.53 available.
Hence let us proceed with the proof of Theorem 3.49.

Proof (of Theorem 3.49). The lower bound in (3.38),

k(A,B,C) = sup
Re s>0

Re s
∥∥C(sI − A)−1B

∥∥ ≤ sup
t≥0

∥∥CeAtB∥∥ = M0(A,B,C),

is a direct consequence of Theorem 3.48 for k = 1 and β = 0. The upper bound in (3.38)
is obtained by representing the matrix exponential as the Cauchy integral

eAt =
1

2πi

∫
Γ

est(sIn − A)−1ds, (3.45)
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where Γ is any positively oriented simple smooth curve encircling the eigenvalues of A.
Let us assume that M0(A,B,C) is attained at a finite time t0. Then there exists a pair of
vectors (x, y) ∈ C` × Cq such that

M0(A,B,C) = max
t≥0

∥∥CeAtB∥∥ = max
t≥0

∣∣y∗CeAtBx∣∣ =
∣∣y∗CeAt0Bx∣∣ , ‖y‖∗Cq = 1 = ‖x‖C` .

Inserting (3.45) with t = t0 into this equation gives

M0(A,B,C)= 1
2π

∣∣∣∣∫
Γ

est0y∗C(sI − A)−1Bx

∣∣∣∣ ds= 1
2π

∣∣∣∣∫
Γ

est0γ(s)

∣∣∣∣ ds= 1
2π

sup
t>0

∣∣∣∣∫
Γ

estγ(s)

∣∣∣∣ ds.
Here γ(s) = y∗C(sI −A)−1Bx is a scalar rational function of degree ≤ n. For a fixed t let
the path of integration be given by Γ = {z ∈ C |Re z = t−1} which we interpret as a closed
curve Γ∪ {∞} in Ĉ. On this contour we have etRe s = e. Therefore the partial integration∫

Γ
estγ(s)ds = −

∫
Γ

1
t
estγ′(s)ds gives

∣∣y∗CeAtBx∣∣ =
1

2πt

∣∣∣∣∫
Γ

estγ′(s)

∣∣∣∣ ds ≤ e

2πt

∫
Γ

|γ′(s)| ds.

Applying Corollary 3.53 we obtain∣∣y∗CeAtBx∣∣ ≤ 2πen
2πt

sup
s∈Γ
|γ(s)| = en

t
sup
ω∈R

∣∣y∗C((1
t

+ iω)I − A)−1Bx
∣∣ .

Maximization over all t > 0 yields for s = t−1 + iω

M0(A,B,C) ≤ sup
t>0

en
t

sup
ω∈R

∥∥C((1
t

+ iω)I − A)−1B
∥∥

= en sup
Re s>0

Re s
∥∥C(sI − A)−1B

∥∥ = en k(A,B,C).

This proves the upper bound in (3.38).

With the formula presented in Theorem 1.12 it is easy to see that we can express the Kreiss
constant via properties of spectral value sets for full block perturbations.

Corollary 3.54. The Kreiss constant can be expressed in terms of the stability radius,

k(A,B,C) = sup
γ>0

γ r(A− γIn, B, C)−1, (3.46)

and in terms of the pseudospectral abscissa,

k(A,B,C) = sup
ε>0

ε−1αε(A,B,C). (3.47)
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Proof. For full block perturbation structures Theorem 1.12 provides us with the following
formula for the spectral value set of A with respect to the level ε > 0,

σε(A,B,C) = σ(A) ∪
{
s ∈ C \ σ(A)

∣∣ ∥∥C(sI − A)−1B
∥∥ > ε−1

}
.

The associated spectral abscissa is given by

αε(A,B,C) = sup
{

Re s
∣∣ ∥∥C(sI − A)−1B

∥∥ > ε−1
}

= sup
{

Re s
∣∣ ∥∥C(sI − A)−1B

∥∥ = ε−1
}

and the stability radius satisfies

r(A,B,C) =

(
sup
ω∈R

∥∥C(iω − A)−1B
∥∥)−1

.

The Kreiss constant is given by k(A,B,C) = supRe s>0 Re s ‖C(sI − A)−1B‖. We can split
s ∈ %(A) into real and imaginary part, s = γ + iω, with γ, ω ∈ R. Then

k(A,B,C) = sup
γ>0

γ sup
ω∈R

∥∥C(iωI − (A− γI))−1B
∥∥ = sup

γ>0
γ (r(A,B,C))−1

which shows (3.46). For (3.47), we consider s 7→ Re s ‖C(sI − A)−1B‖ on the contours of
∂σε(A,B,C) ∩ C+. We have

k(A,B,C) = sup
ε>0

sup
s∈∂σε(A,B,C)∩C+

Re s
∥∥C(sI − A)−1B

∥∥
= sup

ε>0
ε−1 sup

{s∈C+ | ‖C(sI−A)−1B‖=ε−1}
Re s = sup

ε>0
ε−1αε(A,B,C),

so that (3.47) is obtained.

Thus if A is a stable matrix and for small ε > 0 the spectral value sets σε(A,B,C) move
deeply into the right half-plane, then there are some trajectories of the system ẋ = Ax
with large transient excursions.

Let us collect the set of points where the pseudospectral abscissa is attained.

Definition 3.55. Given A ∈ Cn×n and structure matrices B ∈ C`×n, C ∈ Cq×n, the set of
points

F(A,B,C) :=
⋃
ε>0

{z ∈ ∂σε(A,B,C) |Re z = αε(A,B,C)}

is called the front locus of A with respect to the structure matrices B and C.

Note that the Kreiss constant can be obtained by maximizing Re z ‖C(zI − A)−1B‖ over
all z ∈ F(A,B,C) ∩ C+ instead of over the half-plane {z ∈ C |Re z > 0}.
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3.5.2 Calculating the Front Locus

We have seen in the previous subsection that the Kreiss constant k(A) may be obtained by
maximizing the quotient αε(A,B,C)/ε. Let us now consider the unstructured case B = I
and C = I and fix the spectral norm ‖·‖ = ‖·‖2. The additional information of computing
the front locus F(A) = F(A, I, I) comes nearly for free when computing the spectral value
sets of A.

Proposition 3.56. Suppose that s ∈ F(A) is a point in the front locus of A ∈ Cn×n. If
u, v : C→ Cn are the left and right singular vectors corresponding to the smallest singular
value σn of sI − A then Imu(s)∗v(s) = 0. If we define F∗ = {s ∈ C | Imu(s)∗v(s) ≤ 0}
then F ⊂ ∂F∗ ∩ C+.

Proof. Let us consider the function s 7→ ‖(sI − A)−1‖ along lines parallel to the imaginary
axis, i.e., with Re s fixed. Let u(ω) and v(ω) be the singular vectors corresponding to the
minimal singular value of the function ω 7→ (α+ iω)I −A. By Theorem 3.16, u(·) and v(·)
are piecewise analytic. For a given real part α > 0 we consider the function

fα : ω 7→
∥∥((α + iω)I − A)−1

∥∥ = σn((α + iω)I − A) = u(ω)∗(iωI − (A− αI))v(ω).

Let s0 = α + iω0 ∈ F. Then there exists ε0 > 0 such that s0 ∈ ∂σε0(A) and αε0(A) =
Re s0 = α. Hence we obtain from Theorem 1.12 that for all ζ ∈ C with Re ζ ≥ 0,

σn((s0 + ζ)I − A) 6< ε0.

Thus fα(·) attains a local minimum in ω0. The function fα is differentiable in local minima,
which can be shown analogously to the differentiability of σ1 in local maxima, see the proof
of Proposition 3.29 for details. Now the derivative f ′α(ω) := d

dω
fα(ω) is given by

f ′α(ω) = Re (u′(ω)∗((α + iω)I − A)v(ω) + iu(ω)∗v(ω) + u(ω)∗((α + iω)I − A)v′(ω))

= Re iu(ω)∗v(ω) = Imu(ω)∗v(ω),

because u′(ω)∗u(ω) = 0 = v(ω)∗v′(ω) since u(ω), v(ω) are both of unit length. Thus a
necessary condition for local minima of fα is given by Imu∗v = 0. Clearly, the front locus
satisfies F ⊂ {s ∈ C+ | Imu(s)∗v(s) = 0}. Now inner points of F∗ for which Imu∗nvn = 0
correspond to a saddle-point of fα as no sign change occurs in the derivative.

Example 3.57. Figure 3.7 shows the spectral value sets and the set F∗ for the matrix

A =


−0.4 −1 −4

2 −0.4 4
−1.6 1

−0.4

 .

Here F∗ consists of three connected components, hence the gap for Re s = 0.8 is not an
artefact of the computational grid. Note that the real axis is part of the set F∗. �
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Figure 3.7: Pseudospectra and F∗.

We now present a fast method which calculates the minimal singular vectors of the matrix
sI − A. The following lemma shows how the singular values can be obtained from the
eigenvalues of an Hermitian matrix.

Lemma 3.58 ([91, p. 190]). Let A be a matrix in Cn×n. Then the spectrum of H=( 0 A
A∗ 0 )∈

C2n×2n is given by σ(H) = {±σk(A) | k = 1, . . . , n} where σk(A) ≥ 0 is the kth singular
value of A.

Sophisticated algorithms to deal with such Hamiltonian eigenvalue problems are available
in van Loan [139] and Benner, Mehrmann and Xu [112].

Proof. Let
(
u
v

)
∈ C2n be an eigenvector corresponding to an eigenvalue λ of H. Since

H ∈ Hn, its spectrum is real, hence λ ∈ R. Now H
(
u
v

)
= λ

(
u
v

)
is equivalent to A∗u = λv,

Av = λu. This implies that AA∗u = λAv = λ2Au and A∗Av = λA∗u = λ2u hence |λ| is a
singular value of A. If (λ,

(
u
v

)
) is an eigenpair of H then it is easy to verify that (−λ,

(
u
−v

)
)

is also an eigenpair of H. Therefore σ(H) = {±σk(A)}.

We will present a simple analysis to show that the term Imu∗v is available with virtually
no additional costs when computing the pseudospectra of A. In particular, if A is given
in complex Schur form then B = sI − A is an upper triangular matrix for all s ∈ C. For
simplicity, let us assume that σn(B) 6= 0, that is, s 6∈ σ(A), and that σn(B) < σn−1(B).

The inverse power iteration ( 0 B
B∗ 0 )

(
u+

v+

)
=
∥∥(u

v

)∥∥−1

2

(
u
v

)
can be written as

ũj+1 = B−∗vj, ṽj+1 = B−1uj, σj+1 =

(
n∑
k=1

(ũj+1
k )2 + (ṽj+1

k )2

)−1/2

,

uj+1 = σj+1ũ
j+1, vj+1 = σj+1ṽ

j+1.

(3.48)
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Here ũj+1 = B−∗vj and ṽj+1 = B−1uj can be solved by computationally inexpensive
forward and backward substitutions1. Now, if the initial values u0 and v0 are chosen
in such way that

(
u0

v0

)
is not contained in a non-trivial H-invariant subspace then the

sequence (σi)i∈N defined in (3.48) satisfies σi → σn(B) for i→∞. However the “dominant”
eigenspace of H = ( 0 B

B∗ 0 ) (i.e., the one associated with eigenvalues which has the smallest
distance to 0) is not uniquely determined since by Lemma 3.58 the minimal distance to 0
is attained for both σn(B) and −σn(B). Therefore the vectors uj and vj will not converge
although σj converges to σn(B). But if this minimal singular value is of multiplicity one,
i.e., σn(B) 6= σn−1(B), then this sequence of vectors will approach an oscillation between
two vectors contained in the subspace spanned by the two eigenvectors of H which are
associated with eigenvalues λ1, λ2 that satisfy |λi| = σn(A), i = 1, 2. This cycle is given by
{α
(
u
v

)
+β
(
u
−v

)
, β
(
u
v

)
+α
(
u
−v

)
} where

(
u
v

)
is an eigenvector of H with H

(
u
v

)
= σn(A)

(
u
v

)
, and

α, β ∈ C are constants depending on the initial values u0, v0. In particular, if H
(
u
v

)
= λ

(
u
v

)
then H

(
u
−v

)
= −λ

(
u
−v

)
and therefore we get

H

(
(α + β)u

(α− β)v

)
= H

(
α

(
u

v

)
+ β

(
u

−v

))
= λ

(
α

(
u

v

)
− β

(
u

−v

))
= λ

(
(α− β)u

(α + β)v

)
.

As the sequence (3.48) is renormalized with λ = σn(A) we obtain a cycle between these two
elements. To get an approximation of the eigenvector

(
u
v

)
we add two subsequent terms of

(3.48), so

2α

(
u

v

)
=

(
(α + β)u

(α− β)v

)
+

(
(α− β)u

(α + β)v

)
≈
(
uj+1

vj+1

)
+

(
uj

vj

)
. (3.49)

Furthermore, we are only interested in the sign of Imu∗v and therefore a renormalization
of the u- and v-components in step (3.49) is not necessary. Collecting these ideas we obtain
the following outline of an algorithm.

Algorithm 3.59. We determine the pseudospectra and front locus of A ∈ Cn×n.
Initialize Replace A by its (complex) Schur form, hence making it upper triangular.

Create a gridG⊂C. Allocate storage for grid-sized real matrices P and F .
Main Loop For each grid point z ∈ G set Az = zI −A. Choose initial values u0, v0 ∈

Cn and iterate

ũj = A−∗z vj−1, ṽj = A−1
z uj−1,

σj =
(∥∥ũj∥∥2

+
∥∥ṽj∥∥2

)−1/2

,

uj = σjũ
j, vj = σj ṽ

j,

until σj converges. Set u = uj + uj−1, v = vj + vj−1, and store σj and
Imu∗v into P and F , respectively.

End Return the pseudospectra P and F of A.

1A solver for general triangular matrices is provided by the LAPACK function family xGETRS, see [1].
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The matrix P produced by the above algorithm contains the minimal singular values
evaluated for each grid point z, ‖(zI − A)−1‖−1

while the front locus F(A) is part of the
zero-contour of the height field of the matrix F . If z = Gij is a grid point contained in
F∗(A) then Fij ≤ 0.

3.6 Notes and References

The notion of (M,β)-stability is somehow a hybrid between the concept of exponential
stability and the notion of practical stability which has been introduced by LaSalle and
Lefschetz [93]. A nonlinear differential system ẋ = f(t, x), f(t0) = x0, f(t, 0) ≡ 0 is called
practically stable (see Lakshmikantham et al. [89]) in x∗ = 0 for constants 0 < m < M if
‖x0‖ < m implies ‖x(t; t0, x0)‖ < M , t ≥ t0. Hence if ẋ = Ax is uniformly (M,β = 0)-
stable then it is practically stable for m = 1 and M .
Topological properties of the set of (M,β)-stable matrices are studied in Hinrichsen and
Pritchard [67]. Generators of type G(M,β) have been discussed in Kato [77]. Classical
bounds for the matrix exponential can be found in Moler and van Loan [108], which
are mostly based upon an eigenvalue/eigenvector analysis. For an account on how to
compute the matrix exponential via a scaling and squaring technique combined with a Padé
approximation, see Higham [57] who suggests an algorithm that uses fewer multiplications
than matlab’s expm while improving the precision. Most of the computations of matrix
exponentials presented in this thesis are obtained from an algorithm presented by Golub
and van Loan [48, Algorithm 11.3.1].
The bounds presented in this section mostly concentrate on obtaining estimates for M
and β. The bound (3.5) based upon knowledge of the eigenvalues and eigenvectors is
mathematical folk tradition. However, as we have seen in Proposition 3.14 the asymptotic
behaviour is not governed by κ(V ), but by sup‖x‖=1

∣∣e>1 V −1x
∣∣. The bound for Jordan

canonical forms in (3.6) is inspired by Higham [56] where analogous bounds are derived for
matrix powers.
Although the spectral norm of a matrix is directly related to its SVD, estimates based on
the SVD are to the best of the author’s knowledge not found in the literature.
Bounds based on quadratic Liapunov functions enjoy a certain popularity, see Veselić [141].
This article also features bounds which are also valid for semigroups on Banach spaces
and the underlying idea for the proof of Proposition 3.43. Transient estimates based upon
quadratic Liapunov functions have been discussed in Hinrichsen, Plischke and Pritchard [62],
where the problem of finding a Liapunov matrix with smallest condition number is also
addressed. The notion of quadratic (M,β)-stability has been used in Boyd et al. [22] where
optimization problems involving quadratic Liapunov matrices are mentioned. However, as
Lemma 3.44 shows, the minimal condition number is always attained at the boundary of a
Liapunov cone, which poses numerical problems for the solution. For convergence issues of
the inverse power method see Wilkinson [148]. For a recent discussion of the initial growth
rate associated with weighted quadratic norms, see Hu and Liu [72].
Bounds based upon the resolvent of A are discussed in Embree and Trefethen [37], see
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also the articles [136, 137] by Trefethen. An account on the history of the Kreiss Matrix
Theorem is found in Wegert and Trefethen [146], see also Spijker [129] and Spijker et
al. [130] where issues related to the Kreiss Matrix Theorem are discussed. A version of the
Kreiss Matrix Theorem for exponentially stable matrices is found in Aupetit and Drissi [7].
The notion of the front locus has been suggested in [62]. For computational issues involving
the pseudospectral abscissa, see Burke, Lewis and Overton [24].



Chapter 4

Examples

This chapter gathers various applications of estimates which have been presented in the
last chapters. The organization is as follows. We first derive some explicit formulas for the
norm of the matrix exponential. Then we take a closer look at transient Feller norms, and
show a formula for an upper exponential estimate of 2 × 2 blocks which differs from the
original by maximally 36%.

After that we compute the quadratic Liapunov matrix associated with a stable 2× 2 ma-
trix A, that has the smallest condition number under all solutions of a quadratic Liapunov
inequality for A. The geometrical insight gained in this course is used to find joint quadratic
Liapunov functions. We close this chapter with a discussion of dissipativity for polytopic
norms, that comes in handy for a variety of mathematical applications.

4.1 Explicit Formulas

We will start off with the calculation of the exact transient growth for 2 × 2 block upper
triangular matrices with respect to the spectral norm. These results can be used to judge
the quality of the estimates.

Lemma 4.1. Suppose that B ∈ Cn×m and α, β ∈ C. Then the spectral norm of

A =

(
αIn B
0 βIm

)
∈ C(n+m)×(n+m) (4.1)

is given by

‖A‖ =
1

2

(√
(|α|+ |β|)2 + ‖B‖2 +

√
(|α| − |β|)2 + ‖B‖2

)
.

Remark 4.2. A matrix A with a Schur form (4.1) has a minimal polynomial given by
mA(s) = s2 − (α + β)s + αβ. Hence it satisfies the quadratic matrix polynomial equation
A2 − (α + β)A+ (αβ)I = 0.

91
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Proof. For any eigenpair (λ,
(
u
v

)
) of A∗A we have

A∗A

(
u

v

)
=

(
|α|2 I ᾱB

αB∗ B∗B + |β|2 I

)(
u

v

)
= λ

(
u

v

)
. (4.2)

If α = 0 then (B∗B+|β|2 I)v = λv. Hence ‖A‖ =
√
|β|2 + ‖B‖2 which proves the assertion.

If α 6= 0 and u = 0 or v = 0 then we obtain λ = |β|2 or λ = |α|2 , respectively. When
we assume that both u, v 6= 0 and furthermore λ, α 6= 0 then the following two equations
follow from (4.2),

Bv =
λ− |α|2

ᾱ
u, B∗u =

ᾱ

λ
(λ− |β|2)v. (4.3)

The product of both constants appearing in (4.3) is an eigenvalue of B∗B,

µ2 := λ−1(λ− |α|2)(λ− |β|2) ∈ σ(B∗B).

Rearranging the term yields two solutions for λ depending on µ2 ∈ σ(B∗B) given by

λ±(µ2) =
1

2

(
|α|2 + |β|2 + µ2 ±

√
(|α|2 + |β|2 + µ2)2 − 4 |αβ|2

)
.

In particular, the maximal eigenvalue of A∗A corresponds to λ+(µ2) where µ2 = ‖B‖2 ,
hence

‖A‖ = λ+(‖B‖2)
1/2 =

1

2

(√
(|α|+ |β|)2 + ‖B‖2 +

√
(|α| − |β|)2 + ‖B‖2

)
.

As a direct consequence of the unitary invariance of the spectral norm we obtain the
following result.

Corollary 4.3. Given B ∈ Cm×n, scalars α and β, and unitary matrices U ∈ Cm×m, V ∈
Cn×n. Then the spectral norm of ( αIm B

0 βIn
) equals the norm of ( βIm UBV

0 αIn
).

Now we consider the matrix exponential for matrices given by (4.1).

Proposition 4.4. Suppose that A = ( αI B
0 βI ) where α, β ∈ R are real scalars and B ∈ Cm×n.

Then

∥∥eAt∥∥ =


1
2

∣∣eαt − eβt∣∣ (√coth(α−β
2
t)2 + ( ‖B‖

α−β )2 +
√

1 + ( ‖B‖
α−β )2

)
if α 6= β,

1
2
eαt
(√

4 + (‖B‖ t)2 + ‖B‖ |t|
)

if α = β.
(4.4)

Proof. Suppose that α 6= β. Then eAt =
(
eαtI eαt−eβt

α−β B

0 eβtI

)
. By Lemma 4.1 the norm of the

matrix exponential is given by∥∥eAt∥∥ =
1

2

(√
(eαt + eβt)2 + γ2 +

√
(eαt − eβt)2 + γ2

)
,
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Figure 4.1: Feller norm for a rectangular unit box.

where γ = eαt−eβt
α−β ‖B‖ . Factoring out (eαt − eβt)2 gives

=
1

2

∣∣eαt − eβt∣∣
√(eαt + eβt

eαt − eβt

)2

+

(
‖B‖
α− β

)2

+

√
1 +

(
‖B‖
α− β

)2
 .

Now, as coth(x) = e2x+1
e2x−1

the first part of Proposition 4.4 is proved. In case α = β a limiting

argument shows that eAt =
(
eαtI teαtB

0 eαtI

)
. Therefore Lemma 4.1 gives

∥∥eAt∥∥ =
1

2

√
(2eαt)2 + (teαt ‖B‖)2 + |t| eReαt ‖B‖ ,

which proves the second case in (4.4).

To find the maximum of supt≥0

∥∥eAt∥∥ one has to find the critical values of (4.4) which is
not pursued here.

4.2 Construction of Transient Norms

In Definition 2.60 we introduced the Feller norm ‖x‖A = supt≥0

∥∥eAtx∥∥ as a norm for
which the transient growth M0(A) is given by the eccentricity of ‖·‖A. We will now show
that this norm can be used to derive good estimates for the transient growth in the case
of real 2 × 2 matrices. For a given vector norm ν on R2 we denote its unit sphere by
Sν = {x ∈ R2 | ν(x) = 1} and its closed unit ball by Bν = {x ∈ R2 | ν(x) ≤ 1}. We have
demonstrated in Lemma 2.63 and in (2.48) how to construct transient norms for a stable
matrix A.

Example 4.5. Consider the linear system

ẋ = Ax, where A =

(
−1 −1
1 −1

)
. (4.5)

It is easy to see that this system is contracting with respect to the maximum norm. For
all x on the boundary of the unit square (which is this case a unit box), the vectorfield
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(x, ẋ = Ax) never points outside this box, as can be seen by checking the signs of the
coefficients ẋ1 resp. ẋ2. The dashed lines in Figure 4.1 show the unit box of the maximum
norm, and a few trajectories illustrate that this box is indeed invariant under (4.5). If we
deform the norm (by introducing a diagonal weighting matrix) and choose a wider unit
box, then with respect to this new norm, system (4.5) is not a contraction anymore as
trajectories starting in the vertices now point outside the box. For example consider the
rectangle R := [−α, α]× [1, 1] as the unit sphere of a suitable norm ν where α =

√
2e

π
4 > 1.

To construct the unit ball of a Feller norm we have to identify those points in the unit
ball Bν of ν which are invariant under the flow of (4.5). The trajectory x(t, x0) of (4.5)
starting in x0 = (α, 0)> is given by x(t, x0) = αe−t (cos(t), sin(t))>. This curve remains
entirely inside the box R, only touching the border in (1, 1)>. If we now clip away the
area above the curve segment given by t ∈ [0, π

4
] and its symmetric part in the lower

left corner, the remaining curve is the boundary of a convex and symmetric set A which
contains a neighbourhood of the origin, so that the corresponding Minkowski function
νA(x) = inf{γ > 0 | γ−1x ∈ A} is a norm. Moreover, all points in this set are backwards-
stable under ẋ = Ax. The thick lines in Figure 4.1 mark its unit circle. This norm is the
Feller norm νA of A associated with ν.
In Proposition 2.68 we introduced another method of constructing Liapunov norms, which
we now illustrate in Figure 4.2. Instead of constructing a backwards-stable set, we now
create a unit ball which is forward-stable under the flow of ẋ = Ax. This is done by
following all trajectories starting in R and then taking the convex closure of all these sets.
Figure 4.2 shows how the flow acts on the unit square R. The dashed lines denote some
snapshots eAt0R of the unit box for t0 ∈ {0, 1

4
, 1

2
, 3

4
}. The transient norm ball is then given

by conv
⋃
t≥0 e

AtR. �

R

Figure 4.2: Dual transient norm for a rectangular unit box.

4.2.1 Marginally Stable Matrices

We now study Feller norms on R2 when the underlying norm is the Euclidean norm. As
the Euclidean norm is invariant under unitary transformations we only need to consider
Schur forms. We discuss the following cases of real Schur forms of stable 2× 2 matrices.
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1. The matrix A is 0. Then
∥∥eAtx∥∥ = ‖x‖ for all t ≥ 0 and all x ∈ R2, hence this case

is of no further interest.

2. The matrix A has two purely imaginary eigenvalues, A =
(

0 β
α 0

)
with αβ < 0.

3. The matrix A is marginally stable, hence A = ( 0 α
0 λ ) with λ < 0.

4. The matrix A is exponentially stable with real spectrum, A =
(
λ1 α
0 λ2

)
and λ1, λ2 < 0.

5. The matrix A is exponentially stable with a pair of complex conjugate eigenvalues,
A =

(
λ β
α λ

)
where λ < 0 and αβ < 0.

If A ∈ R2×2 has two purely imaginary eigenvalues the real Schur form of A is given by
A = ( 0 β

α 0 ) where αβ < 0. Then for P = ( |α| 0
0 |β| ) the matrix equation PA + A>P equals

zero, the solutions of ẋ = Ax are contained in the level sets of x 7→ x>Px =: ‖x‖2
P which

shows that ‖·‖P is invariant under application of the Feller norm generation process.
Moreover, the Feller norm with respect to the Euclidean norm is also a scalar multiple
of this P -norm. Assume that wlog. |α| ≤ |β| . Then x0 =

(
1
0

)
corresponds to the larger

principal axis of the ellipsoid. The solution eAtx0 is entirely contained in the Euclidean
unit ball. Hence the Feller norm has the same unit ball as the norm induced from the inner
product weighted with P

‖x‖A = γ ‖x‖P = γ
√
〈x, Px〉,

where γ = |α|−2 denotes a suitable scaling factor such that 1 = ‖x0‖A = γ ‖x0‖P . The
eccentricity of ‖·‖A is then given by

ecc ‖·‖A =
√∣∣β

α

∣∣ for A =

(
0 β
α 0

)
and αβ < 0, |β| ≥ |α| .

Consider now a real 2 × 2 marginally stable matrix of the form A = ( 0 α
0 λ ) with λ < 0.

Then the Feller norm induced by A is of the form

‖x‖A = max{‖x‖ , M |〈v, x〉|}, (4.6)

where v = (λ2 + α2)−1/2(λ,−α)> and some suitable constant M > 1, see Figure 4.3. We
will determine the exact value for M by the following geometrical argument. The vector v
is the left eigenvector corresponding to 0. Hence, it is orthogonal to the λ-eigenvector of A.
Figure 4.3 shows the unit ball of this norm. One can easily see that A is dissipative with
respect to ‖·‖A . The eccentricity of ‖·‖A is then given by the inverse of the cosine of the

angle spanned by the left and right eigenvalue of 0, namely ecc ‖·‖A =
∣∣〈v, (1

0

)〉∣∣−1
which

evaluates to

M =

√
λ2 + α2

|λ|
for A =

(
0 α
0 λ

)
, λ < 0.

We have obtained the result on the transient bound M0(A) =
∣∣〈v, (1

0

)〉∣∣−1
already as part

of Corollary 3.20.
In the following example we will derive the transient amplification M0(A) by analytical
means instead of using geometrical considerations.
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v

1/M -

Figure 4.3: The unit ball of the transient norm for a marginally stable 2× 2 matrix.

Example 4.6. Consider the matrix A = ( 0 kλ
0 −λ ) for λ > 0 and k > 0. By Proposition 4.4 we

get the following function for the spectral norm of the matrix exponential,∥∥eAt∥∥ = 1
2
(1− e−λt)

(√
coth(λ/2 t)2 + k2 +

√
1 + k2

)
t→∞−−−→

√
1 + k2

as limx→∞ coth(x) = 1.Moreover, this function is monotonously increasing. Thus, M0(A) =√
1 + k2 = supt≥0

∥∥eAt∥∥ is the transient amplification for a marginally stable matrix of the
given structure. �

4.2.2 Exponentially Stable Matrices

Let us now study the case where A ∈ R2×2 is an exponentially stable matrix with real
spectrum. Then the line segment which appears in the unit ball of the Feller norm in the
marginally stable case is now given as part of a trajectory which touches the Euclidean
unit circle tangentially in a point x, ‖x‖ = 1. (The other crossing point with the unit
circle is traversal). In x the norm of the solution attains a local maximum. Therefore from
d
dt

∥∥eAtx∥∥2
= 0 it follows that x>(A + A>)x = 0 has to hold. Following the trajectory

backwards in time, it has to attain its minimum norm in y before leaving the unit ball, see
Figure 4.4. For this minimum, we again have y>(A+ A>)y = 0.
By replacing the trajectory segment between x and y by a line (dotted in Figure 4.4), we
obtain an upper bound on the eccentricity of the transient norm. The points x and y can
be computed explicitly, so that we obtain the following bound.

Proposition 4.7. Suppose that A ∈ R2×2 is given and let ‖·‖A denote the associated
transient norm. If A is exponentially stable, but not dissipative then

ecc ‖·‖A ≤ |〈x, y〉|
−1 ,
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where x and y are linear independent unit vectors satisfying

x>(A+ A>)x = 0 = y>(A+ A>)y.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1 y

x

1/M -

Figure 4.4: The unit ball of the Feller norm for a stable 2× 2 matrix.

For an exponentially stable, but not dissipative matrix A = ( λ1 α
0 λ2

) we obtain by Proposi-
tion 4.7 the estimate

ecc ‖·‖A ≤
√

(λ1 − λ2)2 + α2

−(λ1 + λ2)
,

since the vectors x and y are given by normalized multiples of (α±
√
α2 − 4λ1λ2,−2λ1)>.

Using the fact that A is dissipative if and only if 4λ1λ2 ≥ α2 we have for any real expo-
nentially stable upper triangular 2× 2 matrix that

ecc ‖·‖A ≤
√

(λ1 + λ2)2 + max{0, α2 − 4λ1λ2}
−(λ1 + λ2)

for A =

(
λ1 α
0 λ2

)
, λ1, λ2 < 0. (4.7)

The last case of a stable Schur form belongs to those matrices which have a pair of conju-
gated eigenvalues located in the left half-plane. Their real Schur form is given by A =

(
λ β
α λ

)
where λ < 0 and αβ < 0. A stable matrix A ∈ R2×2 is dissipative if A + A> � 0 which is
equivalent to det(A+A>) ≥ 0. Hence, the Feller norm will differ from the Euclidean norm
if 2 |λ| ≤ |β + α| . Carrying out the same calculations as for Proposition 4.7 (which only
depend on A+ A>) gives the following upper bound for the transient excursion

ecc ‖·‖A ≤
√

max{4λ2, (α + β)2}
4λ2

for A =

(
λ β
α λ

)
, λ < 0, αβ < 0. (4.8)

Rewriting the bound (4.8) in terms of determinants and traces of A and A+ A> we get

M+ :=

√
1− det(A+ A>)

trace2(A)
if det(A+ A>) < 0, (4.9)
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which is also valid for the real case, cf. (4.7). Hence stable matrices of the form(
a σb+ (1− τ)c

(1− σ)b+ τc d

)
for all τ, σ ∈ R

have the common upper transient bound M+ =
√

(a−d)2+(b+c)2

(a+d)2
if 4ad ≤ (b+ c)2.

Let us now return to matrices with real spectrum. We already know that the bound (4.7)
is exact in the limiting cases λ1 = 0 and |α| = 2

√
λ1λ2. Therefore it is reasonable to ask

for the quality of this bound.

Theorem 4.8. Given a stable matrix A = ( λ1 α
0 λ2

) ∈ R2×2 with 4λ1λ2 ≤ α2. Then for

M0 = supt≥0

∥∥eAt∥∥ and M+ =
√

(λ1 − λ2)2 + α2/ |λ1 + λ2| the following estimate holds

1 ≤ M+

M0

≤ e

2
.

Proof. The norm of the matrix exponential is given by Proposition 4.4

∥∥eAt∥∥ =


1
2

∣∣eλ1t − eλ2t
∣∣(√coth

(
λ1−λ2

2
t
)2

+
(

α
λ1−λ2

)2

+

√
1 +

(
α

λ1−λ2

)2
)
,

1
2
eλt
(√

4 + (αt)2 + |α| t
)
, if λ = λ1 = λ2.

A lower bound for
∥∥eAt∥∥ is given by

∥∥eAt∥∥ ≥ { |α|
λ1−λ2

(
eλ1t − eλ2t

)
, if λ1 6= λ2,

|α| teλt, if λ = λ1 = λ2.

It attains a critical value at t0 = 1
λ1−λ2

log λ2

λ1
, respectively at t0 = − 1

λ
. Let us now concen-

trate on the case λ1 6= λ2. Then∥∥eAt0∥∥ =
1

2

(
(−λ2)λ2(−λ1)−λ1

)1/(λ1−λ2)
(√

(λ1 + λ2)2 + α2 +

√
(λ1 − λ2)2 + α2

)
.

Hence M0 ≥ max(1,
∥∥eAt0∥∥). Now, M+/M0 ≤M+/

∥∥eAt0∥∥ and for this quotient,

M+

‖eAt0‖
= 2

(1 +
λ2

λ1

)(
λ2

λ1

) λ2

λ1−λ2

(√
(λ1 + λ2)2 + α2

(λ1 − λ2)2 + α2
+ 1

)−1

≤

((
1 +

λ2

λ1

)(
λ2

λ1

) λ2
λ1−λ2

)−1

=

((
λ2

λ1

) λ2
λ1−λ2

+

(
λ2

λ1

) λ1
λ1−λ2

)−1

. (4.10)

To complete the proof, let us use the following inequality. For a, b ∈ R, ab > 0, a 6= b we
have (

b

a

) b
a−b

+

(
b

a

) a
a−b

≥ 2

e
. (4.11)
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To prove this, we assume b > a > 0 and set b = a+ ε, β = ε
a
. Then the LHS of (4.11) gives(

b

a

) a
a−b (a

b
+ 1
)
≥ 2

(
1 +

ε

a

)−a
ε

= 2

(
1 +

1

β

)−β
≥ 2 exp(−1).

Now using (4.11) in (4.10) shows that M+/M0 ≤ e/2 when λ1 6= λ2.
For the remaining case λ = λ1 = λ2 we have

M0 ≥
∥∥eAt0∥∥ = 1

2e

(√
4 + (α

λ
)2 +

∣∣α
λ

∣∣) .
As M+ = − |α| (2λ)−1,

M+

M0

≤ |α| e√
(2λ)2 + α2 + |α|

≤ e

2
.

Hence, the bound M+

M0
≤ e

2
holds for all stable upper triangular matrices.

Hence the bound M+ of (4.9) satisfies M ≤M+ ≤ 1.36M.
We have the following generalization to higher dimensions.

Corollary 4.9. Suppose that B ∈ Rn×m and α, β < 0. Then for

A =

(
αIn B
0 βIm

)
: sup

t≥0

∥∥eAt∥∥ ≤ max

−
√

(α− β)2 + ‖B‖2

α + β
, 1

 .

Proof. The spectral norm of the matrix ( α B
0 βI ) is given by∥∥∥∥(αI B

0 βI

)∥∥∥∥ =
1

2

(√
(α + β)2 + ‖B‖2 +

√
(α− β)2 + ‖B‖2

)
as we have seen in Lemma 4.1. The matrix exponential retains the blockdiagonal structure
so everything works out as in the two-dimensional case.

4.3 Liapunov Matrices of Minimal Condition Number

In this section we continue to study solutions of the Liapunov equation

LA(P ) := PA+ A>P = −Q � 0, (4.12)

where we assume that A ∈ R2×2 is an exponentially stable matrix. As we have seen in
Theorem 3.35, the condition number κ(P ) of a solution P ∈ H2 of (4.12) measures the
eccentricity of the quadratic Liapunov function x 7→ x>Px compared to x 7→ x>x and
therefore gives rise to an upper bound of the matrix exponential. Again, as in Section 3.4
we are interested in a solution P for which the spectral condition number

κ(P ) = ‖P‖
∥∥P−1

∥∥ =
λmax(P )

λmin(P )
, P = −L−1

A (Q),
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attains a minimum under all positive semidefinite Q � 0. If the matrix A is dissipative
with respect to the spectral norm, A+A> � 0, then P = I satisfies (4.12). Therefore the
optimal condition number in case of a dissipative matrix is κopt = 1. So let us now study
stable matrices A ∈ R2×2 for which A+ A> is indefinite.
For a 2×2 regular triangular real matrix A the optimal solution for a real upper triangular
matrix A =

(
λ1 µ
0 λ2

)
where λi < 0, λ1 6= λ2 and µ ∈ R, may be found by direct computation.

Then for A+ A> being indefinite, Q is given by a rank 1 matrix.

Proposition 4.10. Let A =
(
λ1 µ
0 λ2

)
∈ R2, be an exponentially stable matrix with µ2 ≥

4λ1λ2, λ1 6= λ2. Then κ(P ) is minimal under all solutions LA(P ) = −Q of (4.12) with
P � 0, Q � 0 if and only if Q satisfies Q = cc> where c is given by c = (λ1 − λ2, µ− ν)>

(or multiples thereof) with ν = sgn(µ)
√

λ2

λ1
((λ1 − λ2)2 + µ2).

