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Abstract

We present an algorithm named EASI that estimates first order sensitivity in-
dices from given data using Fast Fourier Transformations. Hence it can be used
as a post-processing module for pre-computed model evaluations. Ideas for the
estimation of higher order sensitivity indices are also discussed.
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1. Introduction

Global sensitivity analysis investigates the relationship between uncertainty
in the inputs of a computational model and the uncertainty in the output. So-
called variance-based techniques are based on a decomposition of the variance in
the model output into components each depending on just one input variable,
components each depending on two variables and so forth. Correspondingly,
the output variance can be decomposed into contributions each coming from
only one input variable (“first order effects”), from just two variables (“sec-
ond order”), etc. A major drawback of most of the available algorithms for
the estimation of this variance decomposition like (extended) Fourier amplitude
sensitivity test/(E)FAST[1], random balance design/RBD[2], Ishigami-Saltelli-
Homma-method/IHS[3] or the Sobol´ algorithm[4] (see also [5, 6]) is the re-
quirement of special sampling schemes or additional model evaluations so that
available data from previous model runs (e.g., from an uncertainty analysis
based on SRS or LHS schemes) cannot be reused.

The EASI algorithm is a Fourier-based technique for performing variance-
based methods of global sensitivity analysis for the computation of first order
effects (a.k.a. Sobol´ indices, main effects, correlation ratios), hence belonging
into the same class of algorithms as FAST and RBD. Algorithms of this type are
using a frequency-based approach, i.e., signals of known frequencies are assigned
to the input factors, and a frequency analysis is carried out on the output that
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computes the influence of each input factor on the output, see Figure 5 for a
demonstration of a frequency response.

EASI is a computationally cheap method for which existing data can be used.
Unlike the FAST and RBD methods which use a specially generated sample
set that contains suitable frequency data for the input factors, in EASI these
frequencies are introduced by sorting and shuffling the available input samples.
The sorted input will be a nearly symmetric, periodic signal of frequency 1
(irrespectively of the input distribution). The output data are sorted accordingly
matching the resorted input samples, hence avoiding re-evaluation of the model.
These sorted data can then be analysed using the power spectrum of the output.
This latter analysis forms the standard back-end procedure of the Fourier-based
techniques.

For higher-order effects, the sorting algorithm is implemented via a multi-
dimensional search curve. The sorted and shuffled input obtained with this
method will be a perturbed signal with a certain frequency spectrum. It is hoped
that the non-periodic perturbations are distributed over the whole spectrum and
therefore are of little influence for the spectral analysis.

2. VARIANCE-BASED SENSITIVITY ANALYSIS

We consider a computational model y = f(x1, . . . , xk) with k (scalar) input
parameters xj and a (scalar) output y. The values of the input parameters are
not exactly known. We assume that this uncertainty can be handled by using
random variables Xj , j = 1, . . . , k of known distributions. Then the model
output is also a random variable Y = f(X1, . . . , Xk).

The first order effect for the input factor j is the fraction of the variance of
the output Y which can be attributed to the input Xj . It is defined by

Sj =
V[E[Y |Xj ]]

V[Y ]
(1)

where E[Y |Xj ] is the conditional expectation of Y given Xj and V [·] denotes the
variance of a random variable. To estimate the value of Sj we require realisations
of the input distributions and the associated model evaluations. We will denote
one realisation of a parameter set with (x1, . . . , xk), multiple realisations are
shown in matrix notation X = (xij)i=1,...,n,j=1,...,k. The associated output is
then denoted by Y = f(X).

3. EFFECTIVE ALGORITHM FOR SENSITIVITY INDICES

The Extended Fourier Amplitude Sensitivity Test (EFAST) and the Random
Balance Design (RBD) algorithms depend on the map

Gω(s) = 1/π arccos(cos(2πωs)), [0, 1]→ [0, 1] (2)

(or a variant thereof) to produce frequency dependent input data. For ω = 1,
this map is a triangle-shaped zig-zag line. For FAST, different values of ω are
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chosen for different input factors, and with the help of a power spectrum the out-
put is analysed for resonances with respect to these different input frequencies
to yield main effects (first order sensitivity indices). The relationship between
this frequency approach and the variance-based formulation (1) is established
by Parseval’s theorem.