Proof. As a consequence of Proposition 3.43 the optimal solution is found under those
Hermitian pairs (P,Q) for which Q is only semidefinite which gives in the 2 × 2 case a
matrix of rank one. Hence we are looking for a right hand side Q = cc>, c ∈ R2, of the
Liapunov equation. These matrices can be conveniently parameterized by setting

Q(θ) =

(
(λ1 + λ2)2 (λ1 + λ2)θ
(λ1 + λ2)θ θ2

)
, c = (λ1 + λ2, θ)

>. (4.13)

Then the Liapunov matrix P (θ) = ( p1 p3p3 p2 ) = −L−1
A (Q(θ)) is given by the components

p1 = −(λ1 + λ2)2

2λ1

, p3 =
λ1 + λ2

2λ1

µ− θ, p2 = − 1

2λ2

(
θ2 − 2µθ +

λ1 + λ2

λ1

µ2

)
.

Now, the spectral condition number of a symmetric 2×2 matrix satisfies κ(P ) = ‖P‖
traceP−‖P‖

and we have

‖P‖ =
p1 + p2

2
+

1

2

√
(p1 − p2)2 + 4p2

3, det(P ) = p1p2 − p2
3, traceP = p1 + p2.

For critical values, d
dθ
κ(P (θ)) = 0 has to hold, hence we are searching for solutions of

(traceP (θ)− ‖P‖) d
dθ
‖P (θ)‖ = ‖P (θ)‖ d

dθ
(traceP (θ)− ‖P‖). (4.14)

Now, setting ‖P (θ)‖ = 1
2
(traceP (θ)+

√
∆(θ)) with ∆(θ) = (p1−p2)2+4p2

3, equation (4.14)
simplifies to √

∆(θ) d
dθ

traceP (θ) = traceP (θ) d
dθ

√
∆(θ).

The chain rule for d
dθ

√
∆(θ) gives

2∆(θ) d
dθ

traceP (θ) = traceP (θ) d
dθ

∆(θ). (4.15)
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The following critical points of (4.15) can be found with the help of a computer algebra
system

θ1 =
λ1 + λ2

λ1 − λ2

µ, θ2,3 =
λ1 + λ2

λ1 − λ2

(
µ±

√
λ2

λ1
((λ1 − λ2)2 + µ2)

)
.

The value θ1 corresponds to a +∞-pole of κ as c = (λ1 + λ2, θ1)> is a left eigenvector of
A, hence (A, c) is not observable and therefore L−1

A (−cc>) is not positive definite. Both
other critical values give rise to a local minimum. The global minimum is attained when
choosing θi, i ∈ {2, 3} to be of smallest modulus. Then c of (4.13) is given by

c =

(
λ1 + λ2,

λ1 + λ2

λ1 − λ2

(µ− ν)

)>
, where ν = sgn(µ)

√
λ2

λ1
((λ1 − λ)2 + µ2).

By scaling c by the factor λ1−λ2

λ1+λ2
we obtain the required result.

The following considerations are helpful in understanding the result of Proposition 4.10.
Let us only consider a subset of the cone of positive semidefinite symmetric 2× 2 matrices
H2

+ given by positive semidefinite matrices H with traceH = 2. Clearly, this set is a basis

of the cone. Then each H from this set can be written as H =
(

1+α β
β 1−α

)
for α2 + β2 ≤ 1.

The semidefinite matrices are given by α2 + β2 = 1, and the positive definite ones by
α2 + β2 < 1. In the equivalence class H2

+/{trace = 2}, addition and inversion follow the
rules

(α, β) + (γ, δ) = (α+γ
2
, β+δ

2
) and (α, β)−1 = (−α,−β),

where we identify the pair (α, β) with the matrix
(

1+α β
β 1−α

)
. The visualization of the image

of the positive definite cone under the inverse Liapunov operator L−1
A is accomplished

easily. We will call the set {H ∈ H2
+(R) | trace(H) = 2, HA + A>H � 0} the Liapunov

cone of A. Figure 4.5 shows the Liapunov cones for A =
( −5 36

0 −20

)
and A =

( −2 −1
9 −2

)
,

respectively. Neither cone includes the origin whence µ(A + A>) > 0 for both matrices,

I I
P

P

P0

P0

Figure 4.5: Real Liapunov cones.

i.e., they do not generate contractions. The asterisks in Figure 4.5 mark the positions of
the Hermitian matrices P of smallest condition. They are oriented towards the center of
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the Hermitian cone because the spectral condition number κ depends monotonically on
the radius r =

√
α2 + β2. Moreover, the points of the Liapunov cone touching the outer

circle of semidefinite matrices correspond to left eigenvectors vi of A which form symmetric
eigenvalues viv

>
i of the inverse Liapunov operator. The matrix A for the right picture of

Figure 4.5 contains only complex eigenvalues and therefore the Liapunov cone does not
touch the outer boundary given by real semidefinite matrices. By inspection, we see that
the sum of the symmetric eigenvalues of L−1

A , i.e., the midpoint between the tangent points
(given by symmetric eigenvectors of L−1

A ) which is marked by a box, is aligned with the
optimally conditioned matrix and the center of the cone. Here the center is identified with
the identity matrix I2. Hence we obtain the following alternative way of obtaining the
formula of Proposition 4.10.

Corollary 4.11. Let A ∈ R2×2 be a stable matrix. If vi, i = 1, 2, are the left eigenvectors
of A corresponding to the eigenvalues λi then by setting P0 = v1v

>
1 + v2v

>
2 we obtain the

quadratic Liapunov matrix of minimal condition by P = P0 + λ0I where λ0 = min{λ ∈
σ(Q0, A+A>) |λ > 0} is the smallest positive eigenvalue of the matrix pencil Q0−λ(A+A>)
and Q0 = −(P0A+ A>P0) = −2Re (λ1v1v

>
1 + λ̄2v2v

>
2 ).

Example 4.12. Consider the matrix A =
( −5 36

0 −20

)
. By Proposition 4.10 the quadratic

Liapunov matrix solution of minimal eccentricity satisfies Q = cc> where c = (15,−42) as
ν = 2

√
152 + 362 = 78. The RHS Q of the Liapunov equation is given by Q =

(
625 −25·70
−25·70 4900

)
with θ = 70 in (4.13). Therefore P = ( 62.5 20

20 158.5 ) and its quadratic condition number is
optimal and given by κ(P ) = 162.5

58.5
= 25

9
. As the associated eccentricity is given by the

square root of κ(P ) we obtain the growth bound
∥∥eAt∥∥

2
≤ 5/3. Some trajectories of the

system and an optimal ellipse {x ∈ R2 | 〈x, Px〉2 = const} are depicted in Figure 3.6,
cf. Example 3.38.
For the second approach in Corollary 4.11, we set P0 = ( 25 60

60 313 ) = 132(v1v
>
1 + v2v

>
2 ) where

vi are left eigenvectors of A, v1 =
(

0
1

)
, v2 = 1

13

(
5
12

)
. Then the generalized eigenvalues are

given by
σ(Q0, A+ A>) = σ

(
( 250 600

600 8200 ), ( −10 36
36 −40 )

)
≈ {−11.6071, 162.5}.

Now λ0 = 162.5, and P = P0 + λ0I = ( 187.5 60
60 475.5 ) which differs from the previously

obtained value by the scalar factor 3. Thus this second method leads to the same result
as the formula given in Proposition 4.10 with κ(P ) ≈ 2.77778. �

4.3.1 Common Quadratic Liapunov Matrices

The update step for quadratic Liapunov equations described in Proposition 3.43 can also
be used to obtain a common Liapunov matrix for two stable 2 × 2 matrices A0 and A1.
Let us suppose that the Liapunov cones of A0 and A1 have a non-empty intersection,
hence there exist common Liapunov matrices for A0 and A1. Like in Corollary 4.11 let
Pi denote the “eigenvector mean” of Ai, i = 0, 1 where Pi = v1(Ai)v

∗
1(Ai) + v2(Ai)v

∗
2(Ai)

and vj(Ai) are the normed left eigenvectors of Ai. These matrices are located near the
centers of the corresponding Liapunov cones. If a part of the line segment between P1
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and P2 in H2/{trace = 2} is contained in the intersection of the Liapunov cones, we
can detect this using the update mechanism of Proposition 3.43. By construction, both
Q0 := −(P0A0 + A>0 P0) and Q1 := −(P1A1 + A>1 P1) are positive semidefinite. Now let us
set Ri = PiA1−i+A>1−iPi, i = 0, 1. If there exists a negative definite Ri then we have found
the common Liapunov matrix Pi. If Ri is indefinite we construct an interval of Liapunov
matrices

P̃i = Pi + λiP1−i, λi ∈ [0,min {σ(Qi, Ri) ∩ R+}] , i = 0, 1,

using Lemma 3.44. If these intervals overlap (with respect to H2/{trace = 2}) then all
matrices from the intersection of the intervals are common quadratic Liapunov functions
for A0 and A1. In particular, the intersection of the intervals is non-empty if

λ∗0λ
∗
1 ≥ 1 for λ∗i = min{σ(Qi, Ri) ∩ R+}, i = 0, 1. (4.16)

To this end, note that in H2
+/{trace = 2} the Hermitian matrices P ∗0 = P0 + λ∗0P1 and

P ∗1 = P1 + λ∗1P0 are contained in the interval [P0, P1]. Hence we can decide whether
the Liapunov cones generated by A0 and A1 have a non-empty intersection along this
interval by checking if P ∗1 ∈ [P0, P

∗
0 ]. By this is equivalent to 1

λ∗1
≤ λ∗0, hence (4.16) holds.

Unfortunately, this is not a necessary condition for the existence of common quadratic
Liapunov matrices.

Example 4.13. Consider the matrices A0 = ( 0 10
−1 −20 ) and A1 = ( 0 2

−16 −7 ). We obtain P0 =
( 0.7942 0.4574

0.4574 1.206 ) and P1 = ( 1.778 0.3889
0.3889 0.2222 ). Then λ∗0 = 1.113 and λ∗1 = 0.5451 and λ∗0λ

∗
1 = 0.6069

so that (4.16) is not satisfied. However, the left image of Figure 4.6 shows that both
Liapunov cones have a non-empty intersection. For the matrix pair A0 and A2 =

( −3 5
−1 −1

)

P0 P1
P0

P2

Figure 4.6: Common quadratic Liapunov matrices: Intersecting cones.

we have P2 = 1
3

(
1 −1
−1 5

)
and λ∗0 = 0.9521, λ∗2 = 2.672, hence λ∗1λ

∗
2 = 2.544 > 1. Indeed, the

right image of Figure 4.6 shows that the Liapunov cones intersect. Now, every P ∗0 + λP ∗2
with λ ∈ [(λ∗2)−1, λ∗0] is a common Liapunov matrix for A0 and A2. �
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This method of constructing segments of common Liapunov matrices is not restricted to
matrices which are used in Corollary 4.11 or to dimension 2. We therefore immediately
obtain the following theorem.

Theorem 4.14. Let A0, A1 ∈ Kn×n be exponentially stable matrices, and P0, P1 ∈ Hn
+(K)

such that LAi(Pi) � 0, i = 0, 1. We define R0 = P0A1 + A∗1P0 and R1 = P1A0 + A0P1. If
R0 or R1 is negative definite then P0, respectively P1, is a common Liapunov matrix of A1

and A2. Otherwise consider

λ∗i = min{σ(Qi, Ri) ∩ R+}, i = 0, 1.

If λ∗0λ
∗
1 ≥ 1 then all positive linear combinations of P0 and P1 which satisfy

θ(P0 + λP1), θ > 0, λ ∈
[
(λ∗1)−1, λ∗0

]
are common quadratic Liapunov functions of A0 and A1.

4.4 Dissipativity for Polytopic Norms

We close this example section by a discussion of dissipativity for the class of polytopic
norms.

Definition 4.15. A point x ∈ Rn of a closed convex set K ⊂ Rn is called an extremal point
if for all a, b ∈ K\{x} the point x is not contained in the interval (a, b) = {τa+(1−τ)b | τ ∈
(0, 1)} ⊂ K. A norm ‖·‖ in Kn is a polytopic norm if its unit ball B = {x ∈ Rn | ‖x‖ ≤ 1}
has only a finite set of extremal points.

With every polytopic norm we associate the set C ⊂ Rn of extremal points of B. Given a
set of points C ⊂ Rn such that B = convC is

• balanced, i.e., x ∈ B implies −x ∈ B (hence C = −C),

• absorbing, i.e., for all x ∈ Rn there exists α > 0 with αx ∈ B (hence spanC = Rn),

• its set of extremal points is given by C,

then B is the unit ball of a polytopic norm which we denote by ‖·‖C . For a polytopic norm
‖·‖C the dual norm ‖·‖∗C is also polytopic, as ‖y‖∗C = maxx∈C{|〈x, y〉2|}. In particular, the
set C∗ of extremal points of the dual norm is constructed from normals to the faces of B.
Hence ‖·‖∗C = ‖·‖C∗ .
Now, for polytopic norms dissipativity needs only to be tested for pairs of extremal points.

Lemma 4.16. Suppose ‖·‖C is a polytopic norm with vertex set C. If for all dual pairs
(xi, yj) with xi ∈ C and yj ∈ C∗ the inequality y>j Axi < 0 holds, then A is strictly
dissipative.
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Proof. Suppose that (x, y1), (x, y2) are dual pairs of ‖·‖C with x ∈ C and y1, y2 ∈ C∗. Then
y0 = λy1 + (1− λ)y2 is also a dual vector of x and y>0 Ax = λy>1 Ax+ (1− λ)y>2 Ax < 0. By
induction over the set of dual vectors, the solutions of ẋ = Ax are strictly decaying for every
initial value in C. Now consider a face of {x ∈ Rn | ‖x‖ = 1} given by its normal vector
y ∈ C∗. Then all adjacent corners xi ∈ C form dual pairs (xi, y). Any convex combination
x =

∑
i αixi,

∑
i αi = 1 also defines a dual pair (x, y) which satisfies y>Ax < 0. As all

possible dual pairs have this structure, A is dissipative.

Especially, the norms ‖·‖1 and ‖·‖∞ are polytopic, so that the result of Lemma 4.16 is
also applicable to them. As a consequence from Theorem 2.74, for an exponentially stable
matrix A ∈ Kn×n one always finds a polytopic norm which is also a strict Liapunov norm.
Now every unit ball B of a norm can be approximated via a polytopic norm ball by choosing
a set of points C on the unit sphere ∂B which respects the above-motioned requirements.
This gives an inner approximation BC ⊂ B. The dual polytopic unit ball then becomes an
outer approximation of the original dual norm, B∗C ⊃ B∗.
Given a matrix A ∈ Rn×n one would like to conclude from the dissipativity of A with
respect to the polytopic norm that A is also dissipative with respect to the original norm,
if only the approximation of these two norms is good enough. This problem is still unsolved.

4.5 Notes and References

Explicit formulas for the matrix exponential of 2× 2 matrices can be found in Engel and
Nagel [38, Example I.2.7 (iii)]. However, computing a closed formula for the norm is not
carried out in that work.
Exponential bounds based on the Feller norm are to the best of the author’s knowledge
currently not available in the literature. The problem of determining a quadratic Liapunov
norm of minimal eccentricity has been addressed in Khusainov, Komarov and Yun’kova [82,
85] and Sarybekov [123]. Obolenskii [111] introduces a different condition number κ′(A) =

trace(A)

n n
√

det(A)
, and shows the existence and uniqueness of an optimal solution which respect to

this new condition number.
The visualization of 2×2 Liapunov cones has been used in [123] and Cohen and Lewkovicz
[27]. The construction of common quadratic Liapunov matrices is an active area of research,
see Ando [2] and Mason and Shorten [106].
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Chapter 5

Positive Systems Techniques

A dynamical system is said to be positive if the positive orthant Rn
+ = {x ∈ Rn |xi ≥ 0} is

invariant under its flow. This invariance is crucial for the property that the state space of
positive systems and of related system-theoretic concepts (like Liapunov functions) can be
restricted to the positive orthant. Positive systems are often encountered in applications
when positivity constraints are given, i.e., modelling populations and concentrations.

A linear system ẋ = Ax,A ∈ Rn×n, is positive if and only if the off-diagonal entries of A
are all nonnegative [40], such matrices are called Metzler matrices. The matrix exponential
of a Metzler matrix is a nonnegative matrix. One can expect that Metzler matrices exhibit
the worst transient behaviour of all stable matrices, as no cancellation of terms can occur
in the formation of the matrix exponential. In this chapter we will shed some more light
on the transient behaviour of Metzler matrices and their use to derive bounds for arbitrary
matrices. We first study the properties of Metzler matrices, and derive transient bounds
for linear positive systems. To this end, we introduce the concept of a Liapunov vector.
Each Liapunov vector induces a Liapunov norm. We then answer the question how to
optimally choose the Liapunov vector in order to minimize the eccentricity of the induced
Liapunov norm. The next section is devoted to the study of common Liapunov vectors for
a set of Metzler matrices. And finally, we show that the bounds for positive systems may
also be applied to general systems.

5.1 Properties of Metzler Matrices

In this chapter we will use the following notions. A matrix A ∈ Rn×n is said to be
nonnegative, A ≥ 0, if all of its entries are nonnegative. If all of its entries are positive, it
is called strictly positive. Sometimes we speak of positive matrices, which are nonnegative
and nonzero. The set of all nonnegative matrices is denoted by Rn×n

+ . For A,B ∈ Rn×n we
write A ≥ B if A − B ≥ 0. The modulus |A| ∈ Rn×n of A ∈ Kn×n is the componentwise
modulus, |A|ij = |aij|. Let us recall that ρ(A) = max{|λ| |λ ∈ σ(A)} denotes the spectral
radius while α(A) = max{Reλ |λ ∈ σ(A)} denotes the spectral abscissa. The spectral

107
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radius satisfies the following monotonicity property, see Horn and Johnson [71],

for all A ∈ Kn×n, B ∈ Rn×n
+ : |A| ≤ B ⇒ ρ(A) ≤ ρ(|A|) ≤ ρ(B). (5.1)

A matrix M ∈ Rn×n is called a Metzler matrix if there exists a scalar shift ν ∈ R such that
νI + M ≥ 0, i.e., all off-diagonal entries are nonnegative. As a consequence, results from
the Perron-Frobenius theory of positive matrices are applicable to Metzler matrices. The
set of all Metzler matrices is denoted by Rn×n

M .

Proposition 5.1 ([68]). Suppose that A ∈ Rn×n
M is a Metzler matrix. Then

1. α(A) is an eigenvalue of A and there exists a nonnegative eigenvector x ≥ 0, x 6= 0,
(called Perron vector) such that Ax = α(A)x. If A ≥ 0 then α(A) = ρ(A) ≥ 0.

2. If λ 6= α(A) is any other eigenvalue of A then Reλ < α(A).

3. Given β ∈ R there exists a nonzero vector x ≥ 0 such that Ax ≥ βx if and only if
α(A) ≥ β.

4. (tI − A)−1 exists and is nonnegative if and only if t > α(A). Moreover,

α(A) < t1 ≤ t2 =⇒ 0 ≤ (t2I − A)−1 ≤ (t2I − A)−1.

5. The matrix exponential eAt ∈ Rn×n
+ is nonnegative for all t ≥ 0.

A matrix A ∈ Rn×n is called resolvent positive if (tI − A)−1 exists and is nonnegative for
all t > α(A). The last item of Proposition 5.1 shows that every Metzler matrix is resolvent
positive. In fact, A ∈ Rn×n is a Metzler matrix if and only if it is resolvent positive [43].
If we additionally assume in Proposition 5.1 that A is an irreducible Metzler matrix then
we obtain some strict inequalities. Here A is called reducible, if there exists a permutation
matrix P such that A is transformed into upper block-triangular form, P−1AP = ( A1 A2

0 A3
).

If A is not reducible, then A is called irreducible.

Corollary 5.2. Suppose that A ∈ Rn×n
M is an irreducible Metzler matrix. Then

1. The Perron vector x > 0 is strictly positive.

2. (tI − A)−1 exists and is strictly positive if and only if t > α(A).

The relation of a positive system ẋ = Ax, A ∈ Rn×n
M on Rn to its restriction on the

positive orthant Rn
+ is of key importance for this chapter. Given two initial vectors x0

and x1 in Rn with x0 ≤ x1, the associated solutions of the differential equation ẋ = Ax,
A ∈ Rn×n

M , satisfy the monotonicity property x(t, x0) ≤ x(t, x1) for all t ≥ 0. In particular,
− |x0| ≤ x0 ≤ |x0| holds so that

x(t,− |x0|) ≤ x(t, x0) ≤ x(t, |x0|), t ≥ 0.

Thus |x(t, x0)| ≤ x(t, |x0|) for all x0 ∈ Rn, so that we can restrict the state space of positive
systems to the positive orthant Rn

+ when looking for transient estimates.
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5.2 Transient Bounds for Metzler Matrices

In this section we investigate how to obtain bounds for the transient effects of positive
systems. Let us first gather some ideas based on the following monotonicity property for
positive systems.

Lemma 5.3. If A ∈ Rn×n
M is a Metzler matrix and B ∈ Rn×n

+ is a nonnegative matrix then

eAt ≤ e(A+B)t for t ≥ 0.

Proof. As B is nonnegative and A is Metzler there exists a shift α ∈ R such that 0 ≤
A + αI ≤ A + αI + B. Then all powers also satisfy (A + αI)k ≤ (A + αI + B)k, k ∈ N,
hence it also holds for the matrix exponential that exp(A + αI)t ≤ exp(A + αI + B)t,
t ≥ 0. Dividing by eαt gives the required result.

Now, if ‖·‖ is a monotone vector norm on Rn then for Metzler matrices A and B with
A ≤ B, we have 0 ≤ eAt ≤ eBt for all t ≥ 0 and the induced operator norm satisfies∥∥eAt∥∥ ≤ ∥∥eBt∥∥, see Lemma 1.9. If we find an easily obtainable transient estimate for eBt

then this bound is also valid for eAt. Such a transient bound is relatively easy to obtain
for a Toeplitz matrix B = (bij) ∈ Rn×n which is constant along all diagonals, i.e., bij = bj−i
for i, j = 1, . . . , n. We will demonstrate this in the following example.

Example 5.4. Let B denote the n×n Ostrowski matrix associated with the eigenvalue λ ∈ R,

B =


λ 1 . . . 1

0
. . . . . .

...
...

. . . . . . 1
0 . . . 0 λ

 ∈ Rn×n.

As B is a triangular Toeplitz matrix, its matrix exponential T (t) = eBt, t ≥ 0 is also a
triangular Toeplitz matrix. Moreover, it is also nonnegative by Proposition 5.1. We now
need a cheap method of estimating ‖T (t)‖2. To this end, recall Lemma 3.58 from which

we conclude that ‖T (t)‖ = α
(

0 T (t)

T (t)> 0

)
. An estimate of this eigenvalue can be obtained

via Gershgorin’s Theorem 2.45, which implies ‖T (t)‖2 ≤ max{‖T (t)‖1 , ‖T (t)‖∞}. Since
T (t) is Toeplitz we have ‖T (t)‖1 = ‖T (t)‖∞ so that the spectral norm is bounded by
‖T (t)‖∞. Moreover, T is not only Toeplitz, but also nonnegative and upper triangular,
hence ‖T (t)‖∞ is the sum of the first row of T (t). An explicit calculation of the matrix
exponential T (t) = eBt shows that the entries in the first row are constructed from binomial
coefficients, and so the transient behaviour ofB is bounded by

∥∥eBt∥∥
2
≤ eλtp(t), t ≥ 0 where

the polynomial p is given by

p(t) =
n−1∑
k=0

(
n− 1

k

)
tk

k!
.

By Lemma 5.3 the transient behaviour of B is an upper bound for all triangular Metzler
matrices A with A ≤ B,

∥∥eAt∥∥
2
≤
∥∥eBt∥∥

2
≤ eλtp(t), t ≥ 0. �
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We now show that for Metzler matrices the determination of the transient behaviour with
respect to the operator norms

∥∥eAt∥∥
1

and
∥∥eAt∥∥∞ reduces to solving just one initial value

problem. Therefore the initial growth rates µ1 and µ∞ are easily obtained by simple matrix
computations.

Lemma 5.5. Given A ∈ Rn×n
M . Then

µ1(A) = max
j

(1>A)j, µ∞(A) = max
i

(A1)i,

where 1 = (1, . . . , 1)> ∈ Rn is a vector of ones. Moreover, for the matrix exponential we
have

∥∥eAt∥∥
1

=
∥∥1>eAt∥∥

1
and

∥∥eAt∥∥∞ =
∥∥eAt1∥∥∞.

Proof. Direct manipulation of the formulas presented in Theorem 2.41 yields

µ1(A) = max
j

(
Re ajj +

∑
i 6=j

|aij|

)
= max

j

(
ajj +

∑
i 6=j

aij

)
= max

j

∑
i

aij = max
j

(1>A)j,

and analogously µ∞(A) = maxi(A1)i. The matrix exponential eAt of A ∈ Rn×n
M is a

nonnegative matrix for t ≥ 0. Hence
∥∥eAt∥∥∞ =

∥∥eAt1∥∥∞ and
∥∥eAt∥∥

1
=
∥∥1>eAt∥∥

1
for t ≥ 0.

Choosing an initial value x0 = 1 we therefore obtain the∞-norm of the matrix exponential
by considering the norm of the solution x(t,1) = eAt1.

Let us now derive estimates on the transient growth based on Corollary 2.57. To take
advantage of the positivity of the system, all vector norms under consideration must be
monotone. Let us therefore introduce positive diagonal weights for the standard norms
‖·‖i , i ∈ {1, 2,∞}. If W = diag(wi) with w ∈ Rn, w > 0, is such a positive diagonal weight
and if ‖·‖ is a monotone vector norm then ‖W ·‖ is also a monotone vector norm, and by
Proposition 2.58 its eccentricity is given by ecc(‖W ·‖ , ‖·‖) = κ(W ) = maxi wi

mini wi
. To obtain a

transient estimate from Corollary 2.57, we need to know the initial growth rate associated
with a weighted norm. The formula has already been derived in Proposition 2.58.
Candidates for diagonal weights are given by Perron vectors.

Theorem 5.6. Suppose A ∈ Rn×n
M is a stable Metzler matrix with Perron vector x > 0 and

left Perron vector y > 0, Ax = α(A)x, y>A = α(A)y>. Then

∥∥eAt∥∥
1
≤ κ(y) eα(A)t,

∥∥eAt∥∥
2
≤
(
κ(( yi

xi
)i)
)1/2

eα(A)t,
∥∥eAt∥∥∞ ≤ κ(x) eα(A)t,

where κ(z)=(maxi zi)(mini zi)
−1 is the condition number of a strictly positive vector z > 0.

Proof. Given a Metzler matrix A where the left and right Perron vectors y and x are
strictly positive. Setting W = diag(yi) gives 1>WAW−1 = y>AW−1 = α(A)y> diag(y−1

i ) =
α(A)1>, hence by Proposition 2.58 the weighted initial growth rate satisfies µ1,W (A) =
µ1(WAW−1) = α(A). The condition number of W is given by κ(W ) = κ(diag(y)) = κ(y).
Hence Corollary 2.57 gives the estimate

∥∥eAt∥∥
1
≤ κ(y)eα(A)t, t ≥ 0. Analogously, W−1 =
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diag(xi) gives µ∞,W (A) = α(A) with condition number κ((x−1
i )i) = κ(x). For the spectral

norm, set D = diag( yi
xi

). Then DA + A>D − 2α(A)D is a symmetric Metzler matrix. We
claim that it has the same Perron vector x as A. This may be seen by

(DA+ A>D − 2α(A)D)x = (α(A)I + A> − 2α(A)I)Dx = (A> − α(A)I)y = 0.

The Perron vector is an eigenvector associated with the spectral abscissa, hence DA +
A>D − 2α(A)D is negative semidefinite. Therefore we have the following inequality with
respect to the Hermitian order relation,

DA+ A>D � 2α(A)D.

Corollary 3.32 and Theorem 3.35 then give the transient estimate for the spectral case.

The choice of Perron vectors as weights provides an estimate for the optimal decay rate
α(A). This approach is impossible if the Perron vectors contain 0 entries. But weights
which yield a transient estimate can be chosen from a much larger set.

Proposition 5.7. Given a Metzler matrix A ∈ Rn×n
M .

(i) If A is exponentially stable then for every vector b ∈ Rn
+ there exists a vector w ∈ Rn

+

such that Aw = −b.

(ii) If there exists w > 0 with Aw ≤ 0 (Aw < 0) then A is (exponentially) stable.

(iii) If the vector w satisfies the conditions of (ii) then the norm ‖Wx‖∞ with W−1 =
diag(w) is a Liapunov norm for ẋ = Ax. Its eccentricity is given by κ(w), the

corresponding initial growth rate by µ∞,W (A) = maxj
(Aw)j
wj

.

Proof. Let us assume that A is exponentially stable. Then Proposition 5.1 shows that
−A−1 ∈ Rn×n

+ . Hence w = −A−1b is a nonnegative vector, which shows (i). If w > 0 is a
strictly positive vector with b = −Aw ≥ 0 then W = diag(w−1

i ) gives WAW−11 = WAw =
−Wb ≤ 0. By Proposition 2.58 and Lemma 5.5 the weighted initial growth rate satisfies

µ∞,W (A) = µ∞(WAW−1) = max
j

(WAW−11)j = max
j

(diag(w−1
i )Aw)j

= max
j

(
− diag(w−1

i )b
)
j

= −min
j

bj
wj
≤ 0.

Hence (iii) is proved. Now (iii) implies the (exponential) stability in (ii), as the initial
growth rate is non-positive for b ≥ 0, and it is negative for b > 0.

A dual result of Proposition 5.7 holds for ‖·‖1. We list it here for completeness.

Corollary 5.8. Given a Metzler matrix A ∈ Rn×n
M .

(i) If A is exponentially stable then there exists for every b ∈ Rn
+ a vector w ∈ Rn

+ such
that w>A = −b>.
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(ii) If there exists w > 0 with w>A ≤ 0 (w>A < 0) then A is (exponentially) stable.

(iii) If the vector w satisfies the conditions of (ii) then norm ‖Wx‖1 with W = diag(w)
is a Liapunov norm for ẋ = Ax. Its eccentricity is given by κ(w), the corresponding

initial growth rate by µ1,W (A) = maxj
(A>w)j
wj

.

Proof. We only show (iii) as statements (i) and (ii) follow analogously to the proofs in
Proposition 5.7. As w > 0 is a strictly positive vector, W is invertible and 1>WAW−1 =
w>AW−1 = −bW−1 ≤ 0. Hence the initial growth rate with respect to ‖W ·‖1 is given by

µ1,W (A) = µ1(WAW−1) = max
i

(1>WAW−1)i = max
i

(w>AW−1)i

= max
i

(−b>W−1)i = −min
i

bi
wi
.

Thus ‖W ·‖1 is a Liapunov norm for A if b ≥ 0, and a strict Liapunov norm for b > 0.

Note that we have the following simple formulas if x ∈ Rn
+, because for positive x and and

positive diagonal weight W = diag(wi) we have∥∥W−1x
∥∥
∞ = max

i

xi
wi
, ‖Wx‖1 =

∑
i

(wixi).

Proposition 5.7 and Corollary 5.8 motivate the following definition.

Definition 5.9. For a given Metzler matrix A ∈ Rn×n
M the strictly positive vector w ∈ Rn

+

is called a right (or left) Liapunov vector of A if Aw ≤ 0 or w>A ≤ 0, respectively. If the
strict inequality holds, Aw < 0 or w>A < 0, then w is called a strict Liapunov vector.

If there exists a left Liapunov vector v of a given matrix A ∈ Rn×n
M then µν(A) ≤ 0 for the

vector norm ν(x) = ‖diag(w)x‖1 . If v is a strict Liapunov vector of A then A generates a
uniform contraction semigroup.

Lemma 5.10. Suppose that A is an invertible Metzler matrix. There exists z ∈ Rn
+ with

A−1z < 0 if and only there exists a right Liapunov vector of A.

Proof. This becomes obvious by considering the right Liapunov vector w=−A−1z of A.

For the spectral norm we obtain the following result which extends Theorem 5.6.

Proposition 5.11. Suppose that A is a Metzler matrix. For all strictly positive vectors
v, w > 0 such that A>v ≤ 0 and Aw ≤ 0 the diagonal matrix P = diag(vi/wi) is a quadratic
Liapunov matrix for A which satisfies PA+ A>P � 0.

For the proof of this proposition we need the following lemma.

Lemma 5.12. Suppose that R ∈ Rn×n
M is a symmetric Metzler matrix. If there exists a

right Liapunov vector v > 0 of R then R is negative semidefinite, R � 0.
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Proof. If there exists a right Liapunov vector v > 0 of R then R is a stable matrix by
Proposition 5.7 (ii). As R is symmetric, it is negative semidefinite.

Proof (of Proposition 5.11). First note that for P = diag(vi/wi) the matrix R = PA+A>P
is a symmetric Metzler matrix, and

Rw = (PA+ A>P )w = PAw + A>v ≤ 0.

Hence w satisfies the condition of Lemma 5.12 for R = PA + A>P . Therefore R � 0 and
P is a quadratic Liapunov matrix for A.

In [40] it has been shown that

Proposition 5.13. A Metzler matrix A ∈ Rn×n
M is stable if and only if there exists a

diagonal quadratic Liapunov function, P = diag(pi) � 0 with PA+ A>P � 0.

Proof. The existence of a diagonal quadratic Liapunov matrix P follows from the existence
of left and right Liapunov vectors by Proposition 5.7 and Corollary 5.8. Proposition 5.11
shows how to construct the matrix P from these vectors. The converse implication follows
from Liapunov’s direct stability theorem.

5.3 Optimal Liapunov Vectors

The last section showed that there is a broad range of Liapunov vectors available for positive
systems. We will now show how to obtain a Liapunov vector for which the condition number
is minimal. This is of interest for bounding the norm of the matrix exponential. To this
end, note that if w ∈ Rn

+ is a Liapunov vector of a Metzler matrix A with Aw ≤ 0 then its
condition number κ(w) = maxiwi/miniwi gives an estimate of the transient growth via
Corollary 2.57, ∥∥eAt∥∥∞ ≤ κ(w)eµ∞,w(A)t ≤ κ(w),

where µ∞,w is the initial growth rate with respect to the vector norm ‖diag(wi)
−1·‖∞. This

initial growth rate then satisfies µ∞,w(A) ≤ 0.
Varying the weights w we try to minimize the condition number such that we obtain an
optimal estimate of the transient bound. For this, we pose the following optimization
problem.

Problem 5.14. For a given exponentially stable Metzler matrix A ∈ Rn×n
M find a vector

x̂ ∈ Rn
+ which is a minimizing argument of

γ̂ = min
x≥0,x 6=0

[
max
i

(−A−1x)i

] [
min
i

(−A−1x)i

]−1

. (5.2)

As (5.2) is invariant under multiplication with positive scalars, x in (5.2) may be chosen
from a compact basis of the cone Rn

+. If x̂ is a positive vector which minimizes (5.2) then
the optimal weight ŵ = −A−1x̂ is a Liapunov vector for A, and the optimal value γ̂ is
the condition number κ(ŵ) of this Liapunov vector. Let us now characterize the optimal
values of Problem 5.14.
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Proposition 5.15. Suppose that A ∈ Rn×n
M is an exponentially stable Metzler matrix. For

a given weight w ∈ Rn
+ with miniwi = 1 we define the index sets

J(w) = {i ∈ {1, . . . , n} |wi = 1} , H(w) = {h ∈ {1, . . . , n} | (Aw)h = 0} . (5.3)

The strictly positive vector w is an optimal weight of Problem 5.14 satisfying γ̂ = maxiwi if
and only if H(w) ∪ J(w) = {1, . . . , n}. Moreover, such an optimal weight w always exists.
It is uniquely determined if J(w) = H(w)C.

Proof. Let us first show that the feasible set of Problem 5.14 is non-empty. By Propo-
sition 5.7 there exists a right Liapunov vector w0 of A. Hence the set

{
x ∈ Rn

+

∣∣x 6= 0
}

contains the point x0 = −Aw0 and therefore the problem

γ̂ = min
Aw≤0,w>0

maxiwi
miniwi

= min
x∈Rn+,x 6=0

maxi(−A−1x)i
mini(−A−1x)i

(5.4)

is feasible. If A is diagonally dominant then w = 1 satisfies Problem 5.14 with γ̂ = 1,
J(w) = {1, . . . , n}. Hence J(w) = {1, . . . , n} so that H(w) ∪ J(w) = {1, . . . , n}. Let us
now suppose that w 6= 1 is a positive vector with miniwi = 1 which corresponds to the
optimal solution γ̂ = maxwi of Problem 5.14. Then w is also an optimal feasible solution
of the linear programming (LP) problem,

minimize wi0 subject to wi ≥ 1, (Aw)i ≤ 0, i = 1, . . . , n,

for some suitable index i0. Writing y = w− 1 and introducing slack variables z we rewrite
this linear programming problem into standard form,

minimize [e>i0 0]

[
y
z

]
+ 1 subject to

[
y
z

]
≥ 0,

[
A I

] [y
z

]
= −A1.

If the solution
[
y
z

]
is optimal then it satisfies the Kuhn-Tucker conditions. For LP problems

these conditions are called complementary slackness and provide a necessary and sufficient
condition for optimal solutions, see [102, Section 4.4]. In this case, the optimal positive
vectors y and z are orthogonal, that is, for each i ∈ {1, . . . , n} either yi ≥ 0 and zi = 0 or
yi = 0 and zi > 0. In terms of w this means that w is an optimal solution if and only if
H(w) ∪ J(w) = {1, . . . , n}.
Let us now show that the optimal solution w of (5.4) is uniquely determined under the
additional condition that J(w) = H(w)C. To see this, let us assume that w1 and w2 are two
different optimal weights with miniw

j
i = 1, maxiw

j = γ̂, and J(wj) = H(wj)C, j = 1, 2.
and associated index sets Jj If J(w1) 6= J(w2) then w′ = 1

2
(w1 + w2) satisfies Aw′ ≤ 0

and w′ ≥ 1. Especially, (Aw′)i = 0 for i ∈ H(w′) = H(w1) ∩ H(w2) and w′i = 1 for
J(w′) = J(w1) ∩ J(w2), whence H(w′) ∪ J(w′) 6= {1, . . . , n}. Thus w′ is not optimal and
there exists a feasible search direction which decreases the condition number of w′. But as
κ(w′) ≤ γ̂, this contradicts the optimality of γ̂. Therefore J1 = J2 has to hold. From (5.3)
and J = HC we get n linear independent equations which are simultaneously satisfied by
w1 and w2. But this implies w1 = w2, i.e., the optimal weight is unique.



5.3. OPTIMAL LIAPUNOV VECTORS 115

The following algorithm solves Problem 5.14.

Algorithm 5.16. Let A ∈ Rn×n
M be an exponentially stable Metzler matrix. Let S = −A−1

where S(J,J) ∈ Rm×m
+ denotes the submatrix obtained from S by keeping columns and rows

with indices in the ordered set J = {j1, . . . , jm | j1 < · · · < jm} and J(K) = {jk ∈ J | k ∈ K}
denotes the ordered index set obtained from J by keeping the elements indexed by K.
Analogously, the vector xJ consists of the elements of x indexed by J . Then the following
algorithm calculates an optimal weight w = Sx for Problem 5.14 when S = −A−1.

Init Set J = {1, . . . , n}.
Loop Solve S(J,J)y = 1 for y.

If y ≥ 0 then set xJ = y, xi 6∈J = 0, and return w = Sx.
Otherwise set K = {i | yi < 0} and J = J(K).

The algorithm terminates in a finite number of steps, namely if J = {j} then S(J,J) = sjj >
0 as S ∈ Rn×n

+ and x = s−1
jj ej. The first iteration of the algorithm is skipped by starting

with the index set J = {i ∈ {1, . . . , n} | (A1)i < 0} since in the first step yi = (−A1)i.
Algorithm 5.16 produces an optimal value for Problem 5.14.

Corollary 5.17. The weight ŵ = Sx̂ calculated by Algorithm 5.16 is an optimal solution
of Problem 5.14 with γ̂ = κ(ŵ).

Proof. By construction a weight ŵ = Sx̂ computed by Algorithm 5.16 satisfies (Aŵ)i =
−x̂i = 0 for i 6∈ J = {i | ŵi = 1}. Hence it is an optimal weight by Proposition 5.15 and
the optimal condition number is given by γ̂ = κ(ŵ) = maxi ŵi.

Example 5.18. Consider the system ẋ = Ax, A = ( −5 36
2 −20 ). An optimal right Liapunov

vector is given by wr =
(

7.2
1

)
and an optimal left Liapunov vector is given by w` =

(
1

1.8

)
.

Figure 5.1 shows the boxes ‖x‖∞ = 1 and ‖x‖1 = 2 in R2
+ shaded in gray. Some trajectories

show that these are not invariant under the flow of ẋ = Ax. Note that we only have to
check trajectories with initial values in the vertices of these boxes by Lemma 5.5. Now, the
boxes induced by the optimal weights are both invariant under the flow. The trajectories
enter the optimal boxes tangentially, so that in both cases the associated weighted initial
growth is 0.
For the 1-norm we see that the transient amplification M0 = 1.5 is bounded by the eccen-
tricity of the norm which is the condition number of the left Liapunov vector, γ̂ = 1.8.
In contrast, the estimate provided by Theorem 5.6 gives

∥∥eAt∥∥
1
≤ 1.91e−1.18t. For the ∞-

norm, the transient amplification is M0 = 2 which is bounded by the condition number of
the right Liapunov vector, κ = 7.2. Based on the right Perron vector, Theorem 5.6 gives∥∥eAt∥∥∞ ≤ 9.41e−1.18t. �

Remark 5.19. Problem 5.14 has the following geometric interpretation. If γ̂ is defined
by (5.2) then log γ̂ is the distance of the polyhedron {x ∈ Rn|Ax ≤ 0} ⊂ Rn

+ to the
diagonal R1 is if this distance is measured with respect to Hilbert’s projective metric,

d(x, y) = − log
(

min
i

xi
yi

min
i

yi
xi

)
, x, y ∈ R̊n

+. (5.5)
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Optimally weighted ∞-norm ball

Optimally weighted 1-norm ball

Figure 5.1: Liapunov norms induced by optimal weights.

Algorithm 5.16 selects those faces of the polyhedron that have the shortest distance to the
diagonal R1. Passing to a subset of indices is a projection on a lower dimensional subface
for which the procedure of the algorithm is repeated.

The projective metric (5.5) is also related to the transient behaviour of the spectral norm.

Theorem 5.20. Suppose that A ∈ Rn×n
M is an exponentially stable Metzler matrix. Con-

sider the sets

W` = {z ∈ Rn
+ | ‖z‖2 = 1, A>z < 0}, Wr = {z ∈ Rn

+ | ‖z‖2 = 1, Az < 0}

of normed left and right Liapunov vectors. The minimal projective distance of the points
in these sets is given by

d(W`,Wr) = inf

{
− log

(
min
i

xi
yi
·min

i

yi
xi

) ∣∣∣x ∈W`, y ∈Wr

}
.

This quantity provides an upper bound to the spectral transient excursion through∥∥eAt∥∥
2
≤ e

1/2 d(W`,Wr) for all t ≥ 0. (5.6)

Proof. If x ∈ W` and y ∈ Wr then the matrix P = diag(xi/yi)i is a quadratic Liapunov
matrix for A, see Proposition 5.11. Hence Theorem 3.35 implies that

∥∥eAt∥∥
2
≤ inf

x∈W`,y∈Wr

√
κ
(

diag(xi
yi

)i

)
, t ≥ 0.

The condition number under the square root is given by

κ(diag(xi
yi

)i) = max
i

(xi
yi

)i/min
i

(xi
yi

)i =
(

min
i

( yi
xi

)i ·min
i

(xi
yi

)i

)−1

, (5.7)

so that the infimum of (5.7) over all Liapunov vectors is given by ed(W`,Wr). Taking square
roots gives (5.6).
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The projective distance d(W`,Wr) gives the minimal condition number of a diagonal
quadratic Liapunov matrix. These diagonal matrices are the only ones for which the as-
sociated elliptic norms are monotone, as for a monotone norm the induced operator norm
has to satisfy ‖W−1DW‖2 = ‖D‖2 = maxi |di| for all diagonal matrices D = diag(di), see
Lemma 1.9, which is only possible if W itself is diagonal.

We do not provide an algorithm to compute the distance d(W`,Wr) but let us consider
the following special case.

Corollary 5.21. If W` ∩Wr 6= ∅ then A generates a spectral contraction.

Proof. Clearly, if x ∈ W` ∩Wr then P = I = diag(xi/xi) is a quadratic Liapunov matrix
for A. Hence A is already dissipative with respect to the spectral norm.

If the cones generated by the positive linear combinations of the columns of A and A>

have non-empty intersection then there exist strictly positive vectors x, y, z such that x =
Ay = A>z, or equivalently, as A is invertible, there exists z > 0 with A−1A>z > 0. In the
next section we will generalize this fact about a common Liapunov vector when we replace
A and A> by A1 and A2 and look for a common Liapunov function.

5.4 Common Liapunov Vectors

In this section we derive necessary and sufficient conditions for the existence of common
Liapunov vectors for a set of positive systems.

Theorem 5.22. Given a set of square matrices Ai ∈ Rn×n, i ∈ {1, . . . , k}, there exists a
vector w ∈ Rn

+ with w>Ai < 0 for all i ∈ {1, . . . , k} if and only if [A1 . . . Ak]y 6≥ 0 holds
for all vectors y ∈ Rnk

+ , y 6= 0.

Proof. The proof follows directly from a separation principle for two convex cones, see
[133, Theorem 3.3.4]. Consider the polytopic convex cone, cone(A) = {Ax |x ≥ 0} ⊂ Rnk,
generated from the columns of

A =

A
>
1
...
A>k

 ,
and the cone given by the (strictly) negative orthant R̊nk

− = {y ∈ Rnk | y < 0}. Then either

cone(A) ∩ R̊nk
− 6= ∅ or there exists a separating hyperplane induced by a vector y ∈ Rnk,

such that

∀z ∈ cone(A) : y>z ≥ 0, ∀b ∈ R̊nk
− : y>b < 0. (5.8)

Now, if cone(A)∩ R̊nk
− is non-empty then there exists w ∈ Rn

+ such that Aw ∈ R̊nk
− . Hence

w>Ai < 0 for all i = 1, . . . , k. On the other hand, if y ∈ Rnk
+ satisfies [A1 . . . Ak]y ≥ 0 then

(5.8) holds, hence the cones are separated by a hyperplane induced by y ∈ Rnk
+ , y 6= 0.
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Here we do not assume that the matrices are of Metzler type. To turn the following results
into stability characterizations, the matrices must be Metzler to ensure that the strictly
positive vector w > 0 with A>w < 0 give rise to a strict Liapunov function.
For sets of Metzler matrices we introduce the following notion.

Definition 5.23. Let A ⊂ Rn×n
M be a set of Metzler matrices. The strictly positive vector

w > 0 is called a common (right) Liapunov vector for A if for all A ∈ A, Aw ≤ 0 holds.
The terms common left Liapunov vector, common strict Liapunov vector are defined in
accordance with Definition 5.9.

The results of Proposition 5.7 and of Corollary 5.8 also hold for common Liapunov vectors.
Hence these common Liapunov vectors define joint Liapunov norms for sets of Metzler
matrices, see Subsection 2.4.2. Let us now consider two Metzler matrices A1, A2 ∈ Rn×n.

Proposition 5.24. Given A1, A2 ∈ Rn×n
M where A1 is exponentially stable, then there exists

a common strict left Liapunov vector for the pair (A1, A2) if and only if there exists z > 0
with z>A−1

1 A2 > 0.

Proof. To prove the assertion, note that if x ∈ Rn
+ is a common strict left Liapunov vector

of (A1, A2) then
x>[A1 A2] = x>A1[I A−1

1 A2] < 0. (5.9)

Now, setting z = −A>1 x we obtain from (5.9) the inequalities z > 0 and z>A−1
1 A2 > 0. On

the other hand, if the positive vector z satisfies z>A−1
1 A2 > 0 then x = −A−>1 z defines a

common Liapunov vector.

This proposition does not cover the case when there only exists a weak common Liapunov
vector as the following example shows.

Example 5.25. Consider the matrices A1 = ( −10 5
5 −3 ) and A2 = ( −10 4

6 −3 ). Then for w =

(3, 5)> we have w>A1 = (−5, 0) and w>A2 = (0,−3). Now A−1
1 A2 = ( 0 3/5

−2 2 ) has a column
of non-positive values, hence the condition of Proposition 5.24 cannot be satisfied by any
positive vector. �

Arguing as is the example, we can draw the following conclusion.

Corollary 5.26. Let A1, A2 ∈ Rn×n
M where A1 is exponentially stable. If A−1

1 A2 contains a
column of negative entries then there does not exist a common strict left Liapunov vector.

Remark 5.27. For an arbitrary matrix A ∈ Rn×n, the existence of a strictly positive vector
w > 0 with Aw ≤ 0 does not guarantee its stability. We can only conclude that the
trajectories restricted to the positive orthant are bounded. This implies that there does
not exists a positive eigenvector of A which is associated with an eigenvalue of positive
real part. Figure 5.2 shows some trajectories of A = ( 1 −1

−1 −1 ) for which v =
(

1
2

)
satisfies

Av < 0. Here the trajectories enter the triangle depicted in the figure through the segment
{x > 0 | v>x = const}. Unfortunately, this triangle is not invariant under the flow of A.
Now, we introduce the Metzler matrix A1 = ( −3 0

1 −1 ) for which v is a left Liapunov vector.
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Figure 5.2: Trajectories of a non-positive system with a Liapunov vector.

For all α ∈ R the matrix A+ αA1, α ≥ 0 is not of Metzler type. However, for α > α∗ = 1
the matrix A + αA1 is exponentially stable. Therefore we can think of A1 as a Metzler
direction towards stability. A related result for quadratic Liapunov matrices and rank-one
update matrices is presented in Shorten et al. [125].
Proposition 5.24 gives a stability criterion only if the matrices A1, A2 are both of Metzler
type. In this case, the Liapunov vector w defines a linear Liapunov function given by
x 7→ ‖diag(w)x‖1.

The existence of a common Liapunov vector allows us to conclude that a whole set of
matrices consists of exponentially stable matrices.

Proposition 5.28. Suppose that A1, A2 ∈ Rn×n
M are Metzler matrices and that there exists

z ∈ Rn
+ which satisfies z>A−1

1 A2 > 0 and z>A−1
1 < 0. Then the matrix interval

[[A1, A2]] := {τA1 + (1− τ)A2 | τ ∈ [0, 1]} ⊂ Rn×n
M (5.10)

consists of exponentially stable matrices which all satisfy the same transient bound,

A ∈ [[A1, A2]] :
∥∥eAt∥∥

1
≤ κ(A−>1 z), t ≥ 0.

Proof. The vector w = −A−>1 z is a common strict left Liapunov vector of A1 and A2, i.e.,
w>Ai < 0, i = 1, 2. But then w is also a Liapunov vector for all convex combinations of
A1 and A2. Hence w>A < 0 for all A ∈ [[A1, A2]]. By Corollaries 2.57 and 5.8 all matrices
A from this matrix interval satisfy the growth estimate

∥∥eAt∥∥
1
≤ κ(w)eµ1,w(A)t ≤ κ(w)

for t ≥ 0 as w induces a Liapunov norm for the whole matrix interval, µ1,w(A) ≤ 0,
A ∈ [[A1, A2]].

We can generalize Proposition 5.24 to multiple matrices. If there is no common Liapunov
vector for a set of matrices then there is clearly no Liapunov vector for a larger set.
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Corollary 5.29. There exists a common strict left Liapunov vector for the Metzler matrices
A1, A2, . . . , Ak where A1 is exponentially stable, if and only if there exists z ∈ Rn

+ such that
for all ` = 1, . . . , k : z>A−1

1 A` > 0.

Proof. The condition of the corollary can be rewritten as z>[I, A−1
1 A2, . . . , A

−1
1 Ak] > 0.

Hence z is strictly positive. As A1 is an exponentially stable Metzler matrix, A−1
1 ≤ 0.

Setting y = −A−>1 z > 0 we obtain y>[A1, . . . Ak] < 0, hence y is a Liapunov vector for
all matrices A1, . . . , Ak. Conversely, if y > 0 is a common strict left Liapunov vector for
A1, . . . , Ak, we set z = −A1y > 0 and obtain the required condition z>A−1

1 A` = −y>A` > 0
for all ` = 1, . . . , k.

Let us now consider the relation between common quadratic and linear Liapunov functions.
By Proposition 5.13, we only have to consider diagonal quadratic Liapunov matrices. Com-
bining Proposition 5.11 and Proposition 5.24 we obtain the following result which can be
viewed as a corollary to Theorem 2.64.

Corollary 5.30. Suppose that A1, A2 ∈ Rn×n
M are Metzler matrices and that A1 is expo-

nentially stable. If there exist positive vectors z1, z2 > 0 which satisfy z>1 A
−1
1 A2 < 0 and

A2A
−1
1 z2 < 0 then there exists a diagonal common quadratic Liapunov matrix for A1 and

A2 given by P = diag(w1/w2) where w1 = −A>1 z1 > 0 and w2 = −A−1
1 z2 > 0.

Example 5.31. There are pairs of Metzler matrices which do not have a common linear
Liapunov function, but a quadratic one. Consider A1 of Example 5.25 and A3 = ( −10 2

8 −3 ).
Then Corollary 5.26 shows that there does not exist a left Liapunov vector becauseA−1

1 A3 =
( −2 1.8
−6 4 ) has a column of negative entries. However, P = ( 5 0

0 3 ) is a positive definite matrix
with PAi + A>i P ≺ 0 for i = 1, 3. �

Now, let us study the converse question, if the existence of a Liapunov vector implies the
existence of a common diagonal quadratic Liapunov matrix. Unfortunately, this is not true
as the following example shows.

Example 5.32. Let us consider the matrices A1 = ( −5 39
0 −5 ) and A2 = ( −1 6

2 −20 ). These two
Metzler matrices have a common right Liapunov vector

(
8
1

)
, but no common left Liapunov

vector as A−1
1 A2 has a column of negative entries, see Corollary 5.26. Hence we cannot

construct a common diagonal quadratic Liapunov matrix based upon Proposition 5.11.
Using the visual method developed in Subsection 4.3.1 we see that the Liapunov cones
associated with A1 and A2 contain a common subset {( 1+α β

β 1−α ) |α2+β2 ≤ 1}, for example,
an element is given by α = −0.95 and β = −0.2, but there is no element in this intersection
which corresponds to β = 0. Hence there exists no common diagonal quadratic Liapunov
matrix for the matrices A1 and A2. �

One can also ask for the existence of common full-block quadratic Liapunov matrices, but
– as already noted – weighting the spectral norm with such non-diagonal matrices destroys
the monotonicity of the norm which is undesirable.
For non-autonomous positive linear systems, the following result is a direct application of
Theorem 2.70 and Proposition 5.7.
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Theorem 5.33. Consider the time-dependent linear differential equation ẋ(t) = A(t)x(t)
where A : R+ → Rn×n

M is locally integrable. Given a strictly positive vector w ∈ Rn
+ we set

b(t) = −A(t)w. Then the solutions x(t, t0, x0) satisfy the following growth bound,

‖x(t, t0, x0)‖∞ ≤ κ(w)e
−
R t
t0

mini

„
b(s)
w

«
ds
‖x0‖∞ , t ≥ t0.

If b(t) is nonnegative almost everywhere, the vector w is a common Liapunov vector and

‖x(t, t0, x0)‖∞ ≤ κ(w) ‖x0‖∞ , t ≥ t0.

5.5 The Metzler Part of a Matrix

We now want to apply the results obtained for Metzler matrices to arbitrary matrices. Let
us associate a Metzler matrix with every matrix A = (aij) ∈ Kn×n, called the Metzler part
of A which is given by

M(A) = Re Diag(A) + |A−Diag(A)| = (mij), mij =

{
Re aij, i = j,

|aij| , i 6= j,
(5.11)

where Diag(A) = diag(a11, · · · , ann). The following simple lemma is of basic importance.

Lemma 5.34. Let A ∈ Kn×n, then

(i) The function r 7→ ρ(A+ rIn)− r is monotonically decreasing on R+ and

α(A) = lim
r→∞

(ρ(A+ rIn)− r). (5.12)

(ii) The map r 7→Mr(A) := |A+ rIn| − rIn is componentwise decreasing on R+ and

M(A) = lim
r→∞
|A+ rIn| − rIn. (5.13)

Proof. (i). For every λ ∈ C we have

0 ≤ r1 ≤ r2 ⇒ |λ+ r2| − r2 = |λ+ r1 + (r2 − r1)| − r2 ≤ |λ+ r1| − r1. (5.14)

Using |r + λ| =
(
(r + λ)(r + λ̄)

)1/2
and
√

1 + 2z = 1 + z +O(z2) the limit is given by

lim
r→∞

(|λ+ r| − r) = lim
r→∞

(
r

√
1 + 2Reλ

r
+ |λ|2

r2

)
− r = Reλ, λ ∈ C. (5.15)

Now by definition ρ(A + rIn) − r = max{|λ + r| − r |λ ∈ σ(A)} and so the monotonicity
property of r 7→ ρ(A+rIn)−r follows directly from (5.14), while (5.12) follows from (5.15).
(ii). Applying (5.14) and (5.15) to the diagonal entries of Mr(A) := |A+ rIn|− rIn we get
(|aii + r| − r)→ Re aii monotonically as r →∞ whereas the off-diagonal entries |aij|, i 6= j,
of Mr(A) remain constant. Hence we obtain (5.13).
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As a consequence we obtain the following monotonicity property for the spectral abscissa
which is a counterpart to (5.1).

∀A ∈ Kn×n, B ∈ Rn×n
M : M(A) ≤ B ⇒ α(A) ≤ α(M(A)) ≤ α(B). (5.16)

To this end, note that the spectral abscissa depends continuously on the matrix. By the
previous lemma we have α(A) = limr→∞ (ρ(A+ rIn)− r) and α(M(A)) = limr→∞ α(|A+
rIn| − rIn). For all r > 0, equation (5.1) shows

ρ(A+ rIn)− r ≤ ρ(|A+ rIn|)− r.

As |A+ rIn| ≥ 0, the spectral radius equals the spectral abscissa, ρ(|A+ rIn|) − r =
α(|A+ rIn|)−r = α(|A+ rIn|−rIn). Passing to the limit r →∞ proves α(A) ≤ α(M(A)).
The second inequality of (5.16) follows directly from (5.1) since we have for any Metzler
matrix B ∈ Rn×n

M

α(B) = α(B + rIn)− r = ρ(B + rIn)− r, r ∈ {t ≥ 0 |B + tIn ≥ 0}. (5.17)

If A ∈ Rn×n is real then it is easy to see that ‖A‖1 = ‖M(A)‖1 and ‖A‖∞ = ‖M(A)‖∞,
moreover the Gershgorin disks of A and M(A) coincide, G(A) = G(M(A)), see Theo-
rem 2.45. For a matrix A = (aij) ∈ Cn×n the radii of the Gershgorin disks Ri =

∑
j 6=i |aij|

coincide with the radii of M(A), while the centers of the disks may differ only by a
purely imaginary number. Corollary 2.48 shows that µ∞(A) = maxs∈G(A) Re s such that
µ∞(A) = µ∞(M(A)). If G(A) ⊂ C− then the matrix A is strictly diagonally dominant and
its Metzler part M(A) is also exponentially stable. We therefore have shown the following
result which shows that the definition of M(A) is reasonable.

Proposition 5.35. Let A be a matrix in Kn×n. Then its initial growth with respect to
∞-norm satisfies µ∞(A) < 0 if and only if the Gershgorin set of A is contained in the left
half-plane, G(A) ⊂ C−.

In other words, if the Metzler part of A is strictly diagonally dominant, then A itself is
already exponentially stable. The next results further exploit this idea. We consider the
initial growth rates associated with monotone vector norms.

Lemma 5.36. Given A ∈ Kn×n and a monotone vector norm ‖·‖ on Kn.Then the associ-
ated initial growth rate satisfies µ(A) ≤ µ(M(A)).

Proof. Setting r = t−1 in (2.25) and using Lemma 1.9 gives

µ(A) = lim
r→∞

(‖A+ rI‖ − r) ≤ lim
r→∞

(‖ |A+ rI| ‖ − r) = lim
r→∞

(‖ |A+ rI| − rI + rI‖ − r)

= lim
r→∞

(‖M(A) + rI‖ − r) = µ(M(A)).

Hence the initial growth rate of A is bounded from above by the initial growth rate of the
Metzler part M(A).
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Note that all p-norms are monotone. Therefore µ2(A) ≤ µ2(M(A)). Moreover, for p = 1,∞
we even have equality,

µ1(A) = µ1(M(A)), µ∞(A) = µ∞(M(A)), A ∈ Kn×n,

which can be directly verified using the formulas of Theorem 2.41.
With every diagonally dominant matrix A we can associate the following diagonally dom-
inant sets.

Proposition 5.37. Given A ∈ Kn×n. If G(A) ⊂ C− then the sets

A1 :=
{
B ∈ Kn×n ∣∣ there exists a permutation π with bπ(i)π(i) = aii andRπ(i)(B) ≤ Ri(A)

}
,

A2 :=
{
B ∈ Kn×n ∣∣M(B) ≤M(A)

}
consist of exponentially stable matrices.

Proof. For every B ∈ A1 the associated Gershgorin set satisfies G(B) ⊂ G(A), whence
by assumption G(B) ⊂ C−. Theorem 2.45 now implies that B is exponentially stable. If
B = (bij) ∈ A2 then Re bii ≤ Re aii < 0 and Ri(B

′) ≤ Ri(A) for i = 1, . . . , n. Hence
µ∞(B′) ≤ µ∞(A) < 0 which shows the exponential stability of B.

5.6 Transient Bounds for General Matrices

In this section we will first study the relation between the matrix exponential of an arbitrary
matrix A and the matrix exponential of its Metzler part M(A). We have already seen that
the initial growth rates of A and M(A) coincide for the 1- and ∞-norms. The rest of this
section deals with perturbation results for arbitrary matrices based upon the Metzler part.
The matrix exponential of the Metzler part provides an upper bound for the matrix expo-
nential of the original matrix A. This fact is established in the following theorem.

Theorem 5.38. For every A ∈ Kn×n and all t ≥ 0,
∣∣eAt∣∣ ≤ eM(A)t holds elementwise.

Moreover, (
eM(A)t

)
ij

= inf
r∈R

(
e(|A+rI|−rI)t)

ij
, t ≥ 0, i, j = 1, . . . , n.

Proof. For all t ≥ 0 and r ∈ R we obtain

ert
∣∣eAt∣∣ =

∣∣e(A+rI)t
∣∣ ≤ ∞∑

k=0

|(A+ rI)t|k

k!
= e|A+rI|t.

The continuity of the matrix exponential and Lemma 5.34 yield the result∣∣eAt∣∣ ≤ lim
r→∞

e(|A+rI|−rI)t = eM(A)t, t ≥ 0.

Moreover, as the limit in (5.13) is monotone,
(
eM(A)t

)
ij

= infr∈R
(
e(|A+rI|−rI)t)

ij
holds

componentwise.
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Corollary 5.39. Given A ∈ Kn×n. Then the following inequality holds elementwise∣∣(sI − A)−1
∣∣ ≤ (Re s−M(A))−1 , Re s > α(M(A)) ≥ α(A).

Proof. The matrix A− sI is exponentially stable for Re s > α(M(A)) ≥ α(A). Hence the
integral representation of the resolvent (Corollary 2.9) is well defined and we obtain

∣∣(sI − A)−1
∣∣≤∫ ∞

0

∣∣e(A−sI)t∣∣ dt ≤∫ ∞
0

e(M(A)−Re sI)tdt = (Re sI −M(A))−1,

the absolute value of the resolvent is bounded componentwise by the resolvent of the
Metzler part.

Hence Metzler matrices A are exponential positive and resolvent positive in the sense that
the matrix exponential eAt and the resolvent (sI − A)−1 are nonnegative functions for
t > 0, s > 0. For an operator norm induced by a monotone vector norm the following
inequalities hold for any matrix A ∈ Kn×n, we obtain from Corollary 5.39 and Lemma 1.9∥∥eAt∥∥ ≤ ∥∥eM(A)t

∥∥ , t ≥ 0,∥∥(sI − A)−1
∥∥ ≤ ∥∥(Re sI −M(A))−1

∥∥ , Re s > α(M(A)).
(5.18)

In particular, the first equation implies that if M(A) is (M,β)-stable then A is also (M,β)-
stable. The following corollary is direct consequence of Theorem 5.38 and of Proposi-
tion 5.7.

Corollary 5.40. Given A ∈ Kn×n. If there exists a (strict) Liapunov vector for M(A)
then A is (exponentially) stable.

For a set of arbitrary matrices, we can extend Corollary 5.40 to a generalization of Corol-
lary 5.29.

Corollary 5.41. Given a finite set of matrices A1, A2, . . . , Ak ∈ Kn×n such that the Metzler
part M(A1) is exponentially stable. The differential inclusion

ẋ ∈ conv{Ai | i = 1, . . . , k}x (5.19)

is exponentially stable if there exists z > 0 with z>M(A1)−1M(Ai) > 0 for i = 2, . . . , k.

Proof. If z>M(A1)−1M(Ai) > 0 holds for all i = 1, . . . , k then Corollary 5.29 implies that
there exists a common Liapunov vector w > 0. Therefore w gives a common Liapunov
norm x 7→ ‖diag(w)x‖1 for all M(Ai). Theorem 5.38 shows that this norm is also a common
Liapunov norm for the original matrices Ai, i = 1, . . . , k. By Corollary 2.71 the differential
inclusion (5.19) is asymptotically stable.

For a practical use of the results obtained so far, the Metzler part of A should be stable if
A is stable.
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Remark 5.42. Theorem 5.38 and Lemma 5.3 open the gate to some perturbation results.
Interestingly, adding purely imaginary values to the diagonal elements of a Metzler matrix
A cannot worsen its transient behaviour,∣∣e(A+iΛ)t

∣∣ ≤ eM(A+iΛ)t = eAt, where Λ = diag(λi), λi ∈ R.

Moreover, if the Metzler part M(A) of A ∈ Kn×n is (M,β)-stable then A itself is (M,β)-
stable. By Lemma 5.36 the initial growth rates of A and M(A) satisfy µ(A) ≤ µ(M(A)).

We have seen in Proposition 5.37 and in Theorem 5.38 that a Metzler matrix B provides
spectral and exponential bounds for all matrices A with M(A) ≤ B. We want to make this
statement more precise by introducing suitable perturbation structures.
Suppose that P ∈ Rn×n

+ is a given nonnegative matrix. Then we define the index set

I(P ) =
{

(i, j) ∈ {1, . . . , n}2
∣∣ pij > 0

}
,

and introduce the following sets of complex perturbation matrices

∆I(P ) =
{

∆ ∈ Cn×n ∣∣∆ij = 0 for all (i, j) 6∈ I(P )
}
, (5.20)

∆P = CP, (5.21)

both with associated norm ‖∆‖P := max(i,j)∈I(P ) p
−1
ij |∆ij| . Clearly, ∆P ⊂ ∆I(P ). These

perturbation structures heavily depend on the coordinate system. The norm has the nice
property that for all δ > 0,

‖∆‖P < δ ⇐⇒ |∆| < δP. (5.22)

For a given stable Metzler matrix B ∈ Rn×n
M and a given level δ ≥ 0 let us consider the set

of all matrices A in Cn×n which can be written as A = B + ∆ where ∆ is a matrix of one
of the perturbation structures (∆I(P ), ‖·‖P ), (∆P , ‖·‖P ) with ‖∆‖P ≤ δ. We can interpret
all these matrices A as perturbations of the Metzler matrix B ∈ Rn×n

M ,

B  B + ∆, ∆∈∆I(P ) or ∆∈∆P , and ‖∆‖P < δ. (5.23)

Before we derive explicit formulas for the spectral value sets and the stability radius for
these perturbation structures let us recall the following lemma, see [70, Corollary 8.1.29].

Lemma 5.43. Given P ∈ Rn×n
+ and a strictly positive vector x ∈ Rn

+, if α, β ≥ 0 satisfy
αx ≤ Px ≤ βx then α ≤ ρ(P ) ≤ β.

The following result provides a detailed perturbation analysis for the situation of Lemma 5.3.

Theorem 5.44. Suppose that P ∈ Rn×n
+ is a given nonnegative matrix. Then the spectral

value sets of a Metzler matrix B ∈ Rn×n
M corresponding to the levels δ ≥ 0 with respect to

the perturbation structures (∆I(P ), ‖·‖P ) and (∆P , ‖·‖P ) satisfy

σδ (B |∆P ) = σ(B) ∪
{
s ∈ %(B)

∣∣ ρ(P ( sI −B )−1) > δ−1
}
, (5.24)

σδ
(
B |∆I(P )

)
⊂ σ(B) ∪

{
s ∈ %(B)

∣∣ ρ(P
∣∣(sI −B)−1

∣∣) > δ−1
}
. (5.25)
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Equality in (5.25) holds if B is diagonal.
If B is exponentially stable then the associated stability radii satisfy

r
(
B
∣∣∆I(P )

)
= r (B |∆P ) = ρ(−PB−1)−1. (5.26)

Proof. Since ∆P ⊂∆I(P ) the associated spectral value sets satisfy

σδ(B |∆P ) ⊂ σδ(B |∆I(P )), δ ≥ 0. (5.27)

Let us first derive the formula for the stability radius, hence B is an exponentially stable
Metzler matrix. If σδ(B |∆I(P )) ⊂ C− then M(B + ∆) ≤ B + |∆| ≤ B + δP for all
∆ ∈∆I(P ), ‖∆‖P ≤ δ, and B + δP is exponentially stable. Hence there exists a Liapunov
vector v > 0 such that (B + δP )v < 0. Therefore

(B + δP )v = (I + δPB−1)(Bv) < 0.

As P ∈ Rn×n
+ , v is also a Liapunov vector for B. Setting w := −Bv > 0 gives

(I − δ(−PB−1))w > 0, i.e., w > δ(−PB−1)w.

Now −PB−1 ∈ Rn×n
+ and Lemma 5.43 shows that 1 > δρ(−PB−1). Thus

r
(
B
∣∣∆I(P )

)
= sup

{
δ > 0

∣∣∃ v ∈ Rn
+, (B + δP )v < 0

}
≤ ρ(−PB−1)−1. (5.28)

Let us now introduce δ0 = ρ(−PB−1)−1 and ∆0 = δ0P = P
ρ(−PB−1)

∈ ∆P ⊂ ∆I(P ). The

matrix −PB−1 is nonnegative, and its Perron vector w satisfies −PB−1w = ρ(−PB−1)w.
Multiplying B + ∆0 with z = B−1w gives

(B + ∆0)z = (B + δ0P )B−1w = w − δ0ρ(−PB−1)w = 0.

Hence 0 ∈ σδ0(B |∆P ), therefore r(B |∆P ) ≥ ρ(−PB−1)−1. Together with (5.28) and
(5.27) this gives the formula for the spectral radius (5.26).
Let us now derive (5.24). If s ∈ %(B) with ρ(P (sI − B)−1) > δ−1 then there exists an
eigenvector v ∈ Cn of P (sI −B)−1 such that P (sI −B)−1v = λv with |λ| > δ−1 > 0. Now
setting w = (sI −B)−1v gives

Pw = λ(sI −B)w or (B + 1
λ
P )w = sw.

Hence w is an eigenvector of the perturbed matrix B+ 1
λ
P corresponding to the eigenvalue

s ∈ C. Now, ∆ = 1
λ
P ∈ ∆P has norm ‖∆‖P < δ from which s ∈ σδ(B |∆P ) follows. On

the other hand, if s ∈ σδ(B |∆P ) \ σ(B) then there exist ∆ ∈ Cn×n and v ∈ Cn such that
(B − sI + ∆)v = 0 and η∆ = P for some η ∈ C with |η|−1 < δ. Now

(B − sI + ∆)v =
(
I −∆(sI −B)−1

)
(B − sI)v = 0, (5.29)

hence I−∆(sI−B)−1 is not invertible, and therefore ρ(∆(sI−B)−1) ≥ 1. We conclude from
η∆ = P that ρ(∆(sI−B)−1) = |η|−1 ρ(P (sI−B)−1) ≥ 1, and therefore ρ(P (sI−B)−1) >
δ−1 for all s ∈ σδ(B |∆P ). Thus (5.24) holds.
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To show (5.25), note that (5.29) holds for an s ∈ σδ(A |∆I(P )). Hence there exists ∆ ∈
∆I(P ) with |∆| < δP such that ρ(∆(sI−B)−1) ≥ 1. Taking advantage of the monotonicity
of the spectral radius, we have

1 ≤ ρ
(
∆(sI −B)−1

)
≤ ρ

(
|∆|
∣∣(sI −B)−1

∣∣) < δρ
(
P
∣∣(sI −B)−1

∣∣) ,
which shows ρ(P |(sI −B)−1|) > δ−1 for all s ∈ σδ(B |∆I(P )). Therefore the inclusion (5.25)
holds. Additionally, if B is diagonal then the missing inclusion “⊃” in (5.25) follows
from the construction of a suitable perturbation matrix ∆ ∈ ∆I(P ). To this end, if
ρ := ρ(P |(sI −B)−1|) > δ−1 holds for a given s ∈ %(B) then there exists a vector v ∈ Rn

+

such that P |(sI −B)−1| v = ρv with ρ−1 < δ. Let us introduce R = (sI − B)−1 and the
vectors w = Rv, w̃ = |R| v. Then the matrix

∆ =

(
pij
w̃j
wj

)
ij

=

(
pij
|(s− bjj)−1| vj
(s− bjj)−1vj

)
ij

∈∆I(P )

satisfies ‖∆‖P = 1 and ∆Rv = P |R| v. Now B + ∆/ρ has an eigenvector corresponding to
s ∈ C given by x = Rv = (sI −B)−1v,(
B + 1

ρ
∆
)
x = Bx+ 1

ρ
∆Rv = Bx+ 1

ρ
P
∣∣(sI −B)−1

∣∣v = Bx+ v = (B + sI −B)x = sx.

Therefore s ∈ σδ(B |∆I(P )). Hence equality holds in (5.25) if B is diagonal.

Example 5.45. Consider the stable Metzler matrix B ∈ R3×3
M and the nonnegative matrix

P ∈ R3×3
+ given by

B =

−8 10 0
1 −8 6
0 2 −10

 , P =

0 1 0
3 0 0
0 2 0

 .

Figure 5.3 shows the spectral value sets of B corresponding to ∆P (solid lines) and an
upper bound of the spectral value sets corresponding to ∆I(P ) (dashed lines and gray-
shaded areas) for the levels δ ∈ { 1

10
, 1

3
, 2

3
, 1}. Both contours differ substantially around

s = −8.87 while the difference is not apparent for small δ > 0 near the other eigenvalues
of B. The stability radius of B with respect to both perturbation structures induced by P
is given by r = ρ(PB−1) = 1.02. And indeed, the contour level for δ = 1 is still contained
in C−. �

All of these perturbed matrices satisfy a common transient bound.

Proposition 5.46. Let B ∈ Rn×n
M , P ∈ Rn×n

+ and δ > 0. If the vector w > 0 is a Liapunov
vector of B + δP with v = −(B + δP )w ≥ 0 then for all ∆ ∈∆I(P ) with ‖∆‖P < δ,

∥∥e(B+∆)t
∥∥
∞ ≤ κ(w)e

−tmini(
vi
wi

)
, t ≥ 0.
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Figure 5.3: SVS associated with ∆P and upper bounds for SVS associated with ∆I(P ).

Proof. As |∆| < δP , we obtain using Theorem 5.38∣∣e(B+∆)t
∣∣ ≤ eM(B+∆)t = e(B+M(∆))t ≤ e(B+|∆|)t ≤ e(B+δP )t.

Now ‖·‖∞ is monotone, hence Proposition 5.7 implies that

∥∥e(B+∆)t
∥∥
∞ ≤

∥∥e(B+δP )t
∥∥
∞ ≤ κ(w)e

−tmini(
vi
wi

)
, t ≥ 0,

holds for the Liapunov vector w which proves the proposition.

5.7 Notes and References

Positive systems arise naturally in applications like economics, biology, chemistry, and
numerical analysis. Their study has been an active field of research for many decades,
including works like Varga [140], Berman and Plemmmons [17], Krause and Nesemann [86],
and Farina and Rinaldi [40]. The study of transient effects, however, has been neglected
in the literature.
For results on Metzler matrices see Fiedler and Ptak [42], Luenberger [101], and Horn and
Johnson [71]. Proofs of Gershgorin’s Disk Theorem can be found in standard references
like Horn and Johnson [70] or Faddeev and Faddeeva [39]. For a more functional analytic
approach than these direct proofs see Bhatia [18].
If w is a left Liapunov vector of A ∈ Rn×n

M then the function x 7→ w>x is also called a
copositive Liapunov function of A, see Mason and Shorten [106].
Vector-valued Liapunov functions for the stability analysis have been used in Bellman [14]
Willems [149], and Kiendl et al. [83]. In Polanski [116] a polytopic vector norm (polyhedral
Liapunov function) is optimized using a linear programming approach. This can be viewed
as an extension of finding a weight with optimal eccentricity.
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The special role of the 1- and∞-norms for positive systems was noted by Vidyasagar [142].
The convexity of µ∞ is used in Liu and Molchanov [95] to derive a common Liapunov
function for nonlinear systems

ẋ(t) = A(t)x(t) +BN(Cx(t), t)

where A(t) ∈ conv{A1, . . . , Aq} ⊂ Rn×n and the nonlinearity N satisfies a sector condition.
An investigation of the properties of the stability radius for positive systems can be found
in articles of Hinrichsen and Son [69] and Fischer, Hinrichsen and Son [43]. Hinrichsen,
Karow and Pritchard [61] study perturbation structures which resemble (5.20). The results
obtained therein are derived via µ-analysis and not directly as in our result of Theorem 5.44.
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Chapter 6

Differential Delay Systems

This chapter will be devoted to the study of linear differential delay systems of the form

Σ : ẋ(t) = A0x(t) +
m∑
k=1

Akx(t− hk), t ≥ 0, (6.1)

where Ak ∈ Cn×n and 0 < h1 < h2 < . . . hm = H are given positive delays. For t = 0, (6.1)
only fixes the one-sided differential ẋ(0+) = limh↘0

1
h
(x(h) − x(0)), which has to satisfy

ẋ(0+) = A0x(0) +
∑m

k=1 Akx(−hk). To specify an initial value problem which has a unique
solution, an initial function with values on the interval [−H, 0] has to be prescribed.
We will demonstrate some problems in the following example.

Example 6.1. We consider the “hot shower problem”, see Kolmanovskii and Myshkis [84],

ẋ(t) = −αx(t− h), α > 0, h > 0, t > 0, (6.2)

which can be seen as a simple feedback controller where the current

Figure 6.1: Taking a
hot shower.

feedback is based on an old state of the system. With a “human
in the loop”, see Figure 6.1, this corresponds to the problem of
stabilizing the output of a hot shower using a mixer tab: If the
water is too hot, the mixer is turned to cool and vice versa. But
the water currently leaving the shower is not influenced by this de-
cision. Depending on the length of the pipes only the temperature
of water arriving sooner or later at the shower is controlled.
To solve (6.2) we have to prescribe a initial value function on
the interval [−h, 0]. Let us use a linear ramp from ϕ(−h) = −1
to ϕ(0) = 1. Figure 6.2 shows two solutions, one with α = 1,
h = 1 and the other with α = 1, h = 2. From these pictures we
can expect that the first system is stable, while the latter is not.
Asides from the stability question, we want to find bounds on the
transient behaviour of such a delay system. �

The properties of differential delay systems have been studied in, e.g., Bellman and Cooke [15],
Hale and Verduyn Lunel [51], and Curtain and Zwart [29].
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Figure 6.2: Stability or instability of the hot shower problem.

In the following we will derive transient estimates for solutions of (6.1) on the basis of
Liapunov functionals which now operate on solution segments. Before we approach the
construction of such functionals let us formulate a precise notion of solutions for (6.1) with
respect to a suitable initial value problem. We introduce fundamental matrices and show
how the solutions of (6.1) can be represented with their help. We show that the solutions
of the delay equation are a semigroup on some suitable Hilbert space.

6.1 Functional Analytic Approach

We study the following initial value problem associated with (6.1),

ẋ(t) = A0x(t) +
m∑
k=1

Akx(t− hk), t ≥ t0,

x(t0) = x0,

x(t) = ϕ(t− t0), t0 −H ≤ t < t0,

(6.3)

where x0 ∈ Cn and ϕ ∈ L2([−H, 0],Cn). The following proposition shows existence and
uniqueness for such an initial value problem of the delay system.

Proposition 6.2 ([29, Theorem 2.4.1]). For every x0 ∈ Cn and ϕ ∈ L2([−H, 0],Cn) there
exists a unique function x(·) which is absolutely continuous on bounded intervals of [t0,∞)
and satisfies the differential equation in (6.3) almost everywhere. This function is called
the solution of the initial value problem (6.3) with respect to the initial data x0 and ϕ and
is denoted by x(·; t0, x0, ϕ). It satisfies

x(t; t0, x0, ϕ) = eA0(t−t0)x0 +
m∑
k=1

∫ t

t0

eA0(t−s)Akx(s− hk)ds, t ≥ t0. (6.4)

Notice that the system (6.1) is time-invariant so that we fix t0 = 0, if not noted otherwise.
To keep the notation short we introduce z = (x0, ϕ) ∈ Cn × L2([−H, 0],Cn) and set
x(t, z) := x(t; 0, x0, ϕ).
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Let us denote the space of continuous vector functions on [−H, 0] by C = C([−H, 0],Cn)
which is endowed with the sup-norm, ‖ϕ‖∞ = supθ∈[−H,0] ‖ϕ(θ)‖. To include both the
initial value x0 and the initial function ϕ mentioned in Proposition 6.2 into a suitable
space, we define M2 = M2([−H, 0],Cn) = Cn ×L2([−H, 0],Cn) to be the space of pairs of
vectors and L2-integrable functions on [−H, 0]. This space becomes a Hilbert space using
the inner product of the direct sum, see p. 12,〈(

x

f

)
,

(
y

g

)〉
M2

:= 〈x, y〉2 + 〈f, g〉L2([−H,0],Cn) = 〈x, y〉2 +

∫ 0

−H
〈f(θ), g(θ)〉2dθ. (6.5)

In the following we discuss the solutions of (6.3) with respect to initial values z = (x0, ϕ) ∈
M2 and with respect to continuous initial values where ϕ ∈ C and x0 = ϕ(0). For stability
issues we note the following definition.

Definition 6.3. The delay equation (6.1) is called exponentially stable if there exist con-
stants M ≥ 1 and β < 0 such that for all continuous initial conditions ϕ ∈ C we have

‖x(t; 0, ϕ(0), ϕ)‖2 ≤Meβt ‖ϕ‖∞ , t ≥ 0. (6.6)

The exponential stability of a delay equation (6.1) can be verified by considering the
associated characteristic equation.

Definition 6.4. The function χ : C → C given by χ(s) = det(sI − A0 −
∑m

k=1 Ake
−shk)

is called the characteristic function of (6.1), and the equation χ(s) = 0 is called the
characteristic equation of (6.1).

The complex value s is a solution of the characteristic equation χ(s) = 0 if and only if
there exists a non-trivial vector x0 ∈ Cn such that (sI − A0 −

∑m
k=1 Ake

−shk)x0 = 0. In
this case a non-trivial solution of (6.3) is given by estx0, t ≥ 0, which corresponds to the
initial segment estx0, t ∈ [−H, 0]. Here x0 6= 0 is called an eigenvector of the system Σ in
(6.1) . The special solution estx0 is called an eigenmotion of the delay equation (6.1).

Proposition 6.5 ([131]). The delay equation (6.1) is exponentially stable if and only if
{s ∈ C |Re s ≥ 0, χ(s) = 0} = ∅.

Let us now define an equivalent of the matrix exponential for the delay equation (6.1).
Consider the following initial value problem for a matrix delay equation,

K̇(t) = A0K(t) +
m∑
k=1

AkK(t− hk), t ≥ 0,

K(0) = In, K(t) = 0n for t < 0.

(6.7)

Here the derivative of K in 0 is to be understood as the one-sided derivative, K̇(0) =
limt↘0 K̇(t). If K solves (6.8) then it is easy to see that the columns of K are solutions of
(6.3) corresponding to an initial value zi = (ei, 0) ∈ M2, K(t)ei = x(t, zi), t ≥ 0, where
ei ∈ Cn is the i-th unit vector, i = 1, . . . , n. Hence by Proposition 6.2 this solution K
exists on R+ and is uniquely determined.
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Definition 6.6. The matrix function K : R → Cn×n which satisfies the initial value
problem (6.7) is called the fundamental matrix of (6.1).

The following properties hold for the fundamental matrix.

Lemma 6.7 ([81]). The fundamental matrix K of (6.1) is a continuous matrix function
for t > 0. Moreover, it is exponentially bounded. In addition to (6.7) it also satisfies the
following initial value problem where the Ak and K terms are exchanged,

K̇(t) = K(t)A0 +
m∑
k=1

K(t− hk)Ak, t ≥ 0,

K(0) = In, K(t) = 0n, t < 0.

We can represent any solution of (6.1) in closed form using the fundamental matrix. One
can easily verify the following result using (6.1) and (6.7).

Corollary 6.8 ([15, Theorem 6.4]). The solution x(·, z) of (6.3) with z = (x0, ϕ) ∈ M2

is given by

x(t, z) = K(t)x0 +
m∑
k=1

∫ 0

−hk
K(t− hk − θ)Akϕ(θ)dθ, t ≥ 0. (6.8)

By Proposition 6.2 there exists a uniquely determined solution of (6.3) for every initial
value z = (x0, ϕ) ∈M2.

Definition 6.9. Let x(·, z) be the solution of (6.3) with initial value z = (x0, ϕ) ∈ M2.
Then the corresponding solution segment for t > 0 is given by the function

xt(z) ∈ L2([−H, 0],Cn), (xt(z))(τ) =

{
x(t+ τ, z), t+ τ ≥ 0

ϕ(t+ τ), t+ τ < 0,
τ ∈ [−H, 0].

tx

t0

x

−H t−H −H 0

φ
φ

x0

Figure 6.3: Initial segment and solution segment.

When it is clear from the context we drop the dependence on the initial segment. Figure 6.3
illustrates the definitions in the scalar case. We immediately obtain from the definition the
following “smoothing” property for the solutions of (6.3).
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Lemma 6.10. If x(t, z) is a solution of (6.3) for the initial value z = (x0, ϕ) ∈ M2 then
the solution segment xt(z)(·) : τ 7→ x(t + τ, z) is continuous on [−H, 0] for t ≥ H. If the
initial segment ϕ ∈ C is already continuous and ϕ(0) = x0 the solution segment xt ∈ C is
a continuous function for all t ≥ 0.

More precisely, if ϕ ∈ L2 and x0 ∈ Cn then t 7→ x(t; 0, x0, ϕ), t ≥ 0, is by definition an
absolute continuous function; if ϕ is of class Ck on [−H, 0] , k ∈ N, then t 7→ x(t; 0, ϕ(0), ϕ)
is of class Ck+1 on R+ which follows from formula (6.4).
Each continuous segment ϕ ∈ C has an M2-equivalent given by ϕ̂ = (ϕ(0), ϕ). On the
other hand, given an initial segment z ∈ M2, the solution segment xt(z) is continuous for
t ≥ H, see Lemma 6.10. Hence we have a map M2 → C given by z 7→ xH(z). We may use
this continuous segment as a new initial function.

Lemma 6.11. For a given initial value z ∈ M2 the segment ψ = xH(z) is continuous on
[−H, 0]. The associated solution x(·, ψ̂) of (6.1) satisfies xt+H(z) = xt(ψ̂).

Let us now show how continuous initial segments fit into an M2-framework.

Proposition 6.12. The map C([−H, 0],Cn) → M2([−H, 0],Cn), ϕ 7→ ϕ̂ := (ϕ(0), ϕ)
defines a continuous dense embedding from C([−H, 0],Cn) into M2([−H, 0],Cn).

Proof. As ‖ϕ̂‖2
M2 = ‖ϕ(0)‖2

2 +‖ϕ‖2
L2 ≤ (1 +H) ‖ϕ‖2

∞ for all ϕ ∈ C we see that this embed-
ding is continuous. To show that ϕ 7→ ϕ̂ is dense, we construct for a given (x, f) ∈ M2 a

sequence of continuous segments ϕn ∈ C = C([−H, 0],Cn) with ϕn
L2

−→ f and ϕn(0) = x.
As C([−H, 0],Cn) is dense in L2([−H, 0],Cn) there exists a sequence of continuous seg-

ments fn∈C with fn
L2

−→f . Moreover, let us define the sequences of continuous functions,

xn(t) =

{
0, t ∈ [−H,− 1

n
],

(1 + nt)x, t ∈ [− 1
n
, 0],

and gn(t) =

{
1, t ∈ [−H,− 1

n
],

−nt, t ∈ [− 1
n
, 0].

Then ϕn = gnfn + (1 − gn)xn is a sequence of continuous functions with ϕn
L2

−→ f and
ϕn(0) = x for all n ∈ N. Hence the continuous segments are dense in M2.

We can associate a strongly continuous semigroup (T (t))t∈R+ on M2 with the solutions
of (6.1), see [29, Theorem 2.4.4]. This solution semigroup is given by

T (t) : M2 →M2 : z =

(
x0

ϕ

)
7→ x̂t(z) =

(
xt(z)(0)

xt(z)(·)

)
=

(
x(t, z)

xt(z)(·)

)
, t ≥ 0. (6.9)

Theorem 6.13 ([29, Theorem 2.4.6]). The generator of the semigroup T of (6.9) is given
by

A

(
x

f

)
=

(
A0x+

∑m
k=1Akf(−hk)
df
dt

)
,

(
x

f

)
∈ D(A), (6.10)

with domain

D(A) =
{(

x
f

)
∈M2([−H, 0],Cn)

∣∣∣ f is abs. cont., df
dt
∈ L2([−H, 0],Cn) and f(0) = x

}
.
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The spectrum of A consists only of eigenvalues, it is a discrete subset of C, and it is given
by the solutions of the characteristic equation,

σ(A) = {s ∈ C |χ(s) = 0} . (6.11)

The multiplicity of every eigenvalue of A is finite. For every α ∈ R there are only finitely
many eigenvalues of A in {s ∈ C |Re s > α}.

For the interpretation of the semigroup operation t 7→ T (t)z = xt(z) on M2 as a solution
of an abstract Cauchy problem compare with Lemma 2.3 and Proposition 2.11.
When the initial segment is already continuous the setup of the abstract Cauchy problem
reduces to the solution semigroup S(t) : C → C : ϕ 7→ xt(ϕ). Its generator is given by

AC : C → C : ϕ 7→ d
dt
ϕ, ϕ ∈ D(AC),

with domain

D(AC) =

{
ϕ ∈ C1([−H, 0],Cn)

∣∣∣∣∣ ddtϕ(0) = A0ϕ(0) +
m∑
k=1

Akϕ(−hk)

}
,

see [38, Example II.3.29].
The following proposition shows equivalent conditions for the exponential stability of (6.1).

Proposition 6.14. The following statements are equivalent.

(i) The delay equation (6.1) is exponentially stable.

(ii) For all s ∈ C, Re s ≥ 0, the characteristic function of (6.1) satisfies χ(s) 6= 0.

(iii) The C-solution semigroup (S(t))t∈R+ is exponentially stable.

(iv) The M2-solution semigroup (T (t))t∈R+ is exponentially stable.

(v) There exist constants M ≥ 1 and β < 0 such that ‖K(t)‖2 ≤Meβt for all t ≥ 0.

Proof. The equivalence of (i) and (ii) is due to Proposition 6.5. Now, [29, Theorem 5.1.7]
shows that (ii) and (iv) are equivalent. The implication (v) =⇒ (iii) follows directly from
formula (6.8). If (iii) is satisfied then ‖x(t, ϕ̂)‖2 ≤ ‖xt(ϕ̂)‖∞ = ‖S(t)ϕ‖∞ ≤ Meβt ‖ϕ‖∞
holds for all continuous ϕ ∈ C. Thus (iii) implies (i).
To round up the proof we now show (i) =⇒ (v). For this, we assume that (6.1) is
exponentially stable. There exists a sequence of continuous segments (ϕk) ⊂ C for a given
v ∈ Rn such that limk→∞ ϕk(0) = v, limk→∞ ϕk(t) = 0 for t ∈ [−H, 0), and ‖ϕK‖∞ = ‖v‖2 .
Then for all k = 1, 2, . . . we have ‖x(t, ϕ̂k)‖2 ≤ Meβt ‖ϕk‖∞ = Meβt ‖v‖2, t ≥ 0. In
the limit k → ∞ we obtain ‖K(t)v‖2 ≤ Meβt ‖v‖, t ≥ 0, from Lebesgue’s dominated
convergence theorem.
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6.2 Liapunov Functionals

Quadratic Liapunov functions provide means of analysing the behaviour of linear delay-
free ordinary differential equations, cf. Section 3.4. For delay systems, Liapunov functions
depend on solution segments. We have seen on Proposition 6.14 that the M2-solution semi-
group T of (6.1) is exponentially stable if and only if the delay system (6.1) is exponentially
stable.

6.2.1 Liapunov Equations in Hilbert Spaces

In the following we want to check this stability property using Liapunov techniques. For
this, let us recall the notion of an abstract Liapunov equation, see Curtain and Zwart [29,
Theorem 5.1.3, Exercise 5.3].

Theorem 6.15. Given a generator A of a strongly continuous semigroup (T (t))t∈R+ on
a Hilbert space X, then T is exponentially stable if and only if there exist a coercive self-
adjoint linear operator P ∈ L(X) and ε > 0 such that

〈Ax, Px〉+ 〈Px,Ax〉 < −ε〈x, x〉 for all x ∈ D(A) \ {0}. (6.12)

Moreover, if T is exponentially stable then for every coercive self-adjoint linear operator
Q ∈ L(X) the coercive self-adjoint linear operator P ∈ L(X) given by

P =

∫ ∞
0

T (t)∗QT (t)dt (6.13)

satisfies (6.12).

Here, (6.13) is the solution of the Liapunov equation

〈Ax, Px〉+ 〈Px,Ax〉 = −〈x,Qx〉 for all x ∈ D(A) \ {0}. (6.14)

for the operator A. The following proof draws heavily from the machinery developed in
Chapter 2.

Proof. We only show that (6.12) implies exponential stability of T , as it is easy to see that
if Q ∈ L(X) is coercive and T is exponentially stable then P defined by (6.13) is a bounded
coercive operator which satisfies (6.14) and therefore also (6.12).
Let P be a coercive bounded operator. The norm ‖x‖P =

√
〈x, Px〉 is a norm on X for

which there exist α, β > 0 such that

α〈x, x〉 < ‖x‖2
P ≤ β〈x, x〉 for all x ∈ X \ {0}. (6.15)

With respect to this norm, the initial growth rate of A is given by

µP (A) = 1
2

sup
x∈D(A),x 6=0

〈Ax, Px〉+ 〈Px,Ax〉
〈x, Px〉

= 1
2

sup
x∈D(A),x 6=0

−〈x,Qx〉
〈x, Px〉

≤ − ε

2β
< 0,
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see Definition 2.29. Hence A is strictly dissipative with respect ‖·‖P , thus generates a
uniform contraction semigroup T on (X, ‖·‖P ). Now, by (6.15) the operator norms ‖·‖
and ‖·‖P are equivalent on L(X). We conclude that A generates an exponentially stable
semigroup on (X, ‖·‖), see also Corollary 2.57.

As a general assumption for the rest of this chapter we consider only those delay equations
(6.1) for which the matrices Ak ∈ Rn×n, k = 0, 1, . . . ,m in (6.1) are all real. We will
derive an explicit formula for the solution of a Liapunov equation for the generator A of
the solution semigroup T of (6.9). Let us assume that this semigroup is exponentially
stable. Hence there exist M ≥ 1 and β < 0 such that the M2-operator norm satisfies
‖T (t)‖M2 ≤Meβt.

Definition 6.16. Suppose that the solution semigroup associated with (6.1) is exponen-
tially stable. For a given positive definite matrix W ∈ Hn

+(R) we define the delay Liapunov
function of (6.1) by

U : R→ Rn×n, U(t) =

∫ ∞
0

K(τ)>WK(t+ τ)dτ, (6.16)

where K(·) is the fundamental matrix of (6.1), see Definition 6.6.

This integral is well-defined if T is exponentially stable as the fundamental matrix K is
decaying exponentially for |t| → ∞, see Proposition 6.14. Hence the integral in (6.16) is
bounded,∥∥∥∥∫ ∞

0

K(τ)>WK(t+ τ)dτ

∥∥∥∥ ≤ ∫ ∞
0

‖W‖ ‖K(τ)‖ ‖K(t+ τ)‖ dτ

≤ eβt ‖W‖
∫ ∞

0

(Meβτ )2dτ = ‖W‖M2 e
βt

−2β
.

The name “delay Liapunov function” owes to the fact that U takes over the role of a classical
quadratic Liapunov matrix for delay-free systems. In particular, if (6.1) is a differential
equation without delays, i.e., of the form ẋ = A0x then the fundamental matrix is just
the matrix exponential, K(t) = eA0t, t ≥ 0, and (6.16) reduces to U(t) = U(0)eA0t where
P := U(0) satisfies

P =

∫ ∞
0

eA
>
0 τWeA0τdτ.

This is the classical explicit formula of the solution of the quadratic Liapunov equation
PA0 + A>0 P = −W where W ∈ Hn(R) is a positive definite matrix.
We now collect some properties of U .

Lemma 6.17. Suppose that T is exponentially stable. Then the matrix function U(t) de-
fined by (6.16) is continuous, decaying exponentially, and satisfies the symmetry condition
U(t) = U(−t)> for all t ∈ R.
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Proof. We have already seen that U is exponentially bounded as t → ∞ with a negative
growth rate β. For the continuity of U on R+, note that we have for all t > 0 and all
ε ∈ (0, t) that U(t+ ε)−U(t) =

∫∞
0
K(τ)>W (K(t+ ε+ τ)−K(t+ τ)) dτ → 0 as ε→ 0.

The symmetry condition can be shown by applying the integral transformation θ = τ − t
to (6.16),

U(−t) =

∫ ∞
0

K(τ)>WK(τ − t)dτ =

∫ ∞
0

K(θ + t)>WK(θ)dθ = U(t)>. (6.17)

This symmetry property implies that U(t) is continuous for t ≤ 0, hence for all t ∈ R.

Let us now introduce the M2-operator Q for which we will construct an explicit solution P
of the Liapunov equation (6.14) associated with the M2-generator A. For given symmetric
weights W0,WH ∈ Hn(R) we set W = W0 + HWH in (6.16) and define the operator
Q : M2 →M2 via

Q

(
x

f

)
=

(
W0x

WHf

)
. (6.18)

Lemma 6.18. If the weight matrices W0,WH � 0 are both positive definite then Q defined
by (6.18) is a bounded self-adjoint coercive linear operator.

Proof. We have〈(
x
f

)
, Q
(
x
f

)〉
M2

= 〈x,W0x〉2 + 〈f,Whf〉L2 = 〈W0x, x〉2 + 〈Whf, f〉L2 =
〈
Q
(
x
f

)
,
(
x
f

)〉
M2
.

Hence Q is symmetric, and

min{λmin(W0), λmin(WH)}
∥∥∥(xf)∥∥∥2

M2
≤
〈(

x
f

)
, Q
(
x
f

)〉
M2
≤max{λmax(W0), λmax(WH)}

∥∥∥(xf)∥∥∥2

M2

shows that Q is bounded and coercive.

The candidate P : M2 →M2 for the solution of the Liapunov equation 6.14 is partitioned
as follows

P

(
x

f

)
=

(
U(0)x+ P1f

P ∗1 x+ P2f

)
. (6.19)

Let us now discuss its components. If 1k = 1[−hk,0] denotes the characteristic function of
the interval [−hk, 0] then the linear operators P1 : L2 → Rn and P2 : L2 → L2 are defined
by

P1f =

∫ 0

−H

m∑
j=1

1j(θ)U(−hj − θ)Ajf(θ)dθ,

(P2f)(t) =
m∑
k=1

1k(t)A
>
k

∫ 0

−H

m∑
j=1

U(t−θ+hk−hj)Aj1j(θ)f(θ)dθ + (H+t)WHf(t).

(6.20)

It is not difficult to prove that these operators are bounded. With this definitions we now
check that the operator P is a self-adjoint bounded linear operator with respect to the
M2-inner product.
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Lemma 6.19. The matrix U(0) ∈ Rn×n is a symmetric matrix, P2 is a bounded self-adjoint
linear operator on L2. P1 is a bounded linear operator, its adjoint P ∗1 : Rn → L2 is given
by

(P ∗1 x)(t) =
m∑
k=1

1k(t)A
>
k U(t+ hk)x. (6.21)

Hence P is a bounded self-adjoint linear operator on M2.

Proof. For t = 0, (6.17) takes the form U(0) = U(0)>, thus U(0) is symmetric. Let us
denote the right hand side of (6.21) by P̃1. For every x ∈ Cn and every f ∈ L2 this operator
P̃1 satisfies 〈

f, P̃1x
〉
L2

=

∫ 0

−H

(
m∑
k=1

1k(τ)A>k U(τ + hk)x

)∗
f(τ)dτ

= x∗
∫ 0

−H

m∑
k=1

1k(τ)U(−τ − hk)Akf(τ)dτ = 〈P1f, x〉2,

where we used that U(−t) = U(t)> = U(t)∗. Hence the adjoint of P1 is P ∗1 = P̃1. The
domains of P1 and P ∗1 are given by D(P1) = L2 and D(P ∗1 ) = Rn. With the same
symmetry argument for U we can prove that P2 is a symmetric operator on L2,

〈P2f, g〉L2 =

∫ 0

−H
g(t)∗

m∑
k=1

1k(t)A
>
k

∫ 0

−H

m∑
j=1

U(t− θ + hk − hj)Aj1j(θ)f(θ)dθdt

+

∫ 0

−H
g(t)∗(H + t)WHf(t)dt

=

∫ 0

−H

(
m∑
j=1

1j(θ)A
>
j

∫ 0

−H

m∑
k=1

U(θ − t+ hj − hk)Ak1k(t)g(t)dt

)∗
f(θ)dθ

+

∫ 0

−H
((H + t)WHg(t))∗ f(t)dt

= 〈f, P2g〉L2 ,

where we changed the order of summation and integration. Hence P is a symmetric
operator on M2. The boundedness of P follows from the boundedness of its components.

We now use the integral representation (6.16) of U to show that for a given Q of the form
(6.18), the operator P defined in (6.19) solves the Liapunov equation (6.13) associated
with the generator A in M2.

Theorem 6.20. If T of (6.9) is exponentially stable and P and Q are given by (6.19) and
(6.18) where W0 and WH are Hermitian matrices, then∫ ∞

0

〈x̂t(z), Qx̂t(z)〉M2 dt = 〈z, Pz〉M2 , z = (x0, ϕ) ∈M2. (6.22)
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Proof. The integral of the inner product 〈x̂t, Qx̂t〉M2 is given by∫ ∞
0

(
x(t)∗W0x(t) +

∫ 0

−H
x(t+ θ)∗WHxt(t+ θ)dθ

)
dt. (6.23)

Let us study its first term,
∫∞

0
x(t)∗W0x(t) dt. Using (6.8) and then sorting for different

quadratic and mixed terms we get∫ ∞
0

x(t)∗W0x(t) dt =

∫ ∞
0

(
K(t)x0 +

m∑
k=1

∫ 0

−hk
K(t− hk − θ1)Akϕ(θ1)dθ1

)∗

·W0

(
K(t)x0 +

m∑
j=1

∫ 0

−hj
K(t− hj − θ2)Ajϕ(θ2)dθ2

)
dt

=

∫ ∞
0

x∗0K(t)>W0K(t)x0dt+ 2Re

∫ ∞
0

x∗0K(t)>W0

m∑
k=1

∫ 0

−hk
K(t− hk − θ)Akϕ(θ)dθ dt

+

∫ ∞
0

(
m∑
k=1

∫ 0

−hk
K(t− hk − θ1)Akϕ(θ1)dθ1

)∗

·W0

(
m∑
j=1

∫ 0

−hj
K(t− hj − θ2)Ajϕ(θ2)dθ2

)
dt

= x∗0U
0(0)x0 + 2Rex∗0

m∑
k=1

∫ 0

−hk
U0(−hk − θ)Akϕ(θ) dθ

+
m∑
k=1

∫ 0

−hk
ϕ(θ1)∗A>k

m∑
j=1

∫ 0

−hj
U0(hk + θ1 − hj − θ2)Ajϕ(θ2) dθ2 dθ1,

(6.24)

where U0(τ) =
∫∞

0
K(t)>W0K(t+ τ) dt. Here we used a parameter transformation to get∫ ∞

0

K(t− τ1)>W0K(t− τ2) dt =

∫ ∞
0

K(t)>W0K(t+ τ1 − τ2) dt = U0(τ1 − τ2) (6.25)

for τ1, τ2 ∈ R. Let us now discuss the second term of (6.23),
∫∞

0

∫ 0

−H x(t+τ)∗WHx(t+τ)dτdt.
When changing the order of integration one has to take into account that x(t) = ϕ(t) if
t ∈ [−H, 0), so that∫ ∞

0

∫ 0

−H
x(t+θ)∗WHx(t+θ)dθdt=

∫ 0

−H

(∫ 0

θ

ϕ(t)∗WHϕ(t)dt+

∫ ∞
0

x(t)∗WHx(t)dt

)
dθ. (6.26)

Again, changing the order of integration in the first term of the right hand side of (6.26)
gives∫ 0

−H

∫ 0

θ

ϕ(t)∗WHϕ(t) dtdθ =

∫ 0

−H

∫ 0

−H
1[θ,0](t)ϕ(t)∗WHϕ(t) dtdθ

=

∫ 0

−H
ϕ(t)∗WHϕ(t)

(∫ 0

−H
1[−H,t](θ)dθ

)
dt =

∫ 0

−H
(H + t)ϕ(t)∗WHϕ(t) dt. (6.27)
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The second term in (6.26) is independent of θ, and combined with (6.27) we arrive at the
following expression for (6.26)∫ 0

−H
(H + t)ϕ(t)∗WHϕ(t) dt+H

∫ ∞
0

x(t)∗WHx(t) dt.

However, an analogous term to
∫∞

0
x(t)∗WHx(t)dt has already been treated in (6.24). Hence

replacing U0(τ) in (6.24) with UH(τ) :=
∫∞

0
K(t)>WHK(t+ τ) dt and using this in (6.26),

we obtain for (6.26)∫ ∞
0

∫ 0

−H
x(t+ τ)∗WHx(t+ τ) dτ dt =

∫ 0

−H
(H + τ)ϕ(τ)∗WHϕ(τ)dτ +H

(
x∗0U

H(0)x0

+ 2Rex∗0

m∑
k=1

∫ 0

−hk
UH(−hk − θ)Akϕ(θ) dθ

+
m∑
k=1

∫ 0

−hk
ϕ(θ1)∗A>k

m∑
j=1

∫ 0

−hj
UH(hk − hj + θ1 − θ2)Ajϕ(θ2)dθ2dθ1

)
. (6.28)

Returning to (6.23), we get by summing (6.24) and (6.28)∫ ∞
0

〈x̂t, Qx̂t〉M2 dt = x∗0U(0)x0 + 2Rex∗0

m∑
k=1

∫ 0

−hk
U(−hk − θ)Akϕ(θ) dθ

+
m∑
k=1

∫ 0

−hk
ϕ(θ1)∗A>k

m∑
j=1

∫ 0

−hj
U(hk − hj + θ1 − θ2)Ajϕ(θ2)dθ2dθ1

+

∫ 0

−H
ϕ(τ)∗(H + τ)WHϕ(τ)dτ,

(6.29)

where U(τ) = U0(τ) +HUH(τ) =
∫∞

0
K(t)>(W0 +HWH)K(t+ τ) dt.

Now, we have to identify (6.29) as the M2-inner product weighted with P . We evaluate
this inner product using (6.19) and (6.20),

〈Pz, z〉M2 = x∗0 (U(0)x0 + P1ϕ) +

∫ 0

−H
ϕ(t)∗ ((P ∗1 x0)(t) + (P2ϕ)(t)) dt

= x∗0U(0)x0 + x∗0

m∑
k=1

∫ 0

−hk
U(−hk − θ)Akϕ(θ)dθ

+
m∑
k=1

∫ 0

−hk
ϕ(t)∗A>k U(t+ hk)x0dt

+

( m∑
k=1

∫ 0

−hk
ϕ(t)∗A>k

m∑
j=1

∫ 0

−hj
U(t− θ + hk − hj)Ajϕ(θ) dθ dt

+

∫ 0

−H
ϕ(t)∗(H + t)WHϕ(t)

)
dt.

(6.30)
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When we compare (6.30) with (6.29), and recall that U satisfies the symmetry condition
U(t) = U>(−t), we see that both expressions are identical, hence (6.22) holds.

From Theorem 6.20 we conclude that P satisfies (6.13).

Corollary 6.21. Given the generator A of the exponentially stable solution semigroup of
(6.1) in M2, then the operators P and Q of (6.19) and (6.18) associated with Hermitian
weights W0 and WH satisfy the Liapunov equation

〈PAz, z〉M2 + 〈z, PAz〉M2 = −〈z,Qz〉M2 , z ∈ D(A). (6.31)

Especially, the derivative of the functional v : D(A) → R+, z 7→ v(z) = 〈z, Pz〉M2 along
trajectories of the abstract Cauchy problem (2.6) is given by

v̇(z) := lim
t↘0

1
t
(v(x̂t(z))− v(z)) = −〈z,Qz〉M2 , z ∈ D(A). (6.32)

Proof. Let us first recall that by Proposition 2.10, z ∈ D(A) implies that t 7→ xt(z) = T (t)z
is a differential function for all t ∈ R+ which satisfies d

dt
xt(z) = Axt(z). Moreover for

z ∈ D(A), T (t)Az = AT (t)z for all t ∈ R+. Then by Theorem 6.20,

〈Pz,Az〉M2+〈Az, Pz〉M2 =

〈∫ ∞
0

T (t)∗QT (t)z dt, Az

〉
M2

+

〈
Az,

∫ ∞
0

T (t)∗QT (t)z dt

〉
M2

=

∫ ∞
0

〈Qxt(z), Axt(z)〉M2 + 〈Axt(z), Qxt(z)〉M2 dt

=

∫ ∞
0

〈Qxt(z), ẋt(z)〉M2 + 〈ẋt(z), Qxt(z)〉M2 dt

=

∫ ∞
0

d
dt
〈T (t)z,QT (t)z〉M2 dt = [〈T (t)z,QT (t)z〉M2 ]

∞
t=0 = −〈z,Q, z〉M2 .

Hence, v̇(z) equals −〈z,Qz〉 on z ∈ D(A).

If the weights W0 and WH are positive definite, then P satisfies the Liapunov inequality
(6.12) in M2 because Q is coercive.

6.2.2 Liapunov-Krasovskii Functionals

We now want to derive transient estimates for the solutions of the delay system (6.1). For
this we introduce the notion of a Liapunov-Krasovkii functional.

Definition 6.22. A continuous functional v : M2 → R+ is called a Liapunov-Krasovskii
functional for the delay equation (6.1) if it has the following properties

(i) There exist α1, α2 > 0 such that

α1 ‖x0‖2
2 ≤ v(z) ≤ α2 ‖z‖2

M2 for all z = (x0, ϕ) ∈M2. (6.33)
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(ii) For z ∈ D(A) the derivative v̇(z) = limt↘0
1
t

(v(x̂t(z))− v(z)) along solutions of (6.1)
exists, and there exists a constant β < 0 such that v̇(z) ≤ 2βv(z).

Theorem 6.23. Suppose that v : M2 → R+ is a Liapunov-Krasovskii functional satisfying
(i) and (ii) in Definition 6.22. Then the delay system (6.1) is exponentially stable and
satisfies the exponential estimate

‖x(t, z)‖2 ≤
√

α2

α1
eβt ‖z‖M2 , z ∈M2, t ≥ 0. (6.34)

On the other hand, if (6.1) is exponentially stable then for every given pair of positive
definite matrices W0,WH ∈ Hn

+(R) the functional v(z) = 〈z, Pz〉M2 defined by (6.30) is a
Liapunov-Krasovskii functional for (6.1) where P is defined in (6.19).

Proof. By definition, the Liapunov-Krasovskii functional v satisfies v̇(x̂t) ≤ 2βv(x̂t) for all
solutions x̂t = x̂t(z), t ≥ 0, with initial value z = (x0, ϕ) ∈ D(A). Then the derivative1 of
e−2βtv(xt) is given by

d
dt

(
e−2βtv(x̂t)

)
= e−2βt (v̇(x̂t)− 2βv(x̂t)) ≤ 0,

so that v(x̂t) ≤ e2βtv(z). By (6.33) we obtain for z ∈ D(A)

α1 ‖x(t, z)‖2
2 ≤ v(x̂t) ≤ e2βtv(z) ≤ e2βtα2 ‖z‖2

M2 , t ≥ 0.

Now, v is a continous functional on M2 and D(A) is dense in M2. Hence (6.34) holds for
all z ∈M2 and the delay system (6.1) is exponentially stable by Definition 6.3.
Conversely, if the delay system is exponentially stable we show that the functional v(z) =
〈z, Pz〉M2 of Theorem 6.20 is a Liapunov-Krasovskii functional. If W0 and WH are positive
definite then the operator Q ∈ L(M2) is a coercive self-adjoint operator, and Theorem 6.15
shows that P is also a coercive and bounded linear operator. Thus there exist constants
α1, α2 > 0, β1, β2 > 0 such that

α1 ‖z‖2
M2 ≤ 〈z, Pz〉M2 ≤ α2 ‖z‖2

M2 , β1 ‖z‖2
M2 ≤ 〈z,Qz〉M2 ≤ β2 ‖z‖2

M2 .

Clearly, α1 ‖x0‖2
2 ≤ α1 ‖z‖M2 for z = (x0, ϕ) ∈M2, and therefore (6.33) is satisfied. Since

v̇(z) = −〈z,Qz〉M2 for z ∈ D(A) by Corollary 6.21 we have v̇(z) ≥ −β2 ‖z‖2
M2 ≥ − β2

α1
v(z).

Hence v(z) = 〈z, Pz〉M2 is a Liapunov-Krasovskii functional for (6.1).

Theorem 6.23 shows that the existence of a Liapunov-Krasovskii functional defined in
Definition 6.22 provides a necessary and sufficient condition for the exponential stability
of the solution semigroup T of the delay equation (6.1).

Remark 6.24. Using the terminology of Chapter 2, the inequalities in (6.43) provide an
estimate for the eccentricity of the quadratic functional v(z) = 〈z, Pz〉M2 compared to the
M2-norm ‖·‖M2 =

√
〈·, ·〉M2 . An optimal value of β in Definition 6.22 (ii) corresponds

1For t = 0 this derivative is one-sided.
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to the initial growth rate of the generator A (6.10) with respect to the weighted norm
νP (z) =

√
〈z, Pz〉M2 , as for v(z) = νP (z)2 we get from Proposition 2.31 that

µ(A) = sup
z∈D(A)\{0}

Re
〈z, PAz〉M2

〈z, Pz〉M2

= sup
z∈D(A)\{0}

−〈z,Qz〉M2

2〈z, Pz〉M2

= 1
2

sup
z∈D(A)\{0}

v̇(z)

v(z)
.

With Corollary 2.17 we have µ(A) = inf {β ∈ R | for all z ∈ D(A), v̇(z) ≤ 2βv(z)} .
We can also consider Liapunov-Krasovskii functionals which operate on continuous seg-
ments. Let us define the following continuous counterpart to Definition 6.22.

Definition 6.25. A continuous functional v : C → R+ is a Liapunov-Krasovskii functional
for (6.1) if the following properties hold

(i) There exist α1, α2 > 0 such that for all ϕ ∈ C, α1 ‖ϕ(0)‖2
2 ≤ v(ϕ) ≤ α2 ‖ϕ‖2

∞ , where
‖ϕ‖∞ = supt∈[−h,0] ‖ϕ(t)‖2 .

(ii) The derivative along solutions v̇(ϕ) exists for all ϕ ∈ D(AC), and there exists β < 0
such that v̇(ϕ) ≤ 2βv(ϕ).

We obtain the following counterpart to Theorem 6.23.

Corollary 6.26. Let v : C → R+ be a Liapunov-Krasovskii functional satisfying Definition
6.25 (i) and (ii). Then the delay system (6.1) is exponentially stable. Its solutions satisfy
the exponential estimate

‖x(t, ϕ)‖2 ≤
√

α1

α2
eβt ‖ϕ‖∞ , ϕ ∈ C, t ≥ 0. (6.35)

On the other hand, if (6.1) is exponentially stable, then for every given pair of positive defi-
nite matrices W0,WH ∈ Hn

+(R) the functional v(ϕ) = 〈ϕ̂, P ϕ̂〉M2 is a Liapunov-Krasovskii
functional on C for (6.1) where P is defined in (6.19).

Proof. The proof of the exponential estimate (6.35) follows analogously to (6.34). We will
only show that ϕ 7→ v(ϕ) = 〈ϕ̂, P ϕ̂〉M2 is a Liapunov-Krasovskii functional on C. Let us
consider a continuous segment ϕ ∈ C. The associated M2-segment ϕ̂ = (ϕ(0), ϕ) ∈ M2

then satisfies the following inequalities

‖ϕ̂‖2
M2 = ‖ϕ(0)‖2

2 + ‖ϕ‖2
L2 ≤ ‖ϕ(0)‖2

2 +H ‖ϕ‖2
∞ ≤ (1 +H) ‖ϕ‖2

∞ ,

‖ϕ̂‖2
M2 = ‖ϕ(0)‖2

2 + ‖ϕ‖2
L2 ≥ ‖ϕ(0)‖2

2 ,

so that α1 ‖ϕ̂‖2
M2 ≤ v(ϕ) ≤ α2 ‖ϕ̂‖2

M2 implies that α1 ‖ϕ(0)‖2
2 ≤ v(ϕ) ≤ α2(1 + H) ‖ϕ‖2

∞.
The functional ϕ 7→ 〈ϕ̂, P ϕ̂〉M2 is a continuous function for all ϕ ∈ C and satifies (6.34),
hence also (6.35) (with different constants) for ϕ ∈ C. Hence it is a Liapunov-Krasovskii
functional on C.

Note that ϕ 7→ Pϕ̂ gives rise to a continuous function, i.e., U(0)ϕ(0) +P1(ϕ) = (P ∗1ϕ(0) +
P2ϕ)(0) is satisfied, if and only if ϕ ∈ D(AC).
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6.2.3 Complete Type Liapunov-Krasovskii Functionals

In a series of articles [81, 79, 78], V. Kharitonov and co-authors study so-called complete
type Liapunov-Krasovskii functionals v : C([−H, 0],Rn)→ R+, for which the the derivative
along trajectories, v̇(ϕ) = −w(ϕ), takes the following form

w(ϕ) = ϕ(0)>R0ϕ(0) +
m∑
k=1

ϕ(−hk)>Rkϕ(−hk) +
m∑
k=1

∫ 0

−hk
ϕ(θ)>Rm+kϕ(θ)dθ, (6.36)

where Rk ∈ Hn
+(R) are given positive definite weights. If ϕ ∈ C is a real continuous

segment then ϕ 7→ 〈ϕ̂, Qϕ̂〉M2 is of the form (6.36) with R0 = W0, R2m = WH , and
R1 = · · · = R2m−1 = 0. But this breaks the requirement of positive definite weights.
However, we have seen in the previous discussion that ϕ 7→ 〈ϕ̂, P ϕ̂〉M2 is a Liapunov-
Krasovskii functional, hence we do not need positive definite weights R1, . . . , R2m−1 in
(6.36).

Proposition 6.27. For every complete type Liapunov-Krasovskii functional v : C → R+

there exist weights W0 and WH such that the coercive operators P,Q : M2 →M2 given by
(6.19) and (6.18) satisfy for all continuous segments ϕ ∈ C

v(ϕ) ≥ 〈ϕ̂, P ϕ̂〉M2 and v̇(ϕ) ≤ −〈ϕ̂, Qϕ̂〉M2 .

Proof. The complete type functional v is induced by a quadratic functional w given by
(6.36). Setting W0 = R0 and WH = R2m we get Qϕ̂ = (W0ϕ(0),WHϕ) ∈ M2. Clearly,
〈ϕ̂, Qϕ̂〉M2 ≤ w(ϕ) = −v̇(ϕ). Now, by Theorem 6.20,

〈ϕ̂, P ϕ̂〉M2 =

∫ ∞
0

〈T (t)ϕ̂, QT (t)ϕ̂〉M2 dt ≤
∫ ∞

0

w(xt(ϕ̂)) dt = v(ϕ),

where the last equality follows from the construction of complete type Liapunov-Krasovskii
functionals, see [81].

We can modify the operator Q to account for more terms of the complete type functional.
To this end, we replace the matrix WH with an operator W : [−H, 0] → Hn

+(Rn), given
by W (t) =

∑m
k=1 1k(t)Wk with Wk positive definite. The multiplication of W (t) with

f ∈ L2([−H, 0], Rn) is defined pointwise. Then for Q
(
x
f

)
=
(

W0x
t7→W (t)f(t)

)
we have

〈ϕ̂, Qϕ̂〉M2 = ϕ(0)∗W0ϕ(0) +

∫ 0

−H
f(t)∗

m∑
k=1

1k(t)Wkf(t)dt

= ϕ(0)∗W0ϕ(0) +
m∑
k=1

∫ 0

−hk
f(t)∗Wkf(t)dt.

Hence all integral terms in (6.36) can be reconstructed by introducing a time-varying
positive definite matrix W (t), while the weighted point-delays associated with the weights
R1, . . . , Rm cannot be embedded into an M2-framework.
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6.3 Existence and Uniqueness of Delay Liapunov Ma-

trices

In the current and following sections we present an analysis of the properties of the delay
Liapunov matrix based upon a finite-dimensional approach.
We have seen in (6.30) that the delay Liapunov matrix U(t) is the building block in the
construction of 〈ϕ̂, P ϕ̂〉M2 . However, the integral representation U(t) =

∫∞
0
K(τ)>WK(t+

τ)dτ cannot be used for the numerical computation of the delay Liapunov matrix. We
therefore present an alternative characterization of U . The following description of U(t)
has been given in Datko [32] for the one-delay case.

Proposition 6.28. Suppose that (6.1) is exponentially stable. The delay Liapunov matrix
U : R → Rn×n given by (6.16) is a function which is differentiable on [0,∞) and satisfies
the following matrix delay differential equation2

U̇(t) = U(t)A0 +
m∑
k=1

U(t− hk)Ak, t ≥ 0, (6.37)

and the conditions

U(t) = U(−t)>, t ≤ 0, (6.38)

U(0)A0 + A>0 U(0) +
m∑
k=1

(
U(hk)

>Ak + A>k U(hk)
)

= −W. (6.39)

The condition (6.38) is called the symmetry condition as it implies U(0) = U(0)>, while (6.39)
is called the algebraic condition associated with the weight W . Using the one-sided deriva-
tive of U in t = 0 we can rewrite (6.39) as U̇(0) + U̇(0)> = −W .

Proof. We will verify that the improper integral (6.16) satisfies the delay equation (6.37)
and the additional conditions (6.38) and (6.39). The integral is well-defined for all t ∈ R
because (6.1) is exponentially stable. By Lemma 6.7 we have for t ≥ 0

d
dt
U(t) =

∫ ∞
0

K(τ)>W d
dt
K(t+ τ)dτ

=

∫ ∞
0

K(τ)>W

(
K(t+ τ)A0 +

m∑
k=1

K(t+ τ − hk)

)
dτ

=

∫ ∞
0

K(τ)>WK(t+ τ)A0dt+
m∑
k=1

∫ ∞
0

K(τ)>WK(t+ τ − hk)Akdτ

= U(t)A0 +
m∑
k=1

U(t− hk)Ak,

2In t = 0 we require that the one-sided derivative satisfies U̇(0+) = U(0)A0 +
∑m

k=1 U(−hk)Ak.
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whence U satisfies the differential delay equation (6.37). Again, as the differential equa-
tion for K(t) does not hold for t < 0 and is only one-sided in t = 0, we have U̇(0) =
limt↘0 U̇(t) = U(0)A0 +

∑m
k=1 U(−hk)Ak. The symmetry condition (6.38) has been shown

in (6.17). Using the symmetry condition (6.38) we rewrite (6.39) as

U(0)A0 + A>0 U(0)> +
m∑
k=1

(
U(−hk)Ak + A>k U(−hk)>

)
=

∫ ∞
0

K(τ)>W

(
K(τ)A0 +

m∑
k=1

K(τ − hk)Ak

)
+

(
K(τ)A0 +

m∑
k=1

K(τ − hk)Ak

)>
WK(τ)dτ

=

∫ ∞
0

K(τ)>W
(
d
dτ
K(τ)

)
+
(
d
dτ
K(τ)

)>
WK(τ)dτ = −K(0)>WK(0) = −W,

since limτ→∞K(τ) = 0 by exponential stability of (6.1).

For t = 0, equation (6.38) shows that U(0) is symmetric. Then the left hand side of (6.39)
can be written by U̇(0) + (U̇(0))>. Moreover, (6.39) is satisfied with W = 0 if and only if
U̇(0) = −(U̇(0))>, i.e., U(0) is skew-symmetric.
The solutions of (6.37),(6.38), and (6.39) may also be obtained in the following way, see
Louisell [96] for the one-delay case.

Proposition 6.29. Consider the transfer matrix of the delay system (6.1) given by

G(s) =

(
sI − A0 −

m∑
k=1

e−shkAk

)−1

, s ∈ %(A). (6.40)

If iR ⊂ %(A) then the integral

V (t) =
1

2π

∫ ∞
−∞

G(iω)∗WG(iω)eiωtdω, t ∈ R, (6.41)

is well-defined. If the delay equation (6.1) is exponentially stable then V (t) = U(t) for all
t ∈ R. Hence V satisfies (6.37),(6.38), and (6.39).

Proof. Let us first show that V (t) is well-defined if σ(A) does not contain purely imaginary
roots. By taking norms in (6.41) and using ‖G(iω)‖ = ‖G(iω)∗)‖ = ‖G(−iω)‖, we have
‖V (t)‖ ≤ π−1 ‖W‖

∫∞
0
‖G(iω)‖2

2 dω. Now ‖G(iω)‖ satisfies

‖G(iω)‖ = |ω|−1

∥∥∥∥∥∥
(
In − 1

iω
A0 −

m∑
k=1

1
iω
e−iωhkAk

)−1
∥∥∥∥∥∥ , ω 6= 0. (6.42)

For ω →∞ the right factor in (6.42) approaches 1, hence ω 7→ G(iω) is bounded on R by
continuity. Therefore there exists a constant M > 0 such that for all ω ∈ R with |ω| > 1,
‖G(iω)‖ ≤M |ω|−1 . Thus for all t ∈ R,

‖V (t)‖ ≤ 1
π
‖W‖

(∫ 1

0

‖G(iω)‖2 dω +

∫ ∞
1

(M
ω

)2dω

)
≤ 1

π
‖W‖

(
max
ω∈[0,1]

‖G(iω)‖2 +M2

)
.
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Therefore V is uniformly bounded.
Let us now show that V equals U if (6.1) is exponentially stable. As K ∈ L1 ∩ L2, the
Fourier(-Plancherel) transform of K is given by the L2 function ω 7→ G(iω). The inverse
transformation gives K(t) = 1

2π

∫∞
−∞G(iω)eiωtdω for t ≥ 0. Now consider the weighted

inner product

〈f, g〉W =

∫ ∞
−∞

g(θ)∗Wf(θ)dθ =

∫ ∞
−∞

(W
1/2g(θ))∗(W

1/2f(θ))dθ on L2(R,Cn).

Applying Parseval’s formula ([135, Equation (2.1.8)], [34, Section 6.5.2]) to this inner
product yields for all t ∈ R and x, y ∈ Rn

〈K(·+ t)x,K(·)y〉W =

∫ ∞
−∞
y∗K(θ)∗WK(t+ θ)x dθ = 1

2π

∫ ∞
−∞
y∗G(iω)∗WG(iω)eitωx dω.

But 〈K(·+ t)x,K(·)y〉W = y∗U(t)x for all x, y ∈ Cn. Therefore V equals the definition of
U in (6.16).

Note that by Proposition 6.29 the integral (6.41) exists if iR ⊂ %(Σ), hence this formula may
provide solutions of (6.37)–(6.39) also in case that the delay system is not exponentially
stable. The two Propositions 6.28 and 6.29 show that we have to study the existence
and uniqueness of solutions for (6.37),(6.38),(6.39) which we pose in form of the following
problem.

Problem 6.30. For a given symmetric positive definite matrix W ∈ Hn
+(R) find a contin-

uous matrix function U : R→ Rn×n which solves the delay differential equation (6.37) on
R+ (with initial function U |[−H,0]) and satisfies the conditions (6.38) and (6.39).

Instead of specifying an initial function directly, the initial function is given by the symme-
try condition, and hence by mirroring a part of the solution. In a sense, we deal here with
a boundary problem for delay equations. Let us comment on the smoothness of solutions.
Assume that we have a solution of (6.37)–(6.39) for the initial matrix segment U |[−H,0]. If
the initial function U |[−H,0] is continuous, then this solution is continuously differentiable.
But by symmetry (6.38), the initial function is itself continuously differentiable. Repeating
this argument, we see that U is infinitely differentiable, with a possible exception at t = 0
where the delay equation (6.37) only determines the one-sided derivative U̇(0+).
For the choice W = W0 + HWH we obtain a functional U that can be used for the
construction of Liapunov-Krasovskii functionals in Theorem 6.23. Here U does not depend
directly on the terms W0 and WH , but only via the sum W0 +HWH .
We will now show that equation (6.37) and conditions (6.38),(6.39) uniquely determine the
delay Liapunov matrix if (6.1) is exponentially stable.

Theorem 6.31. Suppose that (6.1) is exponentially stable. Given a Hermitian W there
exists a unique solution of (6.37) satisfying the conditions (6.38) and (6.39) which is given
by the matrix U(t) of (6.16).
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Proof. By Proposition 6.28, U(t) given by (6.16) is a solution of (6.37)–(6.39). Let us now
assume that Problem 6.30 has two different solutions U1(t) and U2(t) for a given W . We
define two functionals vi : M2 → R+, i = 1, 2, which operate on z = (x0, ϕ) ∈M2,

vi(z) = x∗0U
i(0)x0 +

m∑
k=1

2Rex∗0

∫ 0

−hk
U i(−hk − θ)Akϕ(θ)dθ+

+
m∑
k=1

m∑
j=1

∫ 0

−hk
ϕ(θ2)∗A>k

[∫ 0

−hj
U i(θ2 − θ1 + hk − hj)Ajϕ(θ1)dθ1

]
dθ2 (6.43)

corresponding to U1 and U2, respectively. These functionals satisfy vi(z) = 〈z, P iz〉M2

where P i : M2 → M2 are given by (6.19), (6.20) with U replaced by U i and where
WH = 0. Hence by Corollary 6.21 we have

v̇i(x̂t(z)) = −x(t, z)∗Wx(t, z) for t ≥ 0, z ∈ D(A), i = 1, 2.

Thus the difference v(x̂t) = v2(x̂t) − v1(x̂t) satisfies the equality v̇(x̂t) = 0, t ≥ 0. This
shows that for all initial segments z ∈ D(A) and all t ≥ 0 we have v(x̂t(z)) = v(z) as v
is constant along solutions of (6.1). By exponential stability of (6.1), ‖x̂t(z)‖M2 → 0 as
t → ∞, therefore it follows from Definition 6.22 that also v(x̂t(z)) → 0 for t → ∞ which
implies that v(z) = 0 for every initial segment z ∈ M2. Now, D(A) is dense in M2 and
therefore v(z) = 0 for all z ∈M2. Using U(t) = U2(t)− U1(t) in (6.43) for t = 0 yields

0 = x∗0U(0)x0 +
m∑
k=1

2Rex∗0

∫ 0

−hk
U(−hk − θ)Akϕ(θ)dθ+

+
m∑
k=1

m∑
j=1

∫ 0

−hk
ϕ(θ2)∗A>k

(∫ 0

−hj
U(θ2 − θ1 + hk − hj)Ajϕ(θ1)dθ1

)
dθ2, (6.44)

because U(t) = U2(t) − U1(t) satisfies the conditions of Problem 6.30 with W = 0. Now
for y ∈ Cn consider the M2-initial value z = (y, 0). For this z all integrals in (6.44) vanish
and hence (6.44) takes the form y>U(0)y = 0. Since y is an arbitrary vector and U(0) is
a symmetric matrix, U(0) = 0 must hold. Now, fix an index i ∈ {1, 2 . . . ,m} and choose
τ ∈ [−hi,−hi−1) and ε > 0 such that τ + ε < −hi−1. For any two given vectors y, y′ ∈ Cn

consider now the initial value

z = (y, ϕ) ∈M2, ϕ(t) =

{
y′, t ∈ [τ, τ + ε],

0, for all other t ∈ [−H, 0).

For this z ∈M2, condition (6.44) now reads

0 =
m∑
k=i

2Re y∗
(∫ τ+ε

τ

U(−hk − θ)Akdθ
)
y′+

+
m∑
k=i

m∑
j=i

y′∗A>k

(∫ τ+ε

τ

∫ τ+ε

τ

U(θ1 − θ2 − hk + hj)dθ1dθ2

)
Ajy

′.
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If ε > 0 is small then the first integral is proportional to ε while the double integral is
proportional to ε2 so that the last equation can be written as

0 = 2Re εy∗

(
m∑
k=i

U(−hk − τ)Ak

)
y′ + o(ε),

where o(ε)
ε
→ 0 as ε→ 0. As y and y′ are arbitrary vectors and as ε can be made arbitrarily

small,
m∑
k=i

U(t− hk)Ak = 0 for t ∈ (hi−1, hi]. (6.45)

Now (6.45) holds for all i = 1, 2, . . . ,m. For i = 1 we therefore obtain from (6.37) the
differential equation U̇(t) = U(t)A0 for t ∈ (0, h1] as

∑m
k=1 U(t − hk)Ak = 0. But we

already know U(0) = 0, and hence U(t) = 0 for all t ∈ [0, h1]. On the interval (h1, h2]
equations (6.37) and (6.45) for i = 2 now yield the delay equation U̇(t) = U(t)A0 + U(t−
h1)A1. But on the interval [0, h1], U(t) is constantly 0, therefore U(t) = 0 for t ∈ (h1, h2].
Continuing this process we conclude that U(t) = 0, t ∈ [0, H], i.e., U1(t) = U2(t) for all
t ∈ [−H,H]. Hence every solution of Problem 6.30 is given by the integral (6.16) whenever
(6.1) is exponentially stable.

Let us now investigate under which conditions equation (6.37) has no solution satisfying
the conditions (6.38) and (6.39). Of course, by the previous Theorem 6.31 such a situation
may only occur if system (6.1) is not exponentially stable. We first discuss the relationship
between solvability of (6.37)–(6.39) and the uniqueness of its solutions.

Proposition 6.32. The solution set U0 of (6.37)–(6.39) associated with W = 0 forms a
real linear subspace. If U0 is non-trivial, then the solution set UW for a given W ∈ Hn(R) is
either empty or given by UW = U0 +UW where UW is a particular solution of (6.37)–(6.39)
associated with W .

Proof. Equations (6.37)–(6.39) represent a system of affine equations for continuous and
apart from 0 differentiable matrix functions U : R → Rn×n. The associated homogeneous
system of equations is given by (6.37)–(6.39) with W = 0.

In Corollary 6.21 we constructed a solution of the operator Liapunov equation given the
explicit integral formula (6.16) of the delay Liapunov matrix U . Let us now show that
the same construction can be accomplished given a solution of equations (6.37)–(6.39) in
Proposition 6.28.

Theorem 6.33. Let W0 = W and WH = 0. If U : [−H,H] → Rn×n is a solution of
(6.37)–(6.39) then for z = (x0, ϕ), z̃ = (y0, ψ) in D(A) and for solutions xt = x(t + ·, z),
yt = x(t+ ·, z̃) of (6.1) we have

d
dt
〈x̂t, P ŷt〉M2 = −〈x(t),Wy(t)〉2, t > 0, (6.46)

where P is given by (6.19) and (6.20).
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Especially for z = z̃ =
(
x
ϕ

)
∈M2, P is a solution of the Liapunov equation with right hand

side 〈x,Wx〉2. However, as this it not coercive in M2 , it is not clear if P is a coercive
self-adjoint bounded linear operator.

Proof. We have to verify that the derivative of 〈P ŷt, x̂t〉M2 equals −〈Wy(t), x(t)〉2 =

〈(U̇(0) + U̇(0)>)y(t), x(t)〉2. We write down the derivative in (6.46) more explicitly,

d
dt〈P ŷt, x̂t〉M2 =

〈
P
(yt(0)
yt(·)

)
, A
(xt(0)
xt(·)

)〉
M2

+
〈
PA
(yt(0)
yt(·)

)
,
(xt(0)
xt(·)

)〉
M2

= ẋ(t)∗ (U(0)y(t) + (P1yt)) +
∫ 0

−H
ẋt(θ)∗ ((P ∗1 y(t))(θ) + (P2yt)(θ)) dθ

+ x(t)∗ (U(0)ẏ(t) + (P1ẏt)) +
∫ 0

−H
xt(θ)∗ ((P ∗1 ẏ(t))(θ) + (P2ẏt)(θ)) dθ

= (U(0)ẋ(t) + (P1ẋt))
∗ y(t) +

∫ 0

−H
((P ∗1 ẋ(t))(θ) + (P2ẋt)(θ))

∗ yt(θ)dθ

+ x(t)∗ (U(0)ẏ(t) + (P1ẏt)) +
∫ 0

−H
xt(θ)∗ ((P ∗1 ẏ(t))(θ) + (P2ẏt)(θ)) dθ, (6.47)

where we used the duality of P1 and P ∗1 , see Lemma 6.19. Let us start by computing the
difference of U̇(0)x(t)−U(0)ẋ(t). By (6.37) U satisfies U̇(t) = U(t)A0 +

∑m
k=1 U(t−hk)Ak

on t ≥ 0, while the solution x(t) of (6.3) satisfies ẋ(t) = A0x(t) +
∑m

k=1Akx(t − hk) on
t ≥ 0. By partial integration we obtain

U̇(0)x(t)−U(0)ẋ(t) =
m∑
k=1

U(−hk)Akx(t)−U(0)Akx(t−hk)

=
m∑
k=1

[
U(−θ− hk)Akx(t+ θ)

]0
θ=−hk

=
m∑
k=1

∫ 0

−hk
U(−θ − hk)Akẋ(t+ θ) + d

dθ (U(−θ − hk))Akx(t+ θ) dθ

= (P1ẋt) +
m∑
k=1

∫ 0

−hk

d
dθ (U(−θ − hk))Akx(t+ θ) dθ.

(6.48)

For the ease of notation let us introduce the operator

P3 : R× L2 → Cn, P3(τ, xt) =
m∑
k=1

∫ 0

−hk

d
dθ

(U(τ − θ − hk))Akxt(θ) dθ,

so that (6.48) can now be written as U(0)ẋ(t) + P1(ẋt) = U̇(0)x(t)− P3(0, xt).

We now study the term Z :=
∫ 0

−H xt(θ)
∗ ((P ∗1 ẏ(t))(θ) + (P2ẏt)(θ)) dθ. We obtain the fol-

lowing expression,

Z =
m∑
k=1

∫ 0

−hk
xt(θ1)∗A>k

(
U(θ1 + hk)ẏ(t) +

m∑
j=1

∫ 0

−hj
U(θ1 − θ2 + hk − hj)Aj ẏt(θ2) dθ2

)
dθ1.



DELAY LIAPUNOV MATRICES 153

If we now replace ẏ(t) by A0y(t) +
∑m

j=1Ajy(t− hj) in Z we get

Z =
m∑
k=1

∫ 0

−hk
xt(θ1)∗A>k

(
U(θ1 + hk)A0y(t) +

m∑
j=1

U(θ1 + hk)Ajy(t− hj)

+

∫ 0

−hj
U(θ1 − θ2 + hk − hj)Aj ẏt(θ2) dθ2

)
dθ1.

The inner sum can be modified by partial integration analogously to (6.48), thus

m∑
j=1

U(θ1 + hk)Ajy(t− hj) +

∫ 0

−hj
U(θ1 − θ2 + hk − hj)Aj ẏt(θ2)dθ2

=
m∑
j=1

U(θ1+ hk− hj)Ajy(t)−
∫ 0

−hj

d
dθ2

(U(θ1− θ2+ hk− hj))Ajyt(θ2)dθ2

=

(
m∑
j=1

U(θ1+ hk− hj)Ajy(t)

)
− P3(θ1 + hk).

We therefore obtain using the symmetry of U

Z =
m∑
k=1

∫ 0

−hk
xt(θ1)∗A>k

(
U(θ + hk)A0y(t)+

m∑
j=1

U(θ+hk −hj)Ajy(t)−P3(θ+hk)

)
dθ

=
m∑
k=1

∫ 0

−hk
xt(θ)

∗A>k

(
U̇(θ + hk)y(t)− P3(θ + hk, yt)

)
dθ

=

(
m∑
k=1

∫ 0

−hk

d
dθ

(U(−θ − hk)Akxt(θ)dθ

)∗
y(t)−

m∑
k=1

∫ 0

−hk
xt(θ)

∗A>k P3(θ + hk, yt)

= P3(0, xt)
∗y(t)−

m∑
k=1

∫ 0

−hk
xt(θ)

∗A>k P3(θ + hk, yt).

(6.49)

A dual result holds when exchanging xt and yt so that we can treat both integral terms in
(6.47). We now have all the results ready to write d

dt
〈x̂t, P ŷt〉M2 without explicit depen-

dency on the derivative of the trajectories. Using (6.48) and (6.49), (6.47) now reads

d
dt
〈x̂t, P ŷt〉M2 =

(
U̇(0)x(t)− P3(0, xt)

)∗
y(t)

+ x(t)∗P3(0, yt) + x(t)∗
(
U̇(0)y(t)− P3(0, yt)

)
+ P3(0, yt)

∗y(t)

−
m∑
k=1

∫ 0

−hk

(
P3(θ + hk, xt)

∗Aky(θ) + xt(θ)
∗A>k P3(θ + hk, yt)

)
dθ

= x(t)∗
(
U̇(0)> + U̇(0)

)
y(t) = −x(t)∗Wy(t).
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To verify this equality we have to check that the sum involving the P3 operators vanishes.
But this follows after a small calculation from(

d
dθ2
U(θ1 + hk − θ2 − hj)

)>
= − d

dθ1
U(θ2 + hj − θ1 − hk).

Hence (6.46) holds for all M2-initial conditions.

In the following we describe a situation where there exists a weight W ∈ Hn(R) such that
there exists no associated solution. We need the following technical lemma.

Lemma 6.34. For two non-trivial vectors x, y ∈ Cn there exists a real symmetric matrix
W ∈ Rn×n such that x∗Wy 6= 0.

Proof. Assume that x and y are linearly independent vectors. Then the Cauchy-Schwarz
inequality yields |x∗y|2 < ‖x‖2 ‖y‖2, hence

x∗(xy∗ + yx∗)y = ‖x‖2 ‖y‖2 + (x∗y)2 6= 0.

For linearly dependent vectors, choose W = In.

Proposition 6.35. If there exists λ0 ∈ C such that {λ0,−λ0} ⊂ σ(A), i.e.,

det

(
±λ0In − A0 −

m∑
k=1

e∓λ0hkAk

)
= 0, (6.50)

then there exists a symmetric matrix W for which (6.37) has no solution satisfying the con-
ditions (6.38)–(6.39). Moreover, in this case there exists a non-trivial solution of (6.37)–
(6.39) with W = 0.

Proof. Assume by contradiction that for every symmetric matrix W , equation (6.37) has
a solution satisfying conditions (6.38)–(6.39). Note that as the matrices Ak are all real,
λ ∈ σ(A) implies that λ̄ ∈ σ(A). Thus we can pick two eigenmotions of system (6.1)
associated with the eigenvalues λ1 = λ0 and λ2 = −λ̄0 (see Definition 6.4) which are of the
form

x(1)(t) = eλ1tx, x(2)(t) = eλ2ty, x, y ∈ Cn, x, y 6= 0, t ≥ −H, (6.51)

and which are solutions of (6.1). By Lemma 6.34 there exists a symmetric matrix W
such that x∗Wy 6= 0. Now by assumption, (6.37) has a solution U(t) which satisfies the
conditions (6.38)–(6.39). Let us define the bilinear functional for z = (x0, ϕ), z̃ = (x̃0, ϕ̃)

p(z, z̃) = x∗0U(0)x̃0 +
m∑
j=1

x∗0

∫ 0

−hj
U(−hj − θ)Ajϕ̃(θ)dθ

+
m∑
k=1

∫ 0

−hk
ϕ(θ)∗A>k U(hk + θ)dθx̃0

+
m∑
k=1

m∑
j=1

∫ 0

−hk
ϕ(θ2)∗A>k

∫ 0

−hj
U(θ2 − θ1 + hk − hj)Ajϕ̃(θ1)dθ1dθ2, (6.52)
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i.e., p(z, z̃) = 〈P z̃, z〉M2 where P : M2 → M2 is given by (6.19) and (6.20) with WH = 0.
To see this, compare (6.52) with (6.30). Note that we do not assume that U is of the form
(6.16). However, U solves Problem 6.30. The solutions x(1)(t) and x(2)(t) defined by (6.51)
are in the domain of A, hence we can apply Theorem 6.33. We obtain

d
dt
p(x̂

(1)
t , x̂

(2)
t ) = −x(1)(t)∗Wx(2)(t) = −e(λ̄1+λ2)tx∗Wy = −x∗Wy 6= 0. (6.53)

On the other hand, direct substitution of these solutions into the bilinear functional yields

p(x̂
(1)
t , x̂

(2)
t ) = e(λ̄1+λ2)tx∗

[
U(0) +

m∑
j=1

∫ 0

−hj
U(−hj − θ)Ajeλ2θ + A>j U(hj + θ)eλ̄1θdθ+

+
m∑
k=0

m∑
j=0

∫ 0

−hk

∫ 0

−hj
eλ2θ1+λ̄1θ2A>k U(θ2 − θ1 + hk − hj)Ajdθ1dθ2

]
y.

Observe that the matrix in square brackets does not depend on t. The condition λ̄1 +λ2 =
λ0 − λ0 = 0 therefore implies that

d
dt
p(x̂

(1)
t , x̂

(2)
t ) = 0. (6.54)

But this is in contradiction to (6.53). Hence there exists no solution of (6.37) satisfying
(6.38)–(6.39) for the special choice of W .
If W = 0 then for any non-trivial solution U of (6.37)–(6.39), U̇(0) is skew-symmetric while
U(0) is symmetric, see the discussion following Proposition 6.28. We now construct such a
solution. By (6.50) there exist vectors vi ∈ Cn, vi 6= 0, such that v>i (A0+

∑m
k=1 e

−λihkAk) =
λiv
>
i for i = 1, 2 where λ1 = λ0, λ2 = −λ0. Define

U(t) = eλ0tv2v
>
1 +e−λ0tv1v

>
2 +eλ̄0tv̄2v

∗
1 +e−λ̄0tv̄1v

∗
2 = Re

(
eλ0tv2v

>
1 + e−λ0tv1v

>
2

)
, t ∈ R,

which is real and satisfies the symmetry condition (6.38). Here the real (or Hermitian) part
of a matrix A ∈ Cn×n is given by ReA = 1

2
(A + A∗). Now U also satisfies the differential

equation (6.37) for every t ∈ R, as

U(t)A0+
m∑
k=1

U(t−hk)Ak=2Re

(
eλ0tv2v

>
1(A0 +

m∑
k=1

e−λ0hkAk)+e−λ0tv1v
>
2(A0 +

m∑
k=1

eλ0hkAk)

)
= 2Re

(
λ0e

λ0tv2v
>
1 − λ0e

−λ0tv1v
>
2

)
= U̇(t).

For t = 0 the derivative U̇(0) = 2Re
(
λ0(v2v

>
1 − v1v

>
2 )
)

is skew-symmetric, hence (6.39) is
satisfied with W = 0.

Remark 6.36. The proof Proposition 6.35 shows that under the condition that there are
two eigenvalues of (6.1) with sum 0 or 0 ∈ σ(A), Problem 6.30 has a non-trivial solution
of W = 0. It is generally not known if the condition of Proposition 6.35 is the only critical
condition.

We will investigate this question for systems with one delay (m = 1) in the next section.
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6.4 The One-Delay Case

Let us now assume that system (6.1) has only one delay term h > 0 (m = 1),

ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0. (6.1’)

We study existence and uniqueness issues for this case.

The symmetry condition (6.38) allows us to reformulate the differential equation (6.37)
for U as a delay-free ordinary differential matrix equation. This has already been studied
in Infante and Castellan [73] and Datko [32]. A recent analysis of this approach may be
found in Luisell [98, 99] where it is used to locate those eigenvalues of (6.1’) which lie on
the imaginary axis. Consider the following problem formulation.

Problem 6.37. For a given symmetric matrix W ∈ Rn×n find a solution U : [−h, h] →
Rn×n satisfying

U̇(t) = U(t)A0 + U(t− h)A1, t ∈ [0, h], (6.55)

U(t) = U(−t)>, t ∈ [−h, h] (symmetry condition),

U(0)A0 + U(h)>A1 + A>0 U(0) + A>1 U(h) = −W (algebraic condition).

As this problem is just the restriction of Problem 6.30 to t ∈ [−h, h] andm = 1, any solution
of Problem 6.37 is called a delay Liapunov matrix for (6.1’). Note that we do not assume
exponential stability, so the integral representation (6.16) is not applicable. Therefore not
only uniqueness, but also existence of delay Liapunov matrices must be investigated. We
do so by introducing the following boundary value problem for a delay-free system for
which the solution set is basically equivalent to the one of Problem 6.37.

Problem 6.38. For a given symmetric matrix W ∈ Rn×n find solutions U, V : [0, h] →
Rn×n of the ordinary differential system

U̇(t) = U(t)A0 + V (t)A1, V̇ (t) = −A>1 U(t)− A>0 V (t), (6.56)

which satisfy the two conditions

U̇(0)− V̇ (h) = −W, U(0)− V (h) = 0. (6.57)

Here U̇(0) and V̇ (h) serve as a shorthand notation for the one-sided derivatives,

U̇(0) := lim
t↘0

U̇(t) = U(0)A0 + V (0)A1 and V̇ (h) := lim
t↗h

V̇ (t) = −A>1 U(h)− A>0 V (h).

The differential equation for V is called the counterflow equation, see Marshall et al. [105].
Let us reformulate equations (6.56) and (6.57) by introducing linear operators working on
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pairs of matrices,

A : Rn×n × Rn×n → Rn×n × Rn×n,

(
U

V

)
7→
(

UA0 + V A1

−A>1 U − A>0 V

)
, (6.58)

πi : Rn×n × Rn×n → Rn×n,

(
X1

X2

)
7→ Xi, i = 1, 2,

B1,B2 : Rn×n × Rn×n → Rn×n, B1 = (π1 − π2e
Ah)A, B2 = π1 − π2e

Ah,

B =

(
B1

B2

)
: Rn×n × Rn×n → Rn×n × Rn×n. (6.59)

Then Problem 6.38 can be written compactly as ẋ(t) = Ax(t) on t ∈ [0, h] with the
boundary condition

Bx(0) =
(−W

0

)
for x(0) ∈ Rn×n × Rn×n. (6.60)

From (6.59) we see that the kernel of B satisfies ker B = ker B1 ∩ ker B2. If this kernel is
trivial then B is a vector-space automorphism of Rn×n × Rn×n.

Corollary 6.39. A solution of Problem 6.38 is obtained by prescribing an initial value
x(0) =

(
U0

V0

)
= B−1

(−W
0

)
for ẋ(t) = Ax(t). Then x(t) =

(
U(t)
V (t)

)
where U(t) and V (t) are a

solution of Problem 6.38. Moreover, a solution of Problem 6.38 is uniquely determined if
and only if the boundary operator B is invertible.

In particular, if x(t) is such a solution then the symmetry condition is regained by

B2x(0) = π1x(0)− π2x(h) = π1

(
U(0)
V (0)

)
− π2

(
U(h)
V (h)

)
= U(0)− V (h) = 0,

and the algebraic condition reappears from

B1x(0) = B2Ax(0) = B2ẋ(0) = B2

(U̇(0)

V̇ (0)

)
= U̇(0)− V̇ (h) = −W.

Here we used that if x(t) is a solution of the linear system ẋ = Ax then ẋ(t) is also a
solution.

The solution sets of Problems 6.37 and 6.38 are equivalent in the following sense.

Proposition 6.40. If U : [−h, h] → Rn×n is a solution of Problem 6.37 then the pair
(U, V ) : [0, h] → Rn×n × Rn×n with V (t) = U(h − t)> solves Problem 6.38. If the pair
(U, V ) : [0, h]→ Rn×n × Rn×n solves Problem 6.38 then

Ũ(t) = 1
2

{
U(t) + V (h− t)>, t ∈ [0, h],

U(−t)> + V (h+ t), t ∈ [−h, 0),
solves Problem 6.37.
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Proof. Suppose that U(t) solves Problem 6.37. Set V (t) = U(h− t)>. By symmetry,

U̇(t) = U(t)A0 + U(h− t)>A1 = U(t)A0 + V (t)A1, t ∈ [0, h],

V̇ (t) = −A>0 U(h− t)> − A>1 U(h− (h− t))> = −A>1 U(t)− A>0 V (t), t ∈ [0, h].
(6.61)

Moreover, the symmetry condition U(0) = U(0)> gives U(0) = V (h). Applying this equal-
ity and V (0) = U(h)> to the algebraic condition in (6.55) yields

−W = U(0)A0 + U(h)>A1 + A>0 U(0) + A>1 U(h) =

= U(0)A0 + V (0)A1 + A>0 V (h) + A>1 U(h) = U̇(0)− V̇ (h).

Therefore the pair (U(t), V (t)) solves Problem 6.38.
On the other hand, given a solution pair (U, V ) of Problem 6.38, the pair (Û(t), V̂ (t)) =
(V (h− t)>, U(h− t)>) also solves Problem 6.38 since

˙̂
U(t) = −

(
−A>1 U(h− t)− A>0 V (h− t)

)>
= Û(t)A0 + V̂ (t)A1,

˙̂
V (t) = − (U(h− t)A0 + V (h− t)A1)> = −A>1 Û(t)− A>0 V̂ (t).

Furthermore we have Û(0)− V̂ (h) = V (h)> − U(0)> = 0 and by symmetry of W

˙̂
U(0)− ˙̂

V (h) = Û(0)A0 + V̂ (0)A1 + A>1 Û(h) + A>0 V̂ (h) =

= V (h)>A0 + U(h)>A1 + A>1 V (0)> + A>0 U(0)> =

=
(
A>0 U(0) + A>1 U(h) + V (0)A1 + V (h)A0

)>
=
(
U̇(0)− V̇ (h)

)>
= −W.

We will now show that Ũ defined in the proposition solves Problem 6.37. Note that
Ũ = 1

2
((U(t) + Û(t)) on [0, h]. Hence for t ∈ [0, h]

˙̃U(t) = 1
2
(U(t) + V (h− t)>)A0 + 1

2
(V (t) +U(h− t)>)A1 = Ũ(t)A0 + Ũ(h− t)>A1. (6.62)

To verify the symmetry condition for Ũ it only remains to check Ũ(0) = Ũ(0)> since by
definition Ũ(t) = Ũ(−t)> on [−h, 0). But the condition U(0) = V (h) of (6.57) implies that

Ũ(0) = 1
2

(
U(0) + V (h)>

)
= 1

2

(
V (h) + U(0)>

)
= Ũ(0)>. (6.63)

Let us now verify the algebraic condition. Since W is symmetric, we have by (6.57) that

−W = 1
2

((
U̇(0)−V̇ (h)

)
+
(
U̇(0)−V̇ (h)

)>)
. From this equation we obtain by using the

symmetry of Ũ(0), (6.63), and the differential equations for U and V in (6.61) that

−W = 1
2

(
(U(0) + V (h)>)A0 + (V (0) + U(h)>)A1

)
+ 1

2

(
A>1 (U(h) + V (0)>) + A>0 (V (h) + U(0)>)

)
= Ũ(0)A0 + Ũ(h)>A1 + A>1 Ũ(h) + A>0 Ũ(0)>,

which is the algebraic condition for Ũ of Problem 6.37. Hence Ũ is a solution of Prob-
lem 6.37.
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From the proof of Proposition 6.40 we get the following corollary.

Corollary 6.41. Given a solution pair (U(t), V (t)) of Problem 6.38 with t ∈ [0, h].

1. The pair (Ũ(t), Ṽ (t)) = 1/2(U(t)+V (h−t)>, V (t)+U(h−t)>) also solves Problem 6.38
and satisfies Ũ(t) = Ṽ (h− t)> for t ∈ [0, h], and Ũ(0) = Ũ(0)>.

2. If the solution pair of problem 6.38 is uniquely determined then U(t) = V (h− t)> for
t ∈ [0, h].

The last item raises the uniqueness problem, for which we present the following uniqueness
theorem.

Theorem 6.42. The following statements are equivalent.

(i) There exists a non-trivial solution pair (U, V ) of Problem 6.38 associated with W = 0.

(ii) The boundary condition of Problem 6.38 is singular, i.e., ker B 6= {0}.

(iii) There exists λ ∈ C such that

det(λI − A0 − A1e
−λh) = 0 and det(−λI − A0 − A1e

λh) = 0. (6.64)

In this case, λ,−λ ∈ σ(A).

(iv) There exists λ ∈ σ(A) for which an associated eigenvector of A takes the form
(
U0

ζU0

)
∈

Cn×n × Cn×n, U0 6= 0, ζ ∈ C, with ζ = e−λh.

For the proof we recall the following technical lemma, see e.g., Arnold [5].

Lemma 6.43 (Unique Representation of Quasi-Polynomials). Given a quasi-polynomial
ϕ(t) =

∑`
i=1 e

λitpi(t) where λi ∈ C, λi 6= λj for i 6= j, and pi ∈ C[t] are polynomials. Then
ϕ ≡ 0 implies pi ≡ 0 for all i = 1, . . . , `.

Proof (of Theorem 6.42). (iii) =⇒ (iv). Let λ ∈ C such that det(±λI −A0−A1e
∓λh) = 0.

Then there exist non-trivial vectors v, w ∈ Cn such that

v>
(
λI − A0 − A1e

−λh) = 0 and w>
(
−λI − A0 − A1e

λh
)

= 0, i.e.,

λv> = v>
(
A0 + A1e

−λh) and λw> = w>
(
−A0 − A1e

λh
)
. (6.65)

Setting U0 = wv> and V0 = e−λhwv> the pair
(
U0

V0

)
∈ Cn×n × Cn×n is an eigenvector of A

corresponding to λ, as

A

(
U0

V0

)
=

(
wv>A0 + e−λhwv>A1

−A>1 wv>− A>0 e−λhwv>

)
=

(
wv>(A0 + e−λhA1)

(−A>0 e−λh−A>1 )wv>

)
=λ

(
wv>

e−λhwv>

)
= λ

(
U0

V0

)
,

where we used (6.65) to extract λ ∈ C. Since V0 = e−λhU0, we have found an eigenvector
of the required structure. If λ = 0 then U0 = V0 = vv>.
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(iv) =⇒ (ii). An eigenvector
(
U0

V0

)
of A corresponding to λ ∈ σ(A) which satisfies V0 =

e−λhU0 also satisfies the boundary condition B
(
U0

V0

)
= 0 as

B2

(
U0

V0

)
= U0 − π2e

Ah
(
U0

V0

)
= U0 − π2e

λh
(
U0

V0

)
= U0 − eλhV0 = U0 − eλh(e−λhU0) = 0,

whence B1

(
U0

V0

)
= B2A

(
U0

V0

)
= λB2

(
U0

V0

)
= 0. Therefore ker B1 ∩ ker B2 = ker B 6= {0}, i.e.,

the boundary condition is not regular.
(ii) =⇒ (i). Suppose that the boundary condition of Problem 6.38 is singular. Then
there exists a non-trivial pair of vectors (U0, V0) which satisfies B1

(
U0

V0

)
= 0 = B2

(
U0

V0

)
. But

choosing (U0, V0) as the initial value for the differential equation d
dt

(
U(t)
V (t)

)
= A

(
U(t)
V (t)

)
gives a

non-trivial solution (U, V ) : R+ → Rn×n × Rn×n of Problem 6.38 corresponding to W = 0
as U(0)− V (h) = 0, U̇(0)− V̇ (h) = 0, see Corollary 6.39.
(i) =⇒ (iii). By Corollary 6.41 a non-trivial solution can be chosen in such way that
U(t) = V (h − t)>, U(0) = U(0)> and U̇(0) = V̇ (h) (i.e., W = 0). Clearly, the solutions
of the differential equations (6.56) not only exist on [0, H] but on the whole real line.
Then U̇(0) and V̇ (h) are two-sided derivatives. We now show that the symmetry condition
U(−t) = U(t)> automatically holds for all t ∈ R. For this we prove U(t) = V (t + h). To
see this consider the second order derivatives

Ü(t) = U̇(t)A0 + V̇ (t)A1 = U̇(t)A0 −
(
A>1 U(t) + A>0 V (t)

)
A1

= U̇(t)A0 − A>0 U̇(t) + A>0 U(t)A0 − A>1 U(t)A1,

V̈ (t) = −A>1 U̇(t)− A>0 V̇ (t) = −A>1 (U(t)A0 + V (t)A1)− A>0 V̇ (t)

= V̇ (t)A0 − A>0 V̇ (t) + A>0 V (t)A0 − A>1 V (t)A1.

Hence U and V satisfy the same second order differential equation

Ẍ(t) = Ẋ(t)A0 − A>0 Ẋ(t) + A>0 X(t)A0 − A>1 X(t)A1. (6.66)

By the time-invariance of (6.66) it follows that t 7→ V (t + h) is also a solution of (6.66).
Since U(0) = V (h) and U̇(0) = V̇ (h), this solution satisfies the same initial conditions as
U and therefore U(t) = V (t + h) for all t ∈ R. Corollary 6.41 then yields the symmetry
result U(t) = V (t+ h) = U(−t)>.
Furthermore, the solution pair (U, V ) is given by a sum of eigenmotions of the finite-
dimensional system (6.56). Hence, when projecting on the first component, there exist
λi ∈ C and matrices Zik ∈ Cn×n, i = 1, . . . , `, k = 0, . . . , Ni, such that

{
eλittkZik

}
is

a basis of the solution space for the U -component of (6.56) where λi ∈ σ(A) are the
associated eigenvalues and Zik ∈ Cn×n are the U -components of generalized eigenvectors
of (6.56). Therefore

U(t) =
∑
i∈I

eλit
∑
k∈Ki

tkZik, I ⊂ {1, . . . , `}, Ki ⊂ {0, . . . , Ni}, t ∈ R,

where the coefficients are incorporated in Zik 6= 0. Since U(t) = V (h− t)> = V (h+ t), the
matrix function U(t) satisfies U̇(t) = U(t)A0 + U(t − h)A1 on R because the differential
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equation is satisfied on [0, h] and U and V are analytic functions. As the components of
U̇(t) are formed by quasi-polynomials we obtain from Lemma 6.43 that

λi

(∑
k∈Ki

tkZik

)
+

 ∑
k∈Ki\{0}

ktk−1Zik

=

(∑
k∈Ki

tkZik

)
A0+e−λih

(∑
k∈Ki

(t− h)kZik

)
A1, i ∈ I.

Now consider for a fixed index i the coefficient matrix of tk̂i belonging to the highest degree
k̂i = maxKi. Then Zik̂i(λiI − A0 − e−λihA1) = 0. As Zik̂i 6= 0 we conclude that det(λiI −
A0−e−λitA1) = 0. Projecting the eigenmotions of the solution pair (U, V ) of (6.56) onto the
V component and then repeating the above argument yields det(−λiI −A0 − eλitA1) = 0.
Thus we have found an eigenvalue λ of A which satisfies det(±λI −A0−A1e

∓λh) = 0.

If the conditions of Theorem 6.42 do not hold we obtain the following result concerning
the solution set of Problem 6.37.

Corollary 6.44. For all symmetric W ∈ Hn(R) there exists a uniquely determined solution
of Problem 6.37 if and only if there exists no λ ∈ C satisfying (6.64), i.e., all eigenvalues
λ ∈ σ(A) of the generator A of the solution semigroup associated with (6.1’) satisfy −λ 6∈
σ(A).

Proof. By Corollaries 6.39 and 6.41 (2) a unique solution of Problem 6.37 exists if and only
if the boundary operator B is invertible. The proof of the equivalence of Theorem 6.42
(iii) and (iv) shows that there exists a one-to-one correspondence between eigenvalues
λ ∈ σ(A) of the finite-dimensional system (6.56) such that there exists an associated
eigenvector with the special structure (U0, e

−λhU0) and eigenvalues λ,−λ ∈ σ(A) of the
semigroup generator A, see (6.64) and (6.11). Hence the uniqueness issue (and therefore the
invertibility of B) can be answered by considering the zeros of the characteristic equation
associated with (6.1’).

By using Kronecker products Problem 6.38 can be vectorized and the resulting equations
can then be utilized in the numerical computation of solutions. The Kronecker product
satisfies vecAXB = (B>⊗ A) vecX, where vecX ∈ Rn2

is obtained from X ∈ Rn×n by
stacking up its columns, see [71]. Problem 6.38 takes the following vectorized form, where
we denote the vectorization of the matrices U, V,W with the corresponding small letters
u, v, w. As usual, we identify the operator A with its matrix representation with respect
to the standard basis on R2n2

.

Problem 6.45. Given a symmetric matrix W ∈ Rn×n. Find a solution pair u, v : [0, h]→
Rn2

such that (
u̇(t)

v̇(t)

)
= A

(
u(t)

v(t)

)
, A =

(
A>0 ⊗ I A>1 ⊗ I
−I ⊗ A>1 −I ⊗ A>0

)
, (6.67)

holds with boundary conditions

M

(
u(0)

v(0)

)
+N

(
u(h)

v(h)

)
=

(
−w

0

)
, M=

(
A>0 ⊗I A>1 ⊗I
In2 0

)
, N=

(
I⊗A>1 I⊗A>0

0 −In2

)
, (6.68)

where u = vecU, v = vecV, and w = vecW.
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Let us show that this problem is the matrix counterpart of Problem 6.38.

Lemma 6.46. The pair (U, V ) : R → Rn×n × Rn×n solves (6.58) with B
(
U(0)
V (0)

)
=
(−W

0

)
if

and only if
(

vecU
vecV

)
=
(
u
v

)
: R→R2n2

is a solution of (6.67) with (M+NeAh)
(
u(0)
v(0)

)
=
(− vecW

0

)
.

Proof. It is easy to see that the system matrix in (6.67) is the matrix representation of
the operator A of (6.58). Let us show that the matrix representation of B is given by
M + eAhN , hence showing that both problems are equivalent. The matrix representation
of the projections π1, π2 is given by (In2 0n2) and (0n2 In2), respectively. Hence B2 =
π1 − π2e

Ah has a matrix representation given by (In2 0)− (0 In2)eAh. Now B1 satisfies
B1 = B2A. As A commutes with eAh, we get the following matrix representation of B1,[
(In2 0)− (0 In2)eAh

]
A = (In2 0)A−(0 In2)AeAh = (A>0 ⊗I A>1 ⊗I)+(I⊗A>1 I⊗A>0 )eAh,

where we already used the matrix representation of A. Now B =
(

B1

B2

)
so that we can

identify it with the matrix

B =

(
A>0 ⊗ I A>1 ⊗ I
In2 0

)
+

(
I ⊗ A>1 I ⊗ A>0

0 −In2

)
eAh = M +NeAh.

Thus both the system operator A and the boundary operator B are represented by their
matrix counterpart. Hence Problems 6.38 and 6.45 are equivalent.

From Problem 6.45 and the discussion of the boundary operator B following Problem 6.38
we immediately obtain the following existence and uniqueness result.

Corollary 6.47. Problem 6.45 has a uniquely determined solution if and only if the bound-
ary operator B = M + NeAh is invertible. If B is singular then for a given w there exist
multiple solutions if

(−w
0

)
is contained in the image of B, otherwise there does not exist

any solution satisfying (6.67) and (6.68).

We now take a closer look at structure of the eigenvectors of the system matrix A in (6.67)
or equivalently, of the operator A defined in (6.58).

Lemma 6.48. Let A be the linear operator given by (6.58). If (λ0,
(
U0

V0

)
) is an eigenpair

of A, then
(V >0
U>0

)
is an eigenvector of A corresponding to the eigenvalue −λ0.

Proof. Suppose that
(
λ0,
(
U0

V0

))
is an eigenpair of A then

A

(
V >0
U>0

)
=

(
V >0 A0 + U>0 A1

−A>1 V >0 − A>0 U>0

)
=

(
(A>0 V0 + A>1 U0)>

(−V0A1 − U0A0)>

)
= −λ0

(
V >0
U>0

)
,

i.e., −λ0 is also an eigenvalue of A and the pair
(V >0
U>0

)
is a corresponding eigenvector.
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One can even show that A and −A are similiar, hence the Jordan structure of λ ∈ σ(A) is
identical to the Jordan structure of −λ ∈ σ(A).
As the matrices A0, A1 are real, the spectrum of A contains with every λ also −λ, λ̄,−λ̄.
This is reminiscent of the spectral properties of real Hamiltonian matrices. And indeed,
if we consider the change of the arguments of the Kronecker product A ⊗ B  B ⊗ A as
some “quasi-transposition” then A is a “quasi-Hamiltonian” matrix.

Proposition 6.49. Suppose that λ0 is an eigenvalue of the linear operator A given by (6.58)
and that −λ0 6∈ σ(A0). Then there exists an eigenvector of A corresponding to the eigen-
value λ0 which is given by a pair of the form

(
Y0

ζ0Y0

)
where Y0 ∈ Cn×n, Y0 6= 0, and ζ0 ∈ C.

Proof. The pair
(
U0

V0

)
is an eigenvector of A corresponding to λ0 if and only if the following

system of equations is satisfied,

U0(A0 − λ0I) + V0A1 = 0, A>1 U0 + (λ0I + A>0 )V0 = 0. (6.69)

Let us introduce the linear operator

L : C× Cn×n → Cn×n, L(λ)X = (λI + A>0 )X(λI − A0) + A>1 XA1

Then using both equations of (6.69)

L(λ0)(U0) = (λ0I + A>0 )U0(λ0I − A0)− (λ0I + A>0 )V0A1 = 0,

L(λ0)(V0) = (λ0I + A>0 )V0(λ0I − A0)− A>1 U0(A0 − λ0I) = 0.

Hence both components of an eigenvector corresponding to λ0 are contained in ker L(λ0).
We can therefore define the following linear operator on the kernel of L(λ0) (cf. (6.69))

M(λ0) : ker L(λ0)→ ker L(λ0), U 7→ V = −(λ0I + A>0 )−1A>1 U. (6.70)

For any U ∈ ker L(λ0), U 6= 0, the pair
(

U
M(λ0)U

)
is an eigenvector of A corresponding to

λ0, because it satisfies (6.69),

U(A0 − λ0I) +M(λ0)UA1 = U(A0 − λ0I)− (λ0I + A>0 )−1A>1 UA1

= (λ0I + A>0 )−1
(
(λ0I + A>0 )U(A0 − λ0I)− A>1 UA1

)
= 0,

A>1 U + (λ0I + A>0 )M(λ0)U = A>1 U − (λ0I + A>0 )(λ0I + A>0 )−1A>1 U = 0.

Now, the linear operator M(λ0) possesses an eigenvector Y0 with M(λ0)Y0 = ζ0Y0. Hence
there exists an eigenvector

(
Y0

ζ0Y0

)
of A corresponding to λ0 which is constructed from the

eigenpair (ζ0, Y0) of M(λ0).

Remark 6.50. The condition −λ 6∈ σ(A0) can be replaced with the following alternatives.
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1. If λ0 ∈ σ(A), but λ0 6∈ σ(A0) then there exists an eigenvector of A corresponding to
λ0 which is of the form

(
ζ0Y0

Y0

)
, ζ0 ∈ C. This can be seen by replacing M(λ0) of (6.70)

by

M′(λ0) : ker L(λ0)→ ker L(λ0), V 7→ V A1(λ0I − A0)−1.

2. If A1 is a regular matrix then the conditions −λ0 6∈ σ(A0) or λ0 6∈ σ(A0) can be
dropped. Here M′′(λ0) : U 7→ U(λ0I − A0)A−1

1 replaces (6.70).

3. If A1 is singular and λ0 ∈ σ(A0) ∩ σ(−A0) then eigenvectors of σ(A) corresponding
to λ0 can be constructed explicitly: they are formed by pairs (yv>, 0) and (0, xy>)
where A>1 y = 0, (A>0 − λ0I)v = 0, and (A>0 + λ0I)x = 0.

Hence without any assumption on the locations of the eigenvalues, the result of Proposi-
tion 6.49 can be generalized in such way that for every λ0 ∈ A there exists a corresponding
eigenvector which is of the form

(
U
ζU

)
,
(
ζV
V

)
,
(
U
0

)
or
(

0
V

)
.

Remark 6.51. Let us now comment on how to compute the delay Liapunov function U for
the one-delay system (6.1’).

1. Set up the system matrix A and the boundary matrices M,N according to the data
given in Problem 6.45.

2. Test if the boundary matrix B = M +NeAh is invertible. If it is not invertible then
the solution of linear equation Bx0 =

(−w
0

)
for x0 in the next step may fail.

3. Compute an initial value x0 ∈ R2n2
via Bx0 =

(−w
0

)
.

4. Solve the system of linear ordinary differential equations ẋ(t) = Ax(t) on t ∈ [0, h/2]
with x(0) = x0.

5. Join the solution segments contained in x(t) =
(
u(t)
v(t)

)
: As U(t) = V >(h− t) we have

vecU(t) = u(t) and vecU>(h− t) = v(t) for for t ∈ [0, h/2].

In Step 3, the quasi-Hamiltonian structure of A (see the discussion following Lemma 6.48)
implies that the computation of the matrix exponential can be ill-conditioned for even
relative small values of h. Namely for every λ ∈ σ(A) with Reλ > 0, the negative value
−λ ∈ σ(A) is also contained in the spectrum. Hence the spectrum of the matrix exponential
contains both eigenvalues of small modulus, e−λh, and eigenvalues of large modulus, eλh.
The matrix A has a sparse structure. This should be honored when solving ẋ = Ax in
order to keep computational costs and storage requirements small.
We close this section with an example.

Example 6.52. Consider the 2× 2 delay equation

ẋ(t) =

(
0 1
−4 −1

)
x(t) +

(
0 0
2 1

)
x(t− h), (6.71)
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Figure 6.4: Delay Liapunov matrices for h = 1, 2, 3.

which has been discussed in [98]. Without delay, it is a pure oscillator, and it is stable
for positive delays h < 2.006. Now following Remark 6.51 we can compute a solution of
Problem 6.45 by solving an initial value problem.
Figure 6.4 shows the components of a delay Liapunov function for h = 1, 2, 3 corresponding
to the weight W = I. For h = 2 the delay system is close to instability, and the norm of
U is relatively large. For h = 3 there still exists a uniquely determined U , but note that
the matrix U(0) is not positive definite. �

6.5 Uncertain Delays

In this section we consider the case when the delay h ≥ 0 of the system

Σh : ẋ(t) = A0x(t) + A1x(t− h), t ≥ 0, (6.1’)

is not exactly known. Hence we are looking for some robust results for the existence of
delay Liapunov matrices and for robust results on stability. As it turns out, these two
problems are closely related.
To indicate the dependence on h, let us define the spectrum and the spectral abscissa of
the delay system (6.1’)

σ(Σh) =
{
s ∈ C

∣∣ det(sI − A0 − e−shA1) = 0
}
,

α(Σh) = sup {Re s | s ∈ σ(Σh)} .
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With this definition, (6.1’) is exponentially stable if and only if α(Σh) < 0.
Let us study the dependence of the spectrum on the delay h. Most authors dealing with
variable delays implicitly use the following conjecture for which there seems to be currently
no rigouros proof.

Conjecture 6.53. The map h 7→ α(Σh) is continuous on R+.

In the following we will assume that this conjecture holds true. Let us present some
ideas which could be used for a proof. The main obstacle for a proof is a missing global
parameterisation of the spectra h 7→ σ(Σh). However, we have the following local result.

Lemma 6.54. Given α ∈ R. Then the spectra of Σh restricted to C>α decompose into
finitely many continuous branches. In particular, let us define

Nα(h) =
{
s ∈ C

∣∣ det(sI − A0 − e−shA1) = 0 and Re s > α
}
.

Then for a given h0 ≥ 0 there exist r continuous functions λi : I∗i → C≥α, i = 1, . . . , r with
a suitable interval of maximal existence I∗i = [hi−, h

i
+] ⊂ R+, h0 ∈ I∗i , such that Nα(h0) =

{λi(h0) | i = 1, . . . , r} and det(λi(h)I −A0 − e−hλi(h)A1) = 0 for h ∈ I∗i , i = 1, . . . , r. Here,
if hi− > 0 then λi(h

i
−) = α and if hi+ <∞ then λi(h

i
+) = α.

Proof. For fixed α and h0 the set Nα(h0) is finite, see Theorem 6.13. Hence the remarks from
[77, Section IV.3.5] allow us to apply the finite-dimensional decomposition [77, Theorem
II.5.2] into continuous functions. If a branch ceases to exist then it has to leave C>α which
gives the conditions on hi− and hi+.

Now to prove the continuity of the spectral abscissa we have to take new snapshots of
parameterisations whenever the number of zeros in C≥α changes. For this, let us assume
that α is such that C>α contains an eigenvalue of A0 + A1. By Lemma 6.54 the spectral
abscissa is continuous if the number of zeros inside C≥α does not change since the maximum
of finitely many continuous functions is continuous. The change of zeros can be detected
as follows. Consider the shifted system

Σα
h : ẋ(t) = (A0 − αI)x(t) + e−αh1A1x(t− h1)

which satisfies σ(Σα
h) = σ(Σh)−α. Hence instead of detecting zeros of h 7→ σ(Σh) passing

through α+ iR we consider zeros of h 7→ σ(Σα
h) passing through the imaginary axis. The-

orem 6.42 (iii) and (iv) provides a method of testing for this situation which yields critical
points if the equation ζ = e−λh is satisfied where both ζ and λ ∈ iR are obtained from
the finite-dimensional operator A derived from Σα

h . Thus new snapshots of the spectrum
have be taken at isolated critical delays, and therefore the spectral abscissa is a continuous
function of the delay h.

6.5.1 Critical Delays

From our previous analysis in Theorem 6.42 we obtain the following sets of critical delays.
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Definition 6.55. The set of critical delays of (6.1’) is given by

Hcrit =
{
h ∈ R+

∣∣ det(M +NeAh) = 0
}
.

By Theorem 6.42 we have the following characterizations of the set of critical delays.

Corollary 6.56. The following statements are equivalent.

(i) h ∈ Hcrit.

(ii) Problem 6.37 has either no or infinitely many solutions for the delay h.

(iii) The minimal singular value of the boundary matrix satisfies σmin(M +NeAh) = 0.

(iv) There exists λ∈C which satisfies det(±λI−A0−e∓λhA1)=0. In this case, λ∈σ(A).

(v) There exists an eigenpair (λ,
(
u
ζu

)
) ∈ C× C2n2

of A such that ζ = e−λh.

Proof. Clearly, since A of (6.67) is the matrix representation of A of (6.58), their spectra
coincide. We have already verified that the matrix representation of the boundary condition
B is M + NeAh. Thus the statements follow directly from Theorem 6.42, Corollary 6.44
and Lemma 6.46.

By Corollary 6.56 (v) we can rewrite Hcrit as

Hcrit =
{
h ≥ 0

∣∣∣ there exists an eigenpair (λ,
(
u
ζu

)
) of A with ζ = e−λh

}
. (6.72)

If σ(Σh) ∩ iR 6= ∅ then h is critical. Let us therefore consider those critical delays which
belong to purely imaginary eigenvalues λ = iω, of A. We first discuss the case ω = 0.

Corollary 6.57. If 0 ∈ σ(A) then Hcrit = R+.

Proof. If 0 ∈ σ(A) then there exists an eigenvector of the form
(
U
U

)
associated with the

eigenvalue 0 of A. This yields U(A0 + A1) = 0 and −(A>1 + A>0 )U = 0. Therefore
det(−A0 − A1) = det(0I − A0 − e0·hA1) = 0 which is independent of h ≥ 0. Therefore all
h ≥ 0 are critical.

For the rest of this discussion let us assume that A0 + A1 is regular. We now consider
eigenvalues λ = iω, λ 6= 0, of A.

Proposition 6.58. The following statements are equivalent.

(i) There exists iω ∈ σ(Σh) \ {0}.

(ii) There exists an eigenvector
(
U
ζU

)
of A associated with iω such that U = U∗.

In this case, all delays of the form h+ 2π
|ω|` ≥ 0 with ` ∈ Z are critical.
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Proof. (i) =⇒ (ii). Let us assume that h is a critical delay of Σh such that det(iωI −A0−
e−iωhA1) = 0 for a suitable ω 6= 0, see also Corollary 6.56 (iv). We find a vector v ∈ Cn

such that
v∗(iωI − A0 − A1e

−iωh) = 0.

Complex conjugation yields −v>(iω + A0 + A1e
iωh) = 0. The Hermitian matrix U = vv∗

then induces an eigenvector
(

U
e−iωhU

)
associated with the eigenvalue iω of A, see the proof

of Theorem 6.42. This shows (ii).
For (ii) =⇒ (i) consider an eigenvector

(
U
ζU

)
of A with Hermitian component U . The

scaling factor ζ ∈ C satisfies |ζ| = 1 as by Lemma 6.48, ζ−1 = ζ̄ holds. If v ∈ Cn is an
eigenvector associated with a non-trivial eigenvalue of U then A

(
U
ζU

)
= iω

(
U
ζU

)
implies that

v∗(iωI−A0−ζA1) = 0 and (iωI+A>0 +ζ−1A>1 )v = 0. Hence as |ζ| = 1, there are infinitely
many solutions h > 0 with ζ = e−iωh which are all critical delays of Σh by Corollary 6.56
(iv). These solutions occur periodically with a period length of 2π

|ω| .

Unfortunately it is currently not clear if an imaginary eigenvalue of A always leads to
critical delays. It is easy to see that if

(
U
ζU

)
is an eigenvector corresponding to iω ∈

σ(A) then
(
ζ̄U∗

U∗

)
is an eigenvector corresponding to the eigenvalue −iω = iω of A, see

Lemma 6.48 and Proposition 6.49 including Remark 6.50. If the eigenspace is assumed
to be of dimension 1, U = U∗ and ζ̄ = ζ−1, which shows that in this case any h ≥ 0
satisfying ζ = e−iωh is critical. For eigenspaces of higher dimension, the situation is not
clear. However, note that

ker L(iω) = {X ∈ Cn×n | (iωI − A0)∗X(iωI − A0) = A>1 XA1}

enforces a Hermitian/skew-Hermitian structure on the components of the eigenvectors of
A corresponding to iω ∈ σ(A). In particular, if X ∈ ker L(iω) then also X+X∗, X−X∗ ∈
ker L(iω).
We can split Hcrit into periodic and aperiodic critical delays Hcrit = Hper ∪Haper. The set
of periodic critical delays is given by

Hper =
⋃

iω∈σ(A)\{0}

{
h+ 2π`

|ω| ∈ R+

∣∣∣h ∈ [0, 2π
|ω|), ` ∈ N, (iω,

(
U

e−iωhU

)
) is an eigenpair of A

}
.

The set of aperiodic critical delays

Haper =
⋃

λ∈σ(A)\iR∗

{
h ∈ R+

∣∣ there exists an eigenpair (λ,
(

U
e−λhU

)
) of A

}
only contains finitely many points under the regularity assumption of A0 +A1. Aperiodic
critical delays can only occur in unstable systems, hence they are of no importance for
stability considerations. To see this, assume that λ ∈ σ(Σh) is not a purely imaginary
eigenvalue associated with a critical delay h. By Corollary 6.56, −λ ∈ σ(Σh) which implies
that Σh has an instable eigenvalue with positive real part.
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Hence if Hcrit 6= R+ then it does not contain any finite accumulation point, and its elements
can be ordered increasingly. Let us introduce for all h ≥ 0,

bhccrit := sup {h′ ∈ Hcrit |h′ < h} , dhecrit := inf {h′ ∈ Hcrit |h′ > h} ,

with the convention that inf ∅ = +∞ and sup ∅ = −∞.
Let us now determine maximal delay intervals for which Σh is stable provided that Con-
jecture 6.53 holds.

Proposition 6.59. Suppose that Σh0 is exponentially stable for some h0 ≥ 0, then Σh is
exponentially stable for all h ∈ (bh0ccrit, dh0ecrit) ∩ R+.

Proof. The set Hcrit is a discrete subset of R+, as by assumption Σh0 is exponentially stable,
hence Hcrit 6= R+. Now let us suppose that h > h0 and Σh is not exponentially stable.
Using Conjecture 6.53 the minimal h̃ ∈ (h0, h] with this property satisfies α(Σh̃) = 0.
Hence there exists ω > 0 with ±iω ∈ σ(Σh̃). Corollary 6.44 and Corollary 6.56 (iv) imply
that h̃ ∈ Hcrit, hence h̃ = dh0ecrit. For the lower bound, analogous results hold.

If α(Σh) < 0 and dhecrit = +∞ then the delay system Σh′ is exponentially stable for all
h′ ≥ h, and if α(Σh) < 0 and bhccrit = −∞ then Σh′ is exponentially stable for all h′ ∈ [0, h].
We obtain the following criterion for the exponential stability independent of delay. For
other conditions of delay-independent stability see Bliman [19],and Hertz et al. [55].

Corollary 6.60. Suppose that the eigenspaces associated with imaginary eigenvalues of A

are of dimension 1. Then the delay equation (6.1’) is exponentially stable independent of
delay (i.o.d.) if and only if A0 + A1 is exponentially stable and σ(A) ∩ iR = ∅.

Proof. Using Proposition 6.59 and its proof it remains to show the necessity of the condition
σ(A) ∩ iR = ∅. But by Proposition 6.49 (including Remark 6.50) and Proposition 6.58
each purely imaginary eigenvalue iω, ω 6= 0 of A gives rise to some critical delay h′ with
α(Σh′) ≥ 0. Hence (6.1’) is exponentially stable i.o.d if and only if Hcrit = ∅.
Note that a stability criterion listed in [55] requires to test Q(s, z) := det(sI−A0−zA1) 6= 0
for all {(s, z) |Re s = 0, |z| = 1} while Corollary 6.60 only has a finite number of tests.

Remark 6.61. (i) There are eigenvalues of the delay equation (6.1’) which coincide with
eigenvalues of the matrix A if the delay Liapunov matrix is not uniquely determined,
see Corollary 6.44. Hence the finite-dimensional system ẋ = Ax together with the
symmetry condition has some kind of resonance with the delay system, more or less
like a candle placed between two parallel mirrors gives the impression of infinitely
many candles. This coincidence also implies that for a varying delay all critical
spectra of the delay equation (6.1’) have to pass through finitely many holes in iR
punched by σ(A) which is illustrated in Figure 6.5, see the next section.

(ii) Corollary 6.56 allows us to compute critical delays directly from an analysis of the
matrix A. For every eigenvalue λ of A one has to find the scaling factor ζ between
the two components of an associated eigenvectors

(
U
ζU

)
The set of critical delays can

be computed via (6.72). For a stability analysis, only purely imaginary eigenvalues
of A are of interest, see Corollary 6.60.
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Definition 6.62. Suppose that Σh is exponentially stable for h = 0. The constant 0 <
h∗ ≤ ∞ is called the delay margin for Σh if [0, h∗) is the maximal interval such that Σh is
exponentially stable for all h ∈ [0, h∗).

From Proposition 6.59, we immediately obtain the following corollary.

Corollary 6.63. Suppose that A0 + A1 is exponentially stable. Then the delay margin
of (6.1’) is given by h∗ = minHcrit.

Note that the delay margin is a periodic critical delay, as h can only be an aperiodic critical
delay if the delay system Σh satisfies σ(Σh) ∩ C+ 6= ∅.
Example 6.64. This example shows the existence of an aperiodic critical point, i.e., h ∈ Hcrit

does not correspond to a purely imaginary eigenvalue of A. Consider the matrices

A0 =

(
−α 3− α
−α 2− α

)
and A1 =

(
−α/2 1 + α

0 α− 4

)
.

Using these matrices for the delay equation (6.1’) we can start a numerical parameter
study. And indeed, for α0 = 1.17003 we obtain a real solution h = 1.6048 of ζ = e−λh

where both λ, ζ ∈ C are derived from the spectrum of A, but contrary to periodic solutions,
λ = 0.77330 + 1.3434i is not purely imaginary. Here ζ = −0.15965− 0.24103i. Varying α
about the critical value α0 , we observe a sign change in the imaginary part of the solution
h, so that this solution is not only numerically close to a real solution, but there exists
indeed a real solution in the vicinity of the given parameter α0. Figure 6.5 shows the root
locus for varying h, some roots leave the left half-plane through the holes at ±3.71i ∈ σ(A)
for critical values of 0.317 + 1.69`, ` = 1, 2, 3, . . . But for h = 1.6048 four roots of the delay
equation hit the spectrum of A which is marked by circles in Figure 6.5. For this delay
there exist no uniquely determined delay Liapunov matrix. �

Figure 6.5: Root locus of a delay equation with varying h.
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6.5.2 Spectrum under the Variation of the Delay

We have seen in Proposition 6.59 that some accumulation points of the eigenvalues of Σh

as h→∞ are given by eigenvalues iω ∈ σ(A). Let us now study other properties of σ(Σh)
as the delay term h varies. The following example shows that there exist delay equation
where the variation of the delay has no influence on the spectrum.

Example 6.65. Consider the matrices A0 = ( λ1 α1
0 λ2

) and A1 = ( 0 α2
0 0 ) where λ1, λ2, α1, α2 ∈

C. Then σ(A0) = σ(A0 + A1) = σ(Σh) as

σ(Σh) =

{
s ∈ C

∣∣∣∣ det

(
s− λ1 −α1 − α2e

−sh

0 s− λ2

)
= 0

}
= {λ1, λ2}. (6.73)

�

We have already seen the continuous dependency of some branches of the spectrum of Σh

on the delay h in Proposition 6.54. For the following analysis, let us recall the Implicit
Function Theorem, see Dieudonné [34], which provides us with the following result.

Lemma 6.66. Define the continuously differentiable function

f(h, λ) = det(λI − A0 − e−hλA1). (6.74)

Suppose that (h∗, λ∗) ∈ R+ × C satisfy f(h∗, λ∗) = 0 and fλ(h∗, λ∗) 6= 0 where fλ = ∂f
∂λ

.
Then there exists a continuously differentiable function λ(h) : I∗ → C on an open interval
I∗ 3 h∗ which satisfies λ(h∗) = λ∗ and f(h, λ(h)) = 0 for all h ∈ I∗. The derivative in h∗
is given by λ′(h∗) = − fh

fλ
(h∗, λ∗).

We now analyse if the roots enter or leave the left half-plane when passing through the
imaginary axis.

Proposition 6.67. Define f(h, λ) := det(λI − A0 − e−hλA1). If iω∗ ∈ σ(A) is a simple
eigenvalue of Σh∗, i.e., fλ(h∗, iω∗) 6= 0, for some h∗ > 0 then the direction of a (local) root
branch λ(h) of h 7→ σ(Σh) crossing the imaginary axis through iω∗ is independent of h,
i.e., the roots of Σh either always leave or always enter the left half plane through iω∗.

Proof. We can write f(h, λ) as a polynomial p(λ, ζ) = det(λI−A0−ζA1) in λ and ζ = e−hλ.
The derivative of a root branch λ(h) in h∗ is then given by

λ′(h∗) = −fh(h∗, λ∗)
fλ(h∗, λ∗)

=
λ∗ζ∗pζ(λ∗, ζ∗)

pλ(λ∗, ζ∗)− h∗ζ∗pζ(λ∗, ζ∗)
, (6.75)

where λ∗ = λ(h∗) and ζ∗ = e−h∗λ∗ , see Lemma 6.66. Here the partial derivatives satisfy
fh(h∗, λ∗) = pζ(λ∗, ζ∗)ζ∗(−λ∗) and fλ(h∗, λ∗) = pλ(λ∗, ζ∗) + pζ(λ∗, ζ∗)ζ∗(−h∗). As we are
interested in the direction in which a root branch crosses the imaginary axis, we are looking
for the sign of the real part of the derivative in h∗ with λ∗ = iω∗. Since sgn Re z = sgn Re z−1

we obtain from (6.75) that

sgn Reλ′(h∗) = sgn Re

(
pλ(λ∗, ζ∗)

λ∗ζ∗pζ(λ∗, ζ∗)
− h∗
λ∗

)
. (6.76)
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But h∗/λ∗ = h∗/(iω∗) does not contribute to the real part of (6.76) as it is purely imaginary.
Hence for ω∗ > 0 using Re z

i
= Im z,

sgn Reλ′(h∗) = sgn Re
pλ(λ∗, ζ∗)

iω∗ζ∗pζ(λ∗, ζ∗)
= sgn Im

pλ(λ∗, ζ∗)

pζ(λ∗, ζ∗)
ζ−1
∗ = − sgn Im

pζ(λ∗, ζ∗)

pλ(λ∗, ζ∗)
ζ∗.

Clearly, this expression for sgn Reλ′(h∗) only involves the data λ∗ = iω∗ and ζ∗ which can
be obtained from A without calculating any critical delays h∗ first, see Proposition 6.49.

A rough method to compute the crossing direction is given by approximating the partial
derivatives of p(λ∗, ζ∗) by difference quotients. One proceeds by choosing a small ε > 0
and computing

− sgn Im ζ∗
p(λ∗, ζ∗ + ε)

pλ(λ∗ + ε, ζ∗)
or − sgn Im ζ∗

p(λ∗, ζ∗ + ε)− p(λ∗, ζ∗)
pλ(λ∗ + ε, ζ∗)− p(λ∗, ζ∗)

(6.77)

for all critical values obtained by an analysis of the matrix A of Problem 6.45. In the second
formulation of (6.77) the term p(λ∗, ζ∗) is included which should theoretically be 0, but due
to numerical errors it is not. The inclusion of this term may robustify the computation.
Numerical experiments suggest the following asymptotic behaviour of the root branches of
σ(Σh). However, due to the missing global parameterisation of these branches we do not
provide a proof.

Conjecture 6.68. Suppose that A0 + A1 is exponentially stable and A1 is regular. If
h 7→ λ(h) is a continuous function from R+ to C such that λ(h) ∈ σ(Σh) for all sufficiently
large h then limh→∞ λ(h) = 0.

Remark 6.69. With the help of Proposition 6.49 and Proposition 6.67 we can trace the
destabilization process of h 7→ σ(Σh). We introduce the inertia of a retarded linear delay
system (π(Σh), ι(Σh)) ∈ N2 which counts the number of zeros of the characteristic function
χh = f(h, ·), see (6.74), in the right half plane and on the imaginary axis, respectively.
As the number of zeros in the left half plane is infinite, we do not consider it part of
the inertia. Now, an analysis of the operator A gives all periodic critical values h, for
which σ(Σh) ∩ iR 6= ∅, and Proposition 6.67 shows in which direction the imaginary axis
is traversed. Thus, for each delay h the pair (π(Σh), ι(Σh)) is known.

6.6 Multiple Delays

Let us now consider the case of multiple delays, i.e., the delay equation is given by

ẋ(t) =
m∑
k=0

Akx(t− hk) where 0 = h0 < h1 < · · · < hm = H and Ak ∈ Rn×n. (6.78)

The associated delay Liapunov function then satisfies the matrix delay equation

U̇(t) =
m∑
k=0

U(t− hk)Ak, t ≥ 0, (6.79)
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the symmetric and algebraic conditions now read

U(−t) = U(t)>, t ≥ 0, −W = U(0)A0 +A>0 U(0) +
m∑
k=1

U(hk)
>Ak +A>k U(hk), (6.80)

where W ∈ Hn
+(R) is a symmetric positive definite weight matrix. Unfortunately, for

this general case there are no results available. If we do not assume asymptotic stability
of (6.78) then existence and uniqueness issues of a delay Liapunov matrix have not been
addressed yet in the literature.

6.6.1 Systems with Commensurable Delays

The results for the one-delay case can be extended to the multi-delay case if the symmetric
condition allows us to extract a finite dimensional linear ODE from the matrix delay
equation (6.79). This is possible in case of commensurable delays, i.e., the delays are given
by hk = kh, k = 0, . . . ,m. Let us assume that U is a solution of (6.79),(6.80) associated
with the weight W . By defining

Uk(t) = U(t+kh), Vk(t) = U((k+1)h− t)> = Uk(h− t)> k = 0, . . . ,m−1 (6.81)

the matrix delay equation (6.79) with respect to shifted time arguments can be written as

U̇k(t) = U̇(t+ kh) =
m∑
j=0

U(t+ kh− jh)Aj =
k∑
j=0

Uk−j(t)Aj +
m∑

j=k+1

U((j − k)h− t)>Aj

=
k∑
j=0

Uk−j(t)Aj +
m∑

j=k+1

Vj−k−1(t)Aj, t ∈ [0, h]. (6.82)

The differential equation for the counterflow Vk, k = 0, . . . ,m− 1, is then given by

V̇k(t) = d
dt

(Uk(h− t))> = −
k∑
j=0

A>j Uk−j(h− t)> −
m∑

j=k+1

A>j Vj−k−1(h− t)>

= −
k∑
j=0

A>j Vk−j(t)−
m∑

j=k+1

A>j Uj−k−1(t), t ∈ [0, h]. (6.83)

Hence the use of the symmetry condition U(t) = U(−t)> gives us a system of 2m ordinary
differential matrix equations, where all Uk and Vk are defined on [0, h]. The boundary
conditions Uk−1(h) = Uk(0) and Vk(h) = Vk−1(0) for k = 1, . . . ,m − 1 are needed to
concatenate the solution segments. The symmetry condition is given by U0(0) = V0(h) and
the algebraic condition by

−W = U̇0(0)− V̇0(h) = U0(0)A0 + A>0 V0(h) +
m∑
j=1

Vj−1(0)Aj + A>j Uj−1(h).
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Again, if there exists a unique solution of (6.82), (6.83) with the above-mentioned boundary
conditions for a given W then it coincides with the solution of a delay Liapunov equation.
This will be shown in the next proposition. Let us first collect the differential equations
and the boundary conditions in the following problem formulation.

Problem 6.70. For a given W ∈ Hn
+(R) find a solution of

U̇k(t) =
k∑
j=0

Uk−j(t)Aj +
m∑

j=k+1

Vj−(k+1)(t)Aj, t ∈ [0, h], k = 0, 1, . . . ,m− 1,

V̇k(t) = −
k∑
j=0

A>j Vk−j(t)−
m∑

j=k+1

A>j Uj−(k+1)(t), t ∈ [0, h], k = 0, 1, . . . ,m− 1,

which satisfies the following conditions

U0(0) = V0(h), Uk−1(h) = Uk(0), Vk−1(0) = Vk(h), k = 1, . . . ,m− 1,

U̇0(0)− V̇0(h) = U0(0)A0 +
m∑
j=1

Vj−1(0)Aj + A>0 V0(h) +
m∑
j=1

A>j Uj−1(h) = −W.

As already mentioned, solutions of Problem 6.70 are intimately related to delay Liapunov
matrices for (6.1) with commensurable delays.

Proposition 6.71. Suppose the pairs (Uk(τ), Vk(τ))k=0,...,m−1 solve Problem 6.70 on [0, h]
for a given symmetric matrix W ∈ Hn

+(R). Using the Gauss integer bracket btc = max{n ∈
Z |n ≤ t} the function

U(t) =

{
1
2

(
Ubt/hc(t− bt/hch) + Vbt/hc((1 + bt/hc)h− t)>

)
, t ≥ 0,

U(−t)>, t < 0,
(6.84)

is a solution of (6.79),(6.80). On the other hand, if U(t) is delay Liapunov matrix for (6.78)
with hk = kh given as a solution to (6.79),(6.80), then

Uk(τ) = U(τ+kh), Vk(τ) = U((k+1)h−τ)> = Uk(h−τ)>, k = 0, . . .m−1, (6.85)

form a solution of Problem 6.70. If this solution is uniquely determined, then Uk(t) =
Vk(h− t)> for all k = 0, . . . ,m− 1, t ∈ [0, h].

Proof. Let {(Uk, Vk)} be a solution of Problem 6.70 and U be given by (6.84). As U0(0) =
V0(h) the matrix U(0) = 1

2
(U0(0) + V0(h)>) is symmetric, hence t 7→ U(t) is continuous in

t0 = 0 when setting U(t) = U(−t)> for t < 0. For each t ∈ [kh, (k + 1)h) we have

U(t) = 1
2

(
Uk(τ) + Vk(h− τ)>

)
with τ = t− bt/hch = t− kh.
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Hence

U̇(t) = 1
2

(
k∑
j=0

(Uk−j(τ) + Vk−j(h− τ)>)Aj +
m∑

j=k+1

(Vj−(k+1)(τ) + Uj−(k+1)(h− τ)>)Aj

)

=
k∑
j=0

U(t− jh)Aj +
m∑

j=k+1

U(jh− t)>Aj =
m∑
j=0

U(t− jh)Aj.

Therefore U(t) satisfies the matrix differential equation (6.79). We now have to ver-
ify the algebraic condition (6.80). Since U(0) is symmetric and by setting Um(0) :=
Um−1(h), Vm(h) := Vm−1(0) we have

U(0)A0 + A>0 U(0) +
m∑
k=1

U(kh)>Ak + A>k U(kh) =
m∑
k=0

U(kh)>Ak + A>k U(kh)

= 1
2

(
m∑
k=0

(Uk(0)> + Vk(h))Ak + A>k (Uk(0) + Vk(h)>)

)

= 1
2

m∑
k=0

(
A>k Uk(0) + Vk(h)Ak

)
+ 1

2

m∑
k=0

(
Uk(0)>Ak + A>k Vk(h)>

)
= −1

2
(W +W>) = −W.

Hence U is a delay Liapunov matrix for the weightW . On the other hand, since we obtained
the formulation of Problem 6.70 by chopping a delay Liapunov matrix into pieces of length
h, any Liapunov matrix for the weight W will also be a solution of Problem 6.70. If this
solution is unique, then we obtain —analogously to Corollary 6.41— that Uk(t) = Vk(h−t)>
for all k = 0, . . . ,m− 1, t ∈ [0, h].

Now for further analysis, the equations of Problem 6.70 can be brought into matrix form
by using Kronecker products.

Problem 6.72. Consider the tuple (Um−1, . . . , U1, U0, V0, V1, . . . , Vm−1). The system of
ordinary differential equations corresponding to the vectorization of the conditions in Prob-
lem 6.70 then takes the form

ẋ =



A>0 ⊗ I . . . A>m−1 ⊗ I A>m ⊗ I
. . . . . .

A>0 ⊗ I A>1 ⊗ I . . . A>m ⊗ I
−I ⊗A>m . . . −I ⊗A>1 −I ⊗A>0

. . . . . .
−I ⊗A>m −I ⊗A>m−1 . . . −I ⊗A>0


x, x =



vecUm−1
...

vecU0

vecV0
...

vecVm−1


.
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The boundary matrices M and N satisfying M +NeAh = −
(

vecW
0

)
are given by

M=



A>0 ⊗I . . . A>m−1⊗I A>m⊗I
In2

. . .
In2

. . .
In2


, N=



I⊗A>m I⊗A>m−1 . . . I⊗A>0
−In2

. . .
−In2

. . .
−In2


.

The system matrix A in Problem 6.72 has the structure of a block Sylvester resultant
matrix, see Lang [92] for a general discussion of resultants. Note how the symmetry
condition U0(0) = V0(h) nicely fits into the conditions which join the solution segments
together. The existence and uniqueness issues for this boundary value problem are again
attached to the regularity of M +NeAh.
We study the properties of such block resultant matrices. The following proposition con-
tains the basic facts.

Proposition 6.73. Suppose that p(s) =
∑r

i=0Ais
i and q(s) =

∑r
j=0Bjs

j are polynomial
matrices of degree r ≥ 1 with Ai, Bj ∈ Cn×n and AiBj = BjAi for all i, j = 0, . . . , r
where A0 and Br are regular. There exists a common root s ∈ C and a non-trivial vector
x ∈ Cn×n such that p(s)x = 0 = q(s)x if and only if the determinant of

A :=



A0 . . . Ar−1 Ar
. . . . . .

A0 A1 . . . Ar
B0 . . . Br−1 Br

. . . . . .

B0 B1 . . . Br


2rn2×2rn2

is zero.

Proof. If s ∈ C is common root s of p and q and x 6= 0 is a suitable vector such that
p(s)x = 0 = q(s)x, we construct the column vector z := (x, sx, . . . s2r−1x). Then

Az =



A0 . . . Ar−1 Ar
. . . . . .

A0 A1 . . . Ar
B0 . . . Br−1 Br

. . . . . .

B0 B1 . . . Br





x
...

sr−1x
srx

...
s2r−1x


=



p(s)x
...

sr−1p(s)x
q(s)x

...
sr−1q(s)x


= 0.

Thus Az = 0 for z 6= 0 implies that det(A) = 0. On the other hand, if det(A) = 0 then
there exists a non-trivial vector x partitioned into x = (x1, . . . , x2r) with xi ∈ Cn such that
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Ax = 0. As A0 and Br are invertible, let us set A0,i = A−1
0 Ai and Br,j = B−1

r Bj. Then the
structure of A implies that for i = 1, . . . , r
xi+1

xi+2
...

xr+i

=


0 I

. . .
I

−Br,0 −Br,1 . . . −Br,r−1


︸ ︷︷ ︸

=:B+


xi
xi+1

...
xr+i−1

 ,


xi
xi+1

...
xr+i−1

=


−A0,1 −A0,2 . . . −A0,r

0 I
. . .

I


︸ ︷︷ ︸

=:A−


xi+1

xi+2
...

xr+i

.

If we define x̃i = (xi, . . . xr+i−1) ∈ Crn then this can be written compactly as x̃i+1 = B+x̃i
and x̃i = A−x̃i+1 for all i = 1, . . . , r. Now consider the product A−B+. The vector x̃i is an
eigenvector of this product corresponding to the eigenvalue 1. Considering just the first
block-row in this product gives us for i = 1, . . . , r

−
r−1∑
k=1

A0,kxi+k + A0,r

r−1∑
k=0

Br,kxi+k = xi. (6.86)

Since Ai and Bj commute, multiplying (6.86) with A0 and Br yields

r−1∑
k=0

(ArBk − AkBr)xi+k = 0.

Hence all x̃i, i = 1, . . . , r, are contained in the kernel of the matrix

Z := [ArB0 − A0Br, ArB1 − A1Br, . . . , ArBr−1 − Ar−1Br] .

Therefore B+, A− : kerZ → kerZ. We have found a subspace which is invariant under B+

and A−. Thus there exists an eigenvector in kerZ, say z̃, corresponding to an eigenvalue
ζ ∈ C of B+. But if z̃ is an eigenvector of B+ then it is also an eigenvector of A−

as z̃ = A−B+z̃ = ζA−z̃. Due to the structure of B+, this eigenvector is given by z̃ =
(z, ζz, . . . , ζr−1z). Clearly, for powers of B+, z̃ will also be an eigenvector. Therefore
A(z, ζz, . . . , ζ2r−1z) = 0, which implies p(ζ)z = 0 = q(ζ)z.

As the system matrix A of Problem 6.72 satisfies the assumptions of Proposition 6.73, there
are eigenvectors xi of A which are given by vectorizations of tuples (Zi, ζiZi, . . . , ζ

2m−1
i Zi)

where ζi ∈ C and Zi ∈ Cn×n, corresponding to an eigenvalue λi of A. These eigenvectors
satisfy

m∑
k=0

ζki ZiAk = λiZi and −
m∑
k=0

A>m−kζ
k
i Zi = λiζ

m
i Zi. (6.87)

Now assume that the boundary matrix B = M + NeAh is singular and that there exists
x =

∑
i αixi, x 6= 0, such that

0 = Bx =
∑
i

αi(Mxi +Neλihxi) =
∑
i

αi
(
vec(λiζ

m−1
i Zi, Zi, ζiZi, . . . , ζ

2m−2
i Zi)

−eλih vec(−λiζmi Zi, ζiZi, ζ2
i Zi, . . . , ζ

2m−1
i Zi)

)
,

(6.88)
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where we used (6.87) to obtain

Mxi = vec(
m∑
k=0

ζm−1+k
i ZiAk, Zi, ζiZi, . . . , ζ

2m−2
i Zi) = vec(λiζ

m−1
i Zi, Zi, . . . , ζ

2m−2
i Zi),

Nxi = vec(
m∑
k=0

A>m−kζ
k
i Zi,−ζiZi, . . . ,−ζ2m−1

i Zi) = vec(λiζ
m
i Zi,−ζiZi, . . . ,−ζ2m−1

i Zi).

From (6.88) we have ζi = e−λih for all indices i with αi 6= 0. We still have to verify the
first block-row of (6.88) which reads

0 =
∑
i

αi

(
ζm−1
i

m∑
k=0

ζki ZiAk + ζ−1
i

m∑
k=0

A>m−kζ
k
i Zi

)
.

But by (6.87) this term vanishes if

Zi

(
λiI −

m∑
k=0

e−λikhAk

)
= 0 and ζmi Z

>
i

(
−λi −

m∑
k=0

e−λi(m−k)hAm−k

)
= 0.

Therefore det(±λiI−
∑m

k=0 e
−λikhAk) = 0 for all i with αi 6= 0. Hence we have no uniquely

determined delay Liapunov matrix if for a suitable index i both λi and −λi are eigenvalues
of the delay equation (6.1) for commensurable delays.

Example 6.74. We now calculate the delay Liapunov matrix U(t) on t ∈ [0, 2] which is
associated with the equation

ẋ(t) = A0x(t)+A1x(t−1)+A2x(t−2), where A0 = −( 1 0
0 2 ) , A1 = ( 0 0.7

0.7 0 ) , A2 = −( 0.49 0
0 0.49 )

with h = 1. Consider the vectorization of the tuple (U1, U0, V0, V1) as state. Then the
system matrix A and the boundary matrices M,N are given as in Problem 6.70. Now
given a weight W we find an initial value by computing x0 = (M +NeAh)−1

(− vecW
0

)
. Due

to the symmetry in the solution segments we need to solve the associated initial value
problem only on [0, h/2]. Rearranging the solution segments via

U(t) =

{
Uk(t− kh) if t ∈ [kh, (k + 1

2
)h],

Vk(h− (t− kh))> if t ∈ [(k + 1
2
)h, (k + 1)h],

we obtain the solution depicted in Figure 6.6 with weight W = 6I. �

Remark 6.75. We have not addressed the problem of delay margins for stability of delay
systems with commensurable delays. The main problem with the presented approach is
that it only considers the “unit” delay h. Hence a stability analysis starting from a solution
of Problem 6.70 would have to ensure that the commensurability of the delays stays intact,
regardless of perturbations in the unit delay h. Under this premise, the results for critical
delays can also be used in the commensurable case.
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Figure 6.6: Components of the multi delay Liapunov matrix U(t), t ∈ [0, 2].

6.7 Scalar Differential Delay Equations

In this section we study the scalar delay equation with one delay

ẋ(t) = a0x(t)− a1x(t− h) with a0 < 0, a1 6= 0, (6.89)

and the scalar equation with commensurable time lags

ẋ(t) = a0x(t) +
m∑
k=0

akx(t− kh), (6.90)

for which we apply the obtained results.
Let us first consider the one-delay case (6.89). The continuous dependency of the spectrum
of equation (6.89) on the delay is seen easily in this case. In the real scalar case the partial
derivatives of f(h, λ) = λ− a0 − a1e

−λh are given by

∂f
∂λ

= 1 + a1he
−λh, ∂f

∂h
= a1λe

−λh.

We only consider solutions (h, λ) with f(h, λ) = 0, i.e., λ− a0 = a1e
−λh, hence we obtain

∂f
∂λ

= 1 + h(λ− a0), ∂f
∂h

= λ(λ− a0).

In particular, the only critical point with f(h, λ) = 0 and ∂f
∂λ

(h, λ) = 0 is located at
λ = a0 − h−1 ∈ R. This can only occur if a1 < 0, as additionally ea0h−1 = −a1h has to
hold. A monotonicity argument shows that in this case there exists only one real solution
h0 of ea0h−1 = −a1h. Hence the implicit function λ(h) with f(h, λ(h)) = 0 is continuous
on h ∈ (0, h0) or h ∈ (h0,∞) depending on whether h < h0 or h > h0 as there are no other
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critical values for which the partial derivative vanishes. Moreover, if a1 > 0 then there
exist no critical values, and λ(h) is continuous for h > 0.

Let us now set up the data according to Problem 6.45 in order to solve for a delay Liapunov
matrix. We obtain

A =

(
a0 a1

−a1 −a0

)
, M =

(
a0 a1

1 0

)
, N =

(
a1 a0

0 −1

)
.

By Corollary 6.60, equation (6.89) is stable independent of delay if the spectrum of A

contains no imaginary eigenvalues. Now det(sI − A) = s2 − a2
0 + a2

1 has only real roots
for a2

0 ≥ a2
1 and only purely imaginary roots for a2

0 > a2
1. Therefore we have stability

independent of delay if (6.89) is exponentially stable, a0 + a1 < 0, and |a0| < |a1|.
Let us now consider the case |a1| > |a0|. We determine the delay margin for (6.89). For
this analysis we need the eigenvectors of A which are given by

( a1

−a0±i
√
a2
1−a2

0

)
corresponding

to the eigenvalues ±i
√
a2

1 − a2
0. Hence the scaling factor associated with λ = i

√
a2

1 − a2
0

is ζ = e−λh = λ−a0

a1
which is of modulus 1. We obtain the delay margin, the first critical

value for h, as the smallest positive solution of ζ = λ−a0

a1
= e−λh.

Example 6.76. Let us take a look at the hot-shower Example 6.1. There we had a0 = 0 and
a1 < 0. From the spectral analysis of A we obtain λ = i |a1| and therefore ζ = −i = eia1h.
The smallest positive solution of this equation is given by h∗ = − π

2a1
> 0, which is the

delay margin.

With the data from Example 6.1, namely a1 = −1, the delay margin h∗ = π
2

satisfies
1 < h∗ < 2. Hence our assertions about the exponential stability of (6.2) for the delay
h = 1 and about the instability for the delay h = 2 are correct. �

For the multi-delay case (6.90), we set up the data according to Problem 6.72. The system
matrix A is given by

A =



a0 . . . am−1 am
. . . . . .

a0 a1 . . . am
−am . . . −a1 −a0

. . . . . .

−am −am−1 . . . −a0


∈ R2m×2m.

This matrix is a resultant matrix. Hence det(λI − A) = 0 if and only if the polynomials
pλ(s) := (a0 − λ) +

∑m
k=1 aks

k and qλ(s) :=
∑m−1

k=0 am−ks
k + (a0 + λ)sm contain a common

root, see Gantmacher [45]. Now qλ(s) = smp−λ(s
−1) which again demonstrates the intrinsic

symmetry of the problem. Moreover, the common root ζ ∈ C coincides with the scaling
factor from which an eigenvector (1, ζ, . . . , ζ2m−1)> of A is constructed. For a stability
analysis, we have to consider purely imaginary eigenvalues λ = iω of A and solve for h in
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ζ = e−λh to get candidates for the delay margin. If we set

A0 =

a0 . . . am−1

. . .
...
a0

 , A1 =

am... . . .

a1 . . . am

 ,

then we can rewrite (6.90) as the one-delay matrix equation ẋ(t) = A0x(t) +A1x(t−mh).
However, it has not been investigated in which way the delay Liapunov matrices of both
formulations are related.

6.8 Notes and References

This chapter has grown out of the article [80] with V. Kharitonov, see also the references
therein. In contrast to this article, where Liapunov-Krasovskii functionals over C have been
considered, we embed them here into an M2-framework. Functional analytic approaches to
delay-differential systems can be found in many books, e.g. Hale and Verduyn Lunel [51]
and Diekmann et al. [33]. Our discussion of the M2-inner product follows Curtain and
Zwart [29]. For application of this calculus to neutral-type delay systems, see Salamon [122],
for an application to partial differential equations with delay, see Bátkai and Piazzero [10].
The book [110] by Niculescu is a valuable resource for results on delay equations. Mp-spaces
for delay equations are discussed in Bensoussan et al. [16].
To embed Liapunov-Krasovskii functionals v which satisfy

−v̇(ϕ) = ϕ(0)>W0ϕ(0) +
m∑
k=1

ϕ(−hk)>Wkϕ(−hk) +
m∑
k=1

∫ m

−hk
ϕ(θ)>Wm+kϕ(θ) dθ,

like the ones discussed in [81, 79] into an M2-framework one needs an augmented M2-
space which also respects all delayed states, (ϕ(0), ϕ(−h1), . . . , ϕ(−hm), ϕ) ∈ (Rn)m+1 ×
L2([−H, 0],Rn). A different approach of prescribing the terms of the functional v(ϕ̂) is
chosen in most papers dealing with the construction of Liapunov-Krasovskii functionals
[97, 19]. Such an approach does not automatically lead to positive definite functionals
v̇(ϕ̂), hence the functional v might not provide exponential estimates for the solutions of
the delay system.
Proposition 6.28 can be found in Datko [32], a systematic study can be found in Kharitonov
and Zhabko [81]. Smith [127] has shown that a solution of the classical delay-free quadratic
Liapunov function −Q = PA+ A∗P is given by

P =
1

2π

∫ ∞
−∞

G(iω)∗QG(iω)dω, where G(s) = (sI − A)−1.

The counterpart for Liapunov-Krasovskii functionals associated with systems with one
delay is obtained in Louisell [96], which we extended to the multi-delay case in in Propo-
sition 6.29.
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The Infante-Castellan approach of solving the one-delay Liapunov matrix goes back to the
articles [73, 25], see also [32]. Unfortunately, Infante and Castellan state in their article
[73] that the existence and uniqueness issue has been solved in their earlier paper [25].
However, those results are not applicable.
The computation of delay margins is discussed in Hertz et al. [55]. A method working with
matrix pencils can be found in Chen et al. [26], see also the overview in Niculescu [110].
For a method working with LMIs, see Bliman [19].
Computational issues for the numerical solution of differential delay equations can be
found in Bellen and Zennaro [13]. Numerical methods to obtain the spectrum of a linear
differential-delay system are discussed in Breda et al. [23].



Chapter 7

(M,β)-Stabilization

In this chapter we study the synthesis of state feedback matrices for linear dynamical
systems such that transient effects are taken into account. Let us first extend Definition 3.1
to dynamical systems with inputs. We will only consider the case of real data.

Definition 7.1. A linear time-invariant system of the form

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, A ∈ Rn×n, B ∈ Rn×m, (7.1)

is said to be (strictly/uniformly)(M,β)-stabilizable by state feedback, if there exists a ma-
trix F ∈ Rn×m such that the closed loop system ẋ(t) = (A−BF )x(t) is (strictly/uniformly)
(M,β)-stable. For the special case M = 1, β = 0 we will call the pair (A,B) contractible.

Our main tool for the investigation will again be the initial growth rate with respect to
some norm as for µ(A− BF ) < 0 the closed loop system generates a uniform contraction
semigroup with respect to this norm. We opted for the synthesis of uniform contraction
semigroups, as the inital growth rate does not provide us with methods to differentiate
between strict and weak contractions. In the following we identify those systems which
allow for a uniform closed loop contraction. To allow additional freedom for the transient
bound M , we consider general norms ‖·‖. Later on, we fix the Euclidean norm and study
quadratic (M,β)-stabilizability.

7.1 Synthesis of Contractions

If the system (7.1) admits a feedback matrix F ∈ Rm×n such that the closed loop system
matrix AF = A − BF generates a uniform contraction then this feedback has to satisfy
µ(AF ) < 0. Let us first investigate the vector case (m = 1).

ẋ(t) = Ax(t) + bu(t), A ∈ Rn×n, b ∈ Rn. (7.2)

183
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We assume that a norm of interest ‖·‖ is given and we denote its dual norm by ‖·‖∗,
see (2.16). For a given b we set

V + :=
{
x ∈ Rn

∣∣ for all dual vectors y of x, y>b > 0
}
,

V − :=
{
x ∈ Rn

∣∣ for all dual vectors y of x, y>b < 0
}
,

V 0 :=
{
x ∈ Rn

∣∣ there exists a dual vector y of x with y>b = 0
}
.

(7.3)

For our first result the following assumptions are needed.

(A1) V 0 contains a real hyperplane H0 defined by a suitable vector h 6= 0 through

H0 :=
{
x ∈ Rn

∣∣ h>x = 0
}
.

(A2) For all x ∈ H0, ‖x‖ = 1, there is a uniquely determined vector y∗ such that (x, y∗) is
a normed dual pair.

The hyperplane H0 separates the sets V + and V − = −V +. The assumption (A2) is
satisfied for quadratic norms but not necessarily for arbitrary norms. In general, given a
specific norm only a few vectors will have this property as the following Lemma shows.

Lemma 7.2. If (A2) holds, then for every dual pair (x, y) of ‖·‖ with x ∈ H0 and y>b = 0
the normed vector y/ ‖y‖∗ is an extremal point of ‖·‖∗ .

Proof. Assume that (x, y) is a unitary dual pair of ‖·‖ with x ∈ H0 and y>b = 0, ‖y‖∗ = 1
such that y is not an extremal point of ‖·‖∗. By Definition 4.15, the unit sphere of ‖·‖∗
then contains a face given by conv(y1, . . . , yk) 3 y with ‖yi‖∗ = 1, i = 1, . . . , k. But
if (x′, y) is a dual pair of ‖·‖ then (x′, y′) is a dual pair for all y′ ∈ conv(y1, . . . , yk), see
Proposition 2.27 (iii). Hence the dual vector of x′ is not uniquely determined. By definition
x′ ∈ V 0, and for x = x′ we see that there are vectors inH0 that have no uniquely determined
dual vector.

Corollary 7.3. If the unit sphere S of ‖·‖ is smooth (see p. 9) then (A2) holds.

The role of (A1) is investigated in the following lemma.

Lemma 7.4. Given a vector b ∈ Rn and a vector norm ‖·‖ in Rn. The following two
statements are equivalent for h ∈ Rn, h 6= 0.

(i) For all dual pairs (x, y) of ‖·‖,

y>bh>x ≥ 0 and y>bh>x > 0, ∀x 6∈ kerh>, y 6∈ ker b>. (7.4)

(ii) The set V 0 in (7.3) contains a hyperplane H0⊂V 0 given by H0 ={x∈Rn |h>x=0}.
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Proof. (i) =⇒ (ii). For a given h ∈ Rn we take x ∈ H0 = kerh>. Then h>x = 0.
By (7.4), y ∈ ker b> holds for all dual vectors y of x. Hence H0 ⊂ V 0.
(ii) =⇒ (i). We define the real halfspaces

H+ :=
{
x ∈ Rn

∣∣ h>x > 0
}
, H− :=

{
x ∈ Rn

∣∣ h>x < 0
}
. (7.5)

Now, h>b 6= 0. Namely, suppose that h>b = 0. Then b ∈ H0 ⊂ V 0, whence there exists
a dual pair (b, a) with a>b = 0. But this is a contradiction as dual pairs (b, a) always
satisfy a>b > 0. We therefore can assume without loss of generality that h>b > 0. First
note that if (x, y) is a normed dual pair then y>b is a subgradient of the convex function
g : t 7→ ‖x+ tb‖ at t = 0, since

g(t) = ‖x+ tb‖ = y>t (x+ tb) ≥ y>(x+ tb) = ‖x‖+ ty>b (7.6)

holds for dual pairs (x + tb, yt), ‖yt‖∗ = 1, see Proposition 2.27 (iv). If x ∈ V +, i.e.,
y>b > 0, this implies that the function g is strictly increasing in t = 0 and therefore for all
t ≥ 0. If x ∈ V + ∩ H− then as h>b > 0 we have that x + t1b ∈ H0 for some t1 > 0. By
assumption there exists a normed dual vector y1 of x + t1b which satisfies b>y1 = 0. This
implies that g has a minimum in t1, as

d
dt
g(t)

∣∣
t=t1

= d
dt
‖x+ tb‖

∣∣
t=t1

= y>1 b = 0.

This is in contradiction to the convexity of g, as g is monotonously increasing on t > 0 and
has a minimum in t1 > 0. Hence the intersection V + ∩H− and analogously V − ∩H+ are
empty. As V + ⊂ H+, V − ⊂ H− we have that y>bh>x ≥ 0 for all dual pairs (x, y) and it is
easy to see that y>bh>x > 0 for all dual pairs (x, y) such that y 6∈ ker b>, x 6∈ kerh>.

Hence (A1) guarantees the existence of a “quasi-semidefinite” matrix bh> for the norm ‖·‖.
With the addition of Assumption (A2) we can conclude the following.

Theorem 7.5. Consider system (7.2) and the norm ‖·‖, and assume that (A1) and (A2)
hold. Then the pair (A, b) is uniformly contractible with respect to ‖·‖ if and only if

y>Ax < 0 for all y ∈ ker b> and x ∈ Rn such that (x, y) is a dual pair. (7.7)

Proof. If (A, b) is uniformly contractible then there exists a vector f ∈ R1×n such that
A− bf generates a uniform contraction semigroup, or equivalently, for all dual pairs (x, y)
of ‖·‖ the strict inequality y>(A − bf)x < 0 holds. For dual vectors y ∈ ker b> of x this
implies that y>(A− bf)x = y>Ax < 0, hence proving necessity of (7.7). We now show the
existence of a suitable feedback if (7.7) holds under the assumptions (A1) and (A2). By
Lemma 7.4 there exists a hyperplane H0 induced by the vector h which separates V + and
V − of (7.3). We now claim that for α sufficiently large we have

y>(A− αbh>)x < 0

for all dual pairs (x, y). Note that it is sufficient to prove this on the compact set

Z :=
{

(x, y)
∣∣ ‖y‖∗= ‖x‖ = y>x = 1

}
= {(x, y) unitary dual pair} .
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By continuity, the set Z− ⊂ Z of points satisfying y>Ax < 0 is open in Z. Assumption (A2)
now implies that Z− contains a set of the form

Zε :=
{

(x, y) ∈ Z−
∣∣ −ε < h>x < ε

}
for ε > 0 sufficiently small. Now, if (x, y) ∈ Z \ Zε then

∣∣h>x∣∣ ≥ ε. Furthermore, there
exists a δ > 0 so that y>Ax ≥ 0 implies

∣∣y>b∣∣ > δ, otherwise we obtain a contradiction
to (7.7). We have by Lemma 7.4 that y>bh>x > 0 on Z \ Zε. If additionally y>Ax ≥ 0
holds then y>bh>x > δε > 0. Hence setting

α :=
2

δε
max

(x,y)∈Z

∣∣y>Ax∣∣ > 0, (7.8)

we easily see that y>Ax− αy>bh>x < 0 for all (x, y) ∈ Z.
Remark 7.6. Note that the term max(x,y)∈Z

∣∣y>Ax∣∣ can be replaced by max{µ(A), 0} as
only the positive terms y>Ax have to be bounded. Moreover, note that the construction
in the previous proof relies on a high gain type argument. We have constructed h such
that always y>bh>x ≥ 0. This implies that if A − α0bh

> generates a uniform contraction
semigroup then the same is true for A− αbh> for all α ≥ α0. Such a high gain idea is not
feasible in all situations. For example, consider a system (7.2) given by

A =

(
−1 c
−2 d

)
, b =

(
0

1

)
,

and assume that we want to generate a uniform contraction with respect to the 1-norm
‖·‖1 . The kernel is given by ker b> = R

(
1
0

)
and the (unique) vector x such that (x,

(
1
0

)
)

is a dual pair is given by x = e1. An easy calculation shows
(

1
0

)>
A
(

1
0

)
= −1 so that

condition (7.7) is satisfied. Note that H0 from (A1) has to be H0 = Re1, but (A2) is not
satisfied for H0. Also Ae1 is not pointing inside the unit ball of ‖·‖1 which can be seen by

calculating
(

1
−1

)>
A
(

1
0

)
= 1 and noting that

(
1
−1

)
is dual to e1. If we now consider possible

feedback matrices (f1 f2) then we see that

A− bf =

(
−1 c

−2− f1 d− f2

)
.

Hence for f1 ∈ (−3,−1) the matrix A − bf is diagonally dominant in the first column.
Similarly, f2 > max{d + c, d − c} ensures that A − bf is pointing inward at e2. Hence
A− bf generates a contraction semigroup with respect to ‖·‖1 if and only if

f ∈
{

[f1, f2] ∈ R1×2
∣∣ f1 ∈ (−3,−1), f2 > max{d+ c, d− c}

}
.

In particular, for any choice of f that leads to a uniform contraction semigroup there is
an α0 such that for all α ≥ α0, A − αbf is not dissipative. Hence there is no high-gain
feedback as in Theorem 7.5.
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Figure 7.1: A closed loop contraction with respect to ‖·‖1.

Example 7.7. Choosing c = 6, d = −3 in the previous remark gives A = ( −1 6
−2 −3 ). The

allowed feedback matrices [f1, f2] can be selected from f1 ∈ (−3,−1) and f2 > 3. Figure 7.1
shows a trajectory of ẋ = Ax which leaves the (dotted) unit box of ‖·‖1 and a trajectory
of the closed loop system with f = [−1, 3]. Here A − bf = ( −1 6

−1 −6 ) is only marginally
diagonally dominant, and the closed loop system generates a strict contraction but not a
uniform contraction. For f = [−3, 3] the closed loop becomes only marginally stable as
A− bf = ( −1 6

1 −6 ) is singular. �

To treat the case of higher dimensional input spaces the following result can be easily
obtained from Theorem 7.5. Again the assumption (A1) and (A2) are crucial. To apply
the same arguments as before we have to assume that for each of the columns of B the
assumptions (A1), (A2) are satisfied individually. Note, however, that using a state trans-
formation R on the input space, this property might be obtained for the matrix BR, while
it is false for B.

Theorem 7.8. Consider system (7.1) with A ∈ Rn×n, B ∈ Rn×m and the norm ‖·‖.
Assume that for each column bj of B, j = 1, . . . ,m the properties (A1) and (A2) are
satisfied. Then the pair (A,B) is uniformly contractible if and only if

y>Ax < 0 for all y ∈ kerB> and x ∈ Rn such that (x, y) is a dual pair. (7.9)

Proof. The necessity of (7.9) is obvious. For sufficiency, consider the matrices H =
[h1, . . . , hm] and ∆ = diag(α1, . . . , αm) obtained from Theorem 7.5 for each column bj
of B, j = 1, . . . ,m. Then for F = 1

m
∆H>

y>(A−BF )x = y>

(
A−

m∑
j=1

αj
m
bjh
>
j

)
x =

m∑
j=1

1
m
y>
(
A− αjbjh>j

)
x < 0.

Hence the pair (A,B) is uniformly contractible.
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By replacing A with A − βI in Theorem 7.8 we obtain the following result for arbitrary
decay rates.

Corollary 7.9. Under the assumptions of Theorem 7.8 there exists a feedback matrix
F ∈ Rm×n for a given decay rate β < 0 such that µ(A − BF ) < β if and only if all dual
pairs (x, y) with y ∈ kerB> satisfy y>Ax < β y>x.

Let us return to the system (7.2). We now discuss stabilization results which can be
obtained without postulating (A2). As we have already seen, to guarantee the existence
of a feedback f with µ(A− bf) < 0 we have to assume that

for all dual pairs (x, y) of ‖·‖ with y ∈ ker b> : y>Ax < 0. (7.10)

Let us now define for every vector x ∈ Rn the following set of feasible feedback vectors,

Fx =
{
f ∈ R1×n ∣∣ for all dual vectors y ∈ Rn of x, y>(A− bf)x < 0

}
.

Depending on the sign of y>b this definition can be reformulated, namely, if x ∈ V + we
have

Fx =
{
f ∈ R1×n

∣∣∣ y>Axy>b
< fx for all dual pairs (x, y)

}
,

if x ∈ V − we set

Fx =
{
f ∈ R1×n

∣∣∣ fx < y>Ax
y>b

for all dual pairs (x, y)
}
,

and if x ∈ V 0 both of the above conditions have to be considered, i.e.

Fx =
{
f ∈ R1×n

∣∣∣ y>Axy>b
< fx for dual pairs (x, y) with y>b > 0, and

fx < y>Ax
y>b

for dual pairs (x, y) with y>b < 0
}
.

(7.11)

Now suppose that x ∈ V 0 and that there are dual vectors y1, y2 of x satisfying y>1 b > 0 and
y>2 b < 0. Then there exists λ ∈ (0, 1) such that (x, y3) is a dual pair with y3 = λy1+(1−λ)y2

and y>3 b = 0. By (7.10), y>3 Ax < 0, i.e., λy>1 Ax < (λ− 1)y>2 Ax. Now, dividing by λy>1 b =

(λ− 1)y>2 b > 0 gives
y>1 Ax

y>1 b
<

y>2 Ax

y>2 b
, hence for the case x ∈ V 0 there is always a feasible set

of feedback matrices.
By construction, a feedback matrix f ∈ R1×n which is taken from the set F =

⋂
x∈B Fx

gives a closed-loop matrix A − bf which generates a contraction. But the set F could be
empty. We study this in more detail when the norm of interest is a polytopic norm.

7.2 Contractibility for Polytopic Norms

We have seen in Lemma 4.16, that dissipativity with respect to a polytopic norm needs
only to be checked for a finite set of extremal points. The test for contractibility therefore
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generates a finite set of linear inequalities. However, Lemma 7.2 shows that in general (A2)
does not hold for polytopic norms, since points inside the faces of its unit sphere are not
extremal.

If ‖·‖C is a polytopic norm given by its set of vertices (extremal points), C ⊂ Rn, then
the dual norm is also a polytopic norm, given by the set C∗ ⊂ Rn which corresponds to
the normals of the faces of SC := {x ∈ Rn | ‖x‖C = 1} = conv(C). We want to determine
conditions such that there exists a feedback matrix F ∈ Rm×n with µC(A− BF ) < 0. By
Lemma 4.16 this is equivalent to y>(A+BF )x < 0 for all x ∈ C and y ∈ C∗ with y>x = 1.

However, for y 6∈ kerB>, we have to find a feedback ma-

?

*

*

BT

Figure 7.2: Polytopic Norms.

trix F such that y>BFx < y>Ax. As both C and C∗

are finite sets, this condition generates a set of finitely
many inequalities for F . But it is not clear if this set of
inequalities is feasible.

Figure 7.2 demonstrates this situation. The set C is given
as the vertices of the left cube, the set of dual extremal
points is given by the vertices of the octahedron on the
right. B> now projects the dual vectors y ∈ C∗ down into
some subspace, where they again form some polytopic
norm (not all vertices will stay extremal). We now have
to find a map F on the C- side such that (convFC)∗ =
conv(B∗C∗). Then y∗BFx > 0 for all y ∈ C∗ and x ∈ C.
This general problem is as yet unsolved. For a result
involving linear transformations of convex sets, which leads the way to a possible solution,
see [120, Corollary 16.3.1].

Let us return to the case m = 1, hence b ∈ Rn is a column vector in (7.2). We now discuss
the set

F =
⋂
x∈SC

{
f ∈ R1×n ∣∣ y is a dual vector of x with y>(A− bf)x < 0

}
.

By Lemma 4.16 only the extremal points have to be checked for dissipativity. Thus we
have F =

⋂
x∈C Fx and the sets Fx are given by finitely may inequalities of the form

y>(A− bf)x < 0 for suitable y ∈ C∗. For further analysis, let us define the set

W+ =
{

(x, y) ∈ C × C∗
∣∣ (x, y) is a dual pair and y>b > 0

}
.

Hence if x ∈ V + ∩ C there exists a vector y ∈ C∗ such that (x, y) ∈ W+. Moreover,
for dimension n ≥ 2, every vertex x ∈ C has more than one adjacent face such that for
x ∈ V 0∩C there exists a y ∈ C∗ with (x, y) ∈ W+ or (−x, y) ∈ W+ depending on the sign
of y>b. Hence W+ is located in a half-hyperspace. To this end, if both (x, y) and (−x,−y)
were elements of W+ then y>b > 0 and −y>b < 0 which is a contradiction.

Lemma 7.10. The x-components of W+ are separable from V − by a suitable hyperplane.
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Proof. Let x ∈ (V − ∪V 0)∩C. Then all dual vectors y of x satisfy y>b ≤ 0. For these dual
pair (x, y), y>x = 1 holds and for all z ∈ V +∩C we have y>z < 1. Hence x 6∈ conv(V +∩C).
Therefore the convex cone generated by V +∩C is separable from the convex cone generated
by V − ∩ C using a suitable hyperplane.

Let us assume that (7.10) holds. As there are only finitely many points in W+ the set of
feasible feedback vectors satisfies

F =
⋂

(x,y)∈W+

{
f ∈ R1×n

∣∣∣ fx > y>Ax
y>b

}
.

This set is non-empty as the points in W+ are located in a half hyper-space and dual pairs
(x0, y0) with x0 ∈ V 0 ∩ C, y0 ∈ ker b> have no effect on the set F. To this end, consider
a dual pair (x0, y) ∈ W+ and a continuous path y : [0, 1] → Rn deforming y(0) = y into

y(1) = y0 such that y(t)>x = 1 for all t ∈ [0, 1]. Then the quotient y(t)>Ax
y(t)>b

approaches −∞
for t→ 1 since y(t)>Ax becomes negative by (7.10).

Remark 7.11. If both x and −x are first components of dual pairs in W+ then x ∈ V 0 and
the feasible set is contained in a linear strip given by (7.11). As there exists a hyperplane
which separates V + and V −, we find a vector h ∈ Rn such that z>x > 0 for all (x, y) ∈ W+.
Note that generally, h 6= b.

Example 7.12. Consider ‖·‖ = ‖·‖∞ on R3. For b = e3, its kernel is given by ker b> =
span(e1, e2). The set V 0 ∩ C consists of all extremal points (±1,±1 ± 1)> of S∞ and
W+ = {((±1,±1, 1)>, e3)} as e3 is the only extremal point of the dual norm ‖·‖1 with
e>3 b > 0. Hence any A for which there exists a closed-loop contraction with respect to ‖·‖∞
must already satisfy e>1 Ax < 0 for x = (1,±1,±1)>, and e>2 Ax < 0 for x = (±1, 1,±1)>

Therefore the conditions on a suitable feedback vector f ∈ R1×n are fx > e>3 Ax, x =
(±1,±1, 1)>. Let us consider the matrix

A =

−4 2 −1
3 −5 1
6 −7 8

 .

The first two rows are already diagonally dominant, and evaluating the conditions for
feasible feedback vectors gives the conditions

f(1, 1, 1)> > 7, f(1,−1, 1)> > 21, f(−1, 1, 1)> > −5, f(−1,−1, 1)> > 9.

For example, f = (0, 0, 24) is a feasible feedback vector. �

7.3 (M,β)-Stabilizability

The questions which we are interested in this section are based on the following problem.
Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t), (7.1)
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where A ∈ Rn×n, B ∈ Rn×m are given. We are looking for a feedback matrix F ∈ Rm×n

such that the closed-loop matrix AF = A−BF is dissipative or satisfies a (M,β)-stability
requirement for given constants M and β. Corollary 2.57 immediately leads to

Corollary 7.13. The system (7.1) is uniformly (M,β)-stabilizable if and only if there
exists a norm ν(·) on Rn with eccentricity ecc ν ≤ M and a feedback matrix F ∈ Rm×n

such that µν(A−BF ) < β holds.

We now identify for a given vector norm ν(·) those initial vectors which have a growth rate
larger than allowed, and those initial vectors for which the initial growth rate is invariant
with respect to any feedback matrix. We define the following sets

Mβ(ν) =

{
x ∈ Rn

∣∣∣∣∣ sup
〈y,x〉=ν(y)∗ν(x)

〈y,Ax〉
〈y,x〉 ≥ β

}
,

K(ν) =
{
x ∈ Rn

∣∣ for all y ∈ Rn, with 〈y, x〉 = ν(y)∗ν(x), y ∈ kerB>
}
.

(7.12)

The set Mβ contains those initial vectors x0 for which the associated solution has an initial
growth rate of at least β,

Mβ =
{
x0 ∈ Rn

∣∣ ( d
dt+
ν(x(t, x0))|t=0

)
≥ βν(x0)

}
.

The set K contains those initial x0 vectors for which the initial growth of the associated
solutions remains constant under all possible feedback matrices, since all of the dual vec-
tors are contained in the kernel of B>. If the intersection of these two sets is non-empty,
then there are solutions for which the initial growth is too large, but this growth cannot
be controlled by any choice of linear feedback. Hence we have the following necessary
condition.

Corollary 7.14. Given a vector norm ν with eccentricity ecc ν ≤M. Suppose there exists
a feedback matrix F such that the initial growth rate of the closed-loop system satisfies
µν(A−BF ) < β. Then

Mβ(ν) ∩K(ν) = {0}. (7.13)

We will show in the following that this condition is also sufficient when dealing with
weighted Euclidean norms.

7.4 Quadratic (M,β)-Stabilizability

In this section we consider weighted Euclidean norms. Moreover, there are no difficul-
ties when allowing for complex data. Since we consider elliptical norms ν(x) = ‖x‖P =

〈x, Px〉1/2 where P � 0 is some positive definite weight in Cn×n, dual pairs are always
uniquely defined by (x, Px) because 〈Px, x〉2 =

√
x∗Px

√
(Px)∗P−1(Px) = ‖x‖P ‖Px‖

∗
P .

These weighted Euclidean norms must be compared with the standard Euclidean norm.
We have already seen in Section 3.4 that this involves the use of Hermitian matrix pencils
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and quadratic Liapunov functions. The Liapunov operator which maps P to PA + A∗P
for a given A ∈ Cn×n is denoted by LA.
The underlying stability concept used in this section is called quadratic (M,β)-stability,
see Boyd et al. [22].

Definition 7.15. Given the constants M ≥ 1, β < 0, a matrix A ∈ Cn×n is called quadrat-
ically (M,β)-stable if there exists a positive definite Hermitian matrix P � 0 such that

κ2(P ) ≤M2 and LA(P ) = PA+ A∗P ≺ 2βP.

A pair (A,B) ∈ Cn×n × Cn×m is called quadratically (M,β)-stabilizable if there exists a
matrix F ∈ Cm×n such that A−BF is quadratically (M,β)-stable.

If A is quadratically (M,β)-stable then by Lemma 3.31, µP (A) < β. Hence A is the
generator of a uniform contraction semigroup with respect to the P -norm. Let us now turn
to stabilization issues. As dual vectors are explicitly known, the sets Mβ(P ) = Mβ(‖·‖P )
and K(P ) = K(‖·‖P ) of (7.12) are now given by

Mβ(P ) = {x ∈ Cn |x∗PAx ≥ βx∗Px} = {x ∈ Cn |x∗LA(P )x ≥ 2βx∗Px} ,
K(P ) = {x ∈ Cn |Px ∈ kerB∗} = kerB∗P.

(7.14)

Theorem 7.16. Consider the pair (A,B) ∈ Cn×n × Cn×m and constants M ≥ 1, β < 0.
The system ẋ = Ax + Bu is quadratically (M,β)-stabilizable if and only if there exists a
matrix P � 0 with κ2(P ) ≤M2 such that

Mβ(P ) ∩ kerB∗P = {0}. (7.15)

Proof. The initial growth rate for a weighted quadratic P -norm is given by (3.27). From
the fact that

∥∥eAt∥∥ ≤ Meβt ⇐⇒
∥∥e(A−βI)t

∥∥ ≤ M, t ≥ 0 the following equivalences hold
for any P -norm

µP (A) < β⇐⇒∀x ∈ Cn\{0} : 〈x, (PA+ A∗P )x〉< 2β〈x, Px〉 ⇐⇒ LA(P ) ≺ 2βP, (7.16)

where the Hermitian order relation is given with respect to the standard inner product.
Let us first assume that there exists a suitable P � 0 with κ2(P ) ≤ M2 and MP (β) ∩
kerB∗P = {0} . We show that there exists a feedback matrix F such that µ(A−BF ) < β
by considering LA−BF (P ). Applying a QR-decomposition on B and transforming the data
with the resulting unitary matrix Q, we get the following partition of the matrices, where
we conveniently retain their names

A =

(
A11 A12

A21 A22

)
, B =

(
R
0

)
, BF =

(
G1 G2

0 0

)
, P =

(
P1 P12

P ∗12 P2

)
. (7.17)

According to this partition, the blocks of LA−BF (P ) =
(

L11 L12
L∗12 L22

)
take the form

L11 = LA11−G1(P1) + P12A21 + A∗21P
∗
12,

L12 = P1(A12 −G2) + P12A22 + (A11 −G1)∗P12 + A∗21P2,

L22 = LA22(P2) + P ∗12(A12 −G2) + (A12 −G2)∗P12.



7.4. QUADRATIC (M,β)-STABILIZABILITY 193

The kernel of B∗P is the largest subspace which is invariant under changes of the feedback
matrix. This can be seen as follows. Since R in (7.17) is invertible, the kernel of B∗P

is spanned by the columns of
(−P−1

1 P12

I

)
. Here, P1 � 0 is invertible as it is a principal

submatrix of P � 0. The term(
−P ∗12P

−1
1 I

)
LA−BF (P )

(
−P−1

1 P12

I

)
= P ∗12P

−1
1 L11P

−1
1 P ∗12 − P ∗12P

−1
1 L12 − L∗12P

−1
1 P12 + L22

= P ∗12P
−1
1 LA11−G1(P1)P−1

1 P ∗12 + LA21P
−1
1 P12

(P ∗12P
−1
1 P12)

−
(
LA22(P

∗
12P

−1
1 P12) + P ∗12P

−1
1 LA11−G1(P1)P−1

1 P12 + LA21P
−1
1 P12

(P2)
)

+ LA22(P2)

= LA22−A21P
−1
1 P12

(P2 − P ∗12P
−1
1 P12)

(7.18)

does not depend on the choice of the feedback matrix. Hence, for every x ∈ kerB∗P
the term x∗LA−BF (P )x is independent of F. But if we take a vector x =

(
x1

0

)
6∈ kerB∗P

then x 7→ x∗LA−BF (P )x = x∗1L11x1 depends on F , thus kerB∗P is the largest subspace
such that x 7→ x∗LA−BF (P )x = x∗LA(P )x is independent of F . To achieve a growth rate
of less than β with a suitable feedback matrix F , the inequality LA−BF (P ) ≺ 2βP has to
hold, see (7.16), which transforms into(

I 0
−P ∗12P

−1
1 I

)
LA−BF (P )

(
I −P−1

1 P12

0 I

)
≺ 2β

(
P1 0
0 P2 − P ∗12P

−1
1 P12

)
.

Hence the following matrix must be negative definite.(
L11 − 2βP1 −L11P

−1
1 P12 + L12

−P ∗12P
−1
1 L11 + L∗12 LA22−A21P

−1
1 P12−βI(P2 − P ∗12P

−1
1 P12)

)
≺ 0. (7.19)

Using a Schur complement this is equivalent to the following two conditions

LA22−A21P
−1
1 P12−βI(P2 − P ∗12P

−1
1 P12) ≺ 0, (7.20)

LA11−G1−βI(P1)+P12A21+A∗21P
∗
12−K∗

(
LA22−A21P

−1
1 P12−βI(P22−P ∗12P

−1
1 P12)

)−1

K ≺ 0, (7.21)

where K := −L11P
−1
1 P12 + L12 is the upper right block in (7.19), which is given explicitly

by

K = P1(A12 −G2 − (A11 −G1)P−1
1 P12) + P12(A22 − A21P

−1
1 P12) + A∗21(P2 − P ∗12P

−1
1 P12).

The kernel condition (7.15) is equivalent to the statement that for all x ∈ kerB∗P ,
x∗LA−βI(P )x < 0. Then the negative definiteness of the first condition (7.20) is guar-
anteed by (7.18). The second condition (7.21) may be satisfied by choosing F1 in such a
way that LA11−G1−βI(P1) ≺ −(P12A21 +A∗21P

∗
12) where G1 = RF1. Therefore, if the kernel

condition (7.15) is satisfied then there exists a quadratically (M,β)-stabilizing feedback F .
Conversely, if the pair (A,B) is quadratically (M,β)-stabilizable there exists P � 0 with
κ(P ) ≤ M2 and a feedback matrix F such that the Liapunov inequality of (7.16) holds.
Then it also holds on kerB∗P, such that kerB∗P ∩Mβ(P ) = {0}.
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From the preceding proof we have the following reformulation of the kernel condition.

Corollary 7.17. Using the notation from Theorem 7.16 and the partition (7.17), the kernel
condition (7.15) is equivalent to the negative definiteness of a Liapunov matrix,

Mβ(P ) ∩ kerB∗P = {0} ⇐⇒ LA22−A21P
−1
1 P12−βI(P2 − P ∗12P

−1
1 P12) ≺ 0.

This characterization gives necessary conditions on the inner product matrix P as the
matrix A|ker := A22 − A21P

−1
1 P12 has to be stable, P |ker := P2 − P ∗12P

−1
1 P12 � 0 has to

hold, and LA|ker(P |ker) has to be negative definite. To select a weight P one could proceed
as follows. Choose P1 and P12 such that A22 − A21P

−1
1 P12 is stable. Then choose P2 in

such way that P2 − P ∗12P
−1
1 P12 is positive definite and

LA|ker(P2) ≺ LA|ker(P
∗
12P

−1
1 P12). (7.22)

Let us now show that the feedback matrix F may be chosen in a standard way.

Corollary 7.18. Consider the pair (A,B) ∈ Cn×n × Cn×m and constants M ≥ 1, β < 0.
The following statements are equivalent.

(i) The system ẋ = Ax+Bu is quadratically (M,β)-stabilizable.

(ii) There exist γ ∈ R and P � 0 with κ2(P ) ≤M2 such that

LA−γBB∗P (P ) ≺ 2βP. (7.23)

In this case, (7.23) holds for all γ′ ≥ γ.

(iii) There exists a P � 0 with κ2(P ) ≤M2 such that (7.15) is satisfied.

Proof. The equivalence of (i) and (iii) has been shown in Theorem 7.16. Clearly, if
F = γB∗P satisfies LA−BF (P ) ≺ 2βP then by definition, (A,B) is quadratically (M,β)-
stabilizable for any M ≥

√
κ2(P ), hence (ii) =⇒ (i). For F ′ = γ′B∗P with γ′ ≥ γ we

have

LA−BF ′(P ) = LA−γ′BB∗P (P ) = PA+ A∗P − 2γ′PBB∗P

� PA+ A∗P − 2γPBB∗P = LA−γBB∗P (P ) = LA−BF (P ) � 2βP.

Hence F ′ also stabilizes the pair (A,B). Let us now show that (iii) implies (ii), that is,
if (7.15) holds, there exists γ ∈ R such that F = γB∗P is a stabilizing feedback. For
this let us take a look into (7.19) with the data G1 = γRR∗P1 and G2 = γRR∗P12 which
correspond to F = γB∗P . Then

L11 = LA11(P1)− 2γP1RR
∗P1 + P12A21 + A∗21P

∗
12,

K = P1(A12 − A11P
−1
1 P12) + P12(A22 − A21P

−1
1 P12) + A∗21(P2 − P ∗12P

−1
1 P12).

Hence the off-diagonal block is independent of the choice of γ while in the upper left block
γ is a scaling factor for the positive definite matrix P1RR

∗P1. Now the lower right block is
already negative definite by (7.15), and so there exists a γ ∈ R such that (7.19) is negative
definite. Thus the pair (A,B) has been stabilized by the feedback matrix F = γB∗P
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Remark 7.19. Suppose β < 0 is fixed. If we choose the feedback matrix F to be of the
form F = γB∗P the initial growth rate condition µP (A − BF ) < β < 0 gives rise to the
following parameterized Riccati inequality

PA+ A∗P − 2γPBB∗P − 2βP ≺ 0.

By Theorem 7.16, positive definite solutions P � 0 exist if and only if (7.15) holds.

We note two further consequences of Theorem 7.16 and Corollary 7.18 which simplify
the situation for the case that minimizing the M is more important than guaranteeing
a certain rate of decay β < 0. The following corollary presents conditions for quadratic
(M,β)-stabilization for arbitrary β < 0.

Corollary 7.20. Consider the pair (A,B), and let M ≥ 1. The following statements are
equivalent.

(i) For some β < 0 the system ẋ = Ax+Bu is quadratically (M,β)-stabilizable.

(ii) There exist γ > 0 and a matrix P � 0 with κ2(P ) ≤M2 such that

LA−γBB∗P (P ) ≺ 0. (7.24)

(iii) There exists a matrix P � 0 with κ2(P ) ≤M2 such that

{v ∈ Cn | v∗(A∗P + PA)v ≥ 0} ∩ kerB∗P = {0} . (7.25)

(iv) There exists a matrix P � 0 with κ2(P ) ≤M2 such that

x ∈ kerB∗\{0} =⇒ x∗(AP−1 + P−1A∗)x < 0. (7.26)

Proof. This is immediate from Theorem 7.16 and Corollary 7.18.

In the previous result, condition (7.26) is remarkable as it allows for a nice geometric
interpretation of the problem. Namely, given the pair (A,B) the question is if we can
find a matrix P � 0 with κ2(P ) ≤ M2 such that for all x ∈ kerB∗, x 6= 0 the condition
Re 〈P−1x,A∗x〉2 < 0 holds. In other words, the system ẋ = A∗x is strictly dissipative in
the weighted inner product 〈·, ·〉P−1 on the subspace kerB∗. A case of particular interest
is that of feedback matrices F such that the closed loop system matrix A−BF generates
a strict contraction semigroup for the spectral norm, that is, if we specialize to the case
M = 1 with β < 0 arbitrary. Then we obtain

Corollary 7.21. Consider the pair (A,B). The following statements are equivalent.

(i) there exists a feedback matrix F such that A − BF generates a uniform contraction
semigroup with respect to the spectral norm,

(ii) there exists γ > 0 such that A − γBB∗ generates a uniform contraction semigroup
with respect to the spectral norm,
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(iii) it holds that
x ∈ kerB∗\{0} =⇒ x∗(A+ A∗)x < 0. (7.27)

Proof. In fact, A − BF generates a uniform contraction semigroup with respect to the
spectral norm, if there exists β < 0 such that for all t ≥ 0∥∥e(A−BF )t

∥∥ ≤ eβt.

Therefore Corollary 7.20 is applicable with M = 1. In this case, the positive definite
matrices P � 0 with κ2(P ) ≤ M2 = 1 occurring in the statements of Corollary 7.20 are
necessarily multiples of the identity.

7.5 Quadratic Programs for (M,β)-Stabilization

In this section we briefly discuss how the geometric characterizations for strict quadratic
(M,β)-stabilizability obtained in the previous section can be reformulated in terms of
quadratic programs (QPs) with constraints given by linear matrix inequalities (LMIs). We
refer to [22] for an overview of applications of LMIs in control.
By Theorem 7.16 the system ẋ = Ax+Bu is quadratically (M,β)-stabilizable if and only
if the following set is non-empty,

N :=
{
P ∈ Hn(C)

∣∣P � 0, κ2(P ) ≤M2 and Mβ(P ) ∩ kerB∗P = {0}
}
.

It is easy to see that N is a subcone of the cone of positive semidefinite matrices Hn
+(C),

so that if N is non-empty, then there is a P ∈ N with σ(P ) ⊂ [M−2, 1], hence ‖P‖2 ≤ 1.
Furthermore, the set N is non-empty if and only if there are P � 0, κ(P ) ≤ M2 and
F ∈ Cm×n such that µP (A − BF ) < β is satisfied. This inequality has the disadvantage
that the unknowns P and F do not appear linearly, but by setting Q = P−1 and F = XP
we obtain an LMI from LA−BF (P ) ≺ 2βP by pre- and post-multiplying with Q. So all our
conditions can be summarized by the LMI

I � Q �M2I,

AQ+QA∗ − (BX +X∗B∗) ≺ 2βQ.
(7.28)

where the first inequality ensures that the eigenvalues of Q are contained in the interval
[1,M2] which implies that κ(Q) = κ(P ) ≤M2 ad the second inequality implies that XP−1

is a quadratically (M,β)-stabilizing feedback for the pair (A,B). By this simple refor-
mulation we obtain another condition for quadratic (M,β)-stabilizability as an immediate
corollary to Theorem 7.16.

Corollary 7.22. Consider the pair (A,B) and constants M ≥ 1, β < 0. The following
statements are equivalent:

(i) The system ẋ = Ax+Bu is quadratically (M,β)-stabilizable.
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(ii) The LMI (7.28) is feasible, i.e., there exists a solution (Q,X)∈Cn×n×Cm×n of (7.28).

(iii) There exists a solution (Q, %) ∈ Cn×n× R of the LMI

I � Q �M2I,

AQ+QA∗ − 2%BB∗ ≺ 2βQ.
(7.29)

Proof. The equivalence of (i) and (ii) was shown in the derivation of (7.28). For the equiv-
alence (ii)⇔(iii), note first that (Q, %) solves (7.29) if and only if (Q, %B∗) solves (7.28),
so that (iii) implies (ii). Furthermore, by Corollary 7.18, quadratic (M,β)-stabilizability
is equivalent to the existence of a stabilizing feedback of the form F = %B∗P . In this case
(Q, %B∗) solves (7.28), which implies (iii).

The advantage of (iii) compared to (ii) in Corollary 7.22 is that the dimension of the
parameter space is significantly reduced, depending on the dimension of B.

Remark 7.23. Using Corollary 7.22 we can add further design objectives depending on the
specific problem since quadratic optimization problems may be solved on solution sets of
LMIs. For example, if a feedback F of small norm is desirable, then it is advantageous to
minimize γ ≥ 0 under the constraints (7.28) and(

γI X
X∗ γI

)
� 0. (7.30)

Using the Schur complement it may be seen that (7.30) is equivalent to γ2I−XX∗ � 0, i.e.,
γ ≥ ‖X‖ . As the solution set of (7.28) is not necessarily closed, there may not be an optimal
solution, but at least the optimization problem yields matrices X with norm close to
optimal and for the corresponding stabilizing feedback F we have ‖F‖ ≤ ‖X‖ ‖P‖ ≤ ‖X‖.
Similarly, (7.29) may be used to minimize ρ.

Example 7.24. Consider the system (7.1) given by

A =



−1 0 0 0 0 0 −625
0 −1 −30 400 0 0 250
−2 0 −1 0 0 0 30
5 −1 5 −1 0 0 200
11 1 25 −10 −1 1 −200
200 0 0 −150 −100 −1 −1000
1 0 0 0 0 0 −1


, B =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


. (7.31)

The transient behaviour of t 7→
∥∥eAt∥∥ is plotted in Figure 7.3, the eigenvalues of A are

−1,−1 ± 10i,−1 ± 20i,−1 ± 25i. The vector x = e7 − e6 satisfies x∗Ax = 998, hence the
system is not a contraction with respect to the spectral norm, and as x ∈ kerB∗, there
does not exist a feedback matrix such that the closed loop system generates a contraction.
The matrix B is already an upper triangular matrix1, hence Corollary 7.17 is directly
applicable.

1We already applied an orthogonal transformation on both A and B. The original matrix A can be
found in Example 2.15.
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Using partition (7.17), the submatrix A22 is already stable. Hence let us set P12 = 0.
We therefore need to find a P2 such that LA22(P2) ≺ 0 which ensures that there exists
a feedback matrix F such that the closed loop system overshoots at most κ(P )1/2 where
P1 = I, P12 = 0. Using a quadratic program we find a positive definite matrix P2 with
κ(P2)1/2 = 315. Hence there exists a feedback matrix such that the transient excursion
of closed loop system stays below 315. And indeed choosing F = −10B∗ gives even an
excursion below 250, as Figure 7.4 shows. �

0 1 2 3 4 5 6
0

100

200

300

400

500

600

Figure 7.3: Transient excursions of an asymptotically stable linear system.

Figure 7.4: Transient humps of the closed loop system.

7.6 Notes and References

The use of time-varying linear feedback to reduce transients has been studied in Hinrichsen
and Pritchard [66] and Pritchard [117]. The relation of this problem to the pole placement
problem has been investigated by Izmailov [74]. For some new results in this direction see
Hauksdottir [52, 53].
The material in this section is based upon the articles by Hinrichsen, Plischke and Wirth [63]
and Plischke and Wirth [115]. The quadratic (M,β)-stabilization has been discussed in
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the former article, while the generalization to arbitrary norms was presented in the latter
article. Some ideas on the influence of state feedback to the transient amplification can be
found in Pritchard [117]. The link from quadratic (M,β)-stabilizability to parameterized
Riccati equations is studied in Hinrichsen et al. [62], see also Hinrichsen and Pritchard [67,
Section 5.5].
Contractibility is studied by Malmgren and Nordström [103, 104] for discrete-time sys-
tems. The article by Moore and Bhattacharyya [109] discusses discrete-time systems for
which the overshoot is minimized via linear programming methods. A cursory discussion
of LMI methods for the quadratic (M,β)-stabilization can be found in Boyd et al. [22].
Petersen [114] considers “quadratic” stabilizability which leads to optimization problems
involving Riccati inequalities.
Drǎgan and Halanay [35] discuss methods of finding high-gain feedback matrices which
stabilize continuous-time systems with fast decay of the output and avoiding, if possible,
overshoot phenomena. Scalar systems are studied in León de la Barra and Fernández [94].
Transient performance in classical output regulation is discussed in Saberi et al. [121], but
here the performance measure is the integrated tracking error, and not the maximal error.
Classically, the transient behaviour is analysed using the transmission zeros of the system,
see Qiu and Davison [119]. In our approach, their role is reflected in condition (7.15).
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List of Symbols

Sets and Norms

N Set of natural numbers, {0, 1, 2, . . . }
Z,R,C Ring of integers, fields of real numbers and complex numbers
N∗,R∗,C∗ N, R, C without 0
K Number field, either R or C
Kn Vector space over K of dimension n
Kn×m Vector space of matrices over K with n columns and m rows
Re z, Im z Real and imaginary parts of a complex number z
C−,C+ Open left half-plane, open right half-plane
S̄, S̊, ∂S, SC Closure, interior, boundary and complement of a set S.
‖·‖ , ν(·) Vector norms and the induced operator norms
‖·‖p , ‖·‖F p-norms (p = 1, 2,∞), Frobenius norm
B, B∗, Bν Closed unit balls of the norm ‖·‖, of its dual norm, and of the norm ν(·)
µ(A), µν(A) Initial growth rate of A with respect to the norm ‖·‖ or ν(·)
ecc(ν, ‖·‖) Eccentricity of the norms ν(·) and ‖·‖
Mβ(A) Transient growth of A with respect to the rate β

Operators and Matrices

L(X,Y ) Space of bounded linear operators from X into Y
L(X) Space of bounded linear operators on X, L(X) = L(X,X)
C(I,X) Space of continuous functions f : I → X
L2(I,X) Space of square-integrable functions f : I → X
`2(K) Space of square-summable sequences in K⊕

k∈NXk Direct sum of Hilbert spaces Xk

D(A) Domain of the linear operator A
A∗ Adjoint of a matrix or operator A
I Identity matrix or operator
σ(A), %(A) Spectrum and resolvent set of A
α(A), ρ(A) Spectral abscissa and spectral radius of A
R(s,A) Resolvent of A, R(s,A) = (sI −A)−1

A>, A−1 Transpose of A, inverse of A
detA, traceA Determinant and trace of A
κ(A) Condition number of A

201



202 LIST OF SYMBOLS

〈x, y〉2 Inner product on Kn, y∗x
A⊗B Kronecker product of the matrices A and B
vecX Vectorization of the matrix A
kerA, imA Kernel and image of a matrix A

Positivity

R+ Set of nonnegative real numbers
Rn×n

+ ,Rn×n
M Set of nonnegative matrices, set of Metzler matrices

span(S), conv(S), cone(S) Linear hull (span), convex hull and convex cone of the set S
M(A) Metzler part of a matrix A
|A| Componentwise modulus of a matrix A
Diag(A) Diagonal matrix with diagonal entries from A
diag(v) Diagonal embedding of a vector v, Kn → Kn×n

diag(A) Diagonal extraction from a matrix A, Kn×n → Kn

A > B Componentwise comparison of the matrices A and B
A > 0, v > 0 Strict positivity of the matrix A or the vector v
1 Vector of ones
Hn(C),Hn(R) Vector spaces of Hermitian and symmetric matrices
P � 0, P � 0 Positive definite and positive semidefinite Hermitian matrix P
Hn

+(C),Hn
+(R) Convex cone of positive semidefinite Hermitian matrices

LA(P ) Liapunov operator, P 7→ PA+A∗P



Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide,
volume 9 of Software - Environments - Tools. SIAM Publications, Philadelphia, PA, 3rd
edition, 1999.

[2] T. Ando. Set of matrices with common Lyapunov solution. Arch. Math., 77(1):76–84, 2001.

[3] A. Aptekarev. A direct proof of Trefethen’s conjecture. In A. Goncar, E. Saff, et al., editors,
Methods of Approximation Theory in Complex Analysis and Mathematical Physics, volume
1550 of Lecture Notes in Mathematics, pages 147–148. Springer-Verlag, 1993.

[4] W. Arendt, C. J. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace Transforms
and Cauchy Problems, volume 96 of Monographs in Mathematics. Birkhäuser, Basel, 2001.
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Condition number, 40, 55, 99, 110
Contractibility, 183
Counterflow equation, 156
Critical delay, 167

Delay Liapunov function, 138
Delay margin, 170
Departure from normality, 56
Diagonalizable matrix, 55
Diagonally dominant matrix, 36
Differential inclusion, 45
Dissipativity radius, 33
Dual norm, 8, 25
Dual pair, 25

Eccentricity, 39–43
Eigenpair, 59

Field of values, 34
Front locus, 85

Gershgorin set, 34
Growth rate

asymptotic, 20
initial, 20, 30, 37

Hermitian matrix pencil, 71
Hilbert direct sum, 12

Implicit Euler step, 17, 77
Inverse power method, 74

Kreiss constant, 79
Kronecker product, 161

Liapunov cone, 101
Liapunov operator, 99, 192
Liapunov vector, 112, 118

Liapunov-Krasovskii functional, 143
Linear fractional transformation, 80
Linear operator, 11

adjoint, 14
block-diagonal, 12
coercive, 14
dissipative, 27
normal, 14
positive, 14
self-adjoint, 14

Metzler matrix, 108
Metzler part of a matrix, 121
Mild solution, 19

Norm
dual, see dual norm
Feller, 40, 94–99
Liapunov, 38
monotone, 8
operator, 9
p-norm, 8
polytopic, 104
smooth, 9
transient, 40

Numerical radius, 9
Numerical range, 34

Operator, see linear operator

Perron vector, 108
Perturbation structure, 10
Positive orthant, 107
Projection

Stereographic, 80
Pseudospectral abscissa, 10
Pseudospectrum, 11

Rayleigh quotient, 34
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Resolvent, 11

Schur complement, 8
Semigroup, 15–22

contraction, 19
generator, 16
solution, 135
strongly continuous, 15
uniformly continuous, 15

Singular Value Decomposition, 60
Solution segment, 134
Spectral abscissa, 23
Spectral radius, 21
Spectral value set, 10
Spectrum, 11

of a Hermitian matrix pencil, 71
Stability

exponential, 17
marginal, 17
(M,β), 17, 52

quadratic, 72
structured, 78

Stability radius, 10
Stabilizability, 183, 192
Strictly positive matrix, 107
Structure matrix, 10

Theorem
of Gershgorin, 34
of Hille-

Yosida, 17, 79
of Kreiss-

Spijker, 79
of Lumer-Phillips, 29
of Prüss, 48
of Ważewski, 46

Toeplitz matrix, 109
Transient amplification, see transient growth
Transient effect, 30
Transient growth, 40
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