RBD uses only ω = 1, but randomly permutes the zig-zag map (2) for
different input factors. Undoing the appropriate permutation on the output,
main effects can be computed for different factors, again using power spectral
methods.

Now, the EASI method can be thought of an “inverse” RBD approach, as a
permutation is constructed from given data. In particular, the map Gω(s) with
ω = 1 can be approximated from existing random data via a straight-forward
sorting-and-shuffling procedure as follows. Let us assume that x is a real vector
of length n which is the realisation of some distribution Xj on R. In order to
keep the notation short the dependency on j is dropped. However, keep in mind
that x is a column of the data matrix X.

We order x = (xi) increasingly to obtain an ordered vector (x(i)) with x(1) ≤
x(2) ≤ · · · ≤ x(n). Now, taking all odd indices from (x(i)) in increasing order
followed by all even indices in decreasing order gives us a vector (x[i]) with

x[i] =

{
x(2i−1), i ≤ n+1

2 ,

x(2(n+1−i)), i > n+1
2 ,

i = 1, 2, . . . , n

for which the elements satisfy the following zig-zag relation

x[i] ≤ x[i+1] if i ≤ n+1
2 , x[i] ≥ x[i+1] if i > n+1

2 .

We therefore call this type of vector triangular-shaped. Figure 1 demonstrates
the reshaping process for 50 uniformly distributed realisations.

As the permutation associated with the sorting-and-shuffling is invariant un-
der monotonic transformations of x, other input distributions pose no problems
for EASI.

To compute an estimate of the first order sensitivity index Sj for the k-
parametric model y = f(x1, x2, . . . , xj , . . . , xk) is now straight-forward. If (xi)
is the n dimensional realisation of the random variable Xj and if π((xi)) = (x[i])
denotes the permutation which transforms (xi) to the triangular-shaped vector
(x[i]) then we look out for resonances of period ω = 1 and its higher harmonics in
the power spectrum of the permuted output π(y) using the standard procedure
implemented in all Fourier-based sensitivity methods. In particular, if cm =∑n
κ=1(π(y))κζ

(κ−1)m
n , ζn = e−

2πi
n , m = 0,±1,±2, . . . ,±[n/2] are the complex

coefficients of the discrete Fourier transform of π(y) then an estimate of the
first order sensitivity index is given by

Ŝj =
∑M
m=1 |cm|2 + |c−m|2∑

m 6=0 |cm|2
= 2

∑M
m=1 |cm|2∑
m 6=0 |cm|2

(3)
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Figure 1: Sorting produces a triangular shape

where the maximum harmonic M is usually 4 or 6. But if the output depends
non-continuously on the input parameters then the quadratic convergence prop-
erties of the series in (3) are lost and higher values of M are required.

As EASI is a post-processing algorithm, statistical methods of bootstrapping
or jackknifing can be applied to test the robustness of the indicators.

4. Partitioning of Hypercubes via Space Filling Curves

If a sorting procedure as presented above is available in higher dimensions
then sensitivity indices for index sets may be computed. We will now derive
such a higher-dimensional sorting procedure. With the help of a search curve
we can assign an address to each sample. Sorting these addresses allows to
use an Fourier analysis based algorithm like the one described above in (3).
This approach of computing higher-order sensitivity indices is a mixture of a
graphical method (partitioning of the data) combined with the standard Fourier
Amplitude method.

The search curve is constructed as a finite-length approximation of a space-
filling curve. Moreover, changes of direction of this search curve should be
detectable via a frequency analysis (such an idea is mentioned in [7]). These
two conditions are mirrored in the following address assignment. Let us assume
that the index group of interest, I, has dimension #I = ` ≤ k. If we partition
each dimension into P intervals then the `-dimensional hypercube has P ` sub-
hypercubes which can be enumerated from 0 to P ` − 1, hence assigning an
address to any sample located inside this sub-hypercube. In order to be able to
work with arbitrary input distributions, we use the ranks of the input factors
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for address assignment. As experiment shows, the use of ranks also leads to a
uniformly populated hypercube.

We use a “plough-track” curve which continuously connects the sub-hyper-
cubes, see Figure 2 for a demonstration using P = 5 partitions and ` = 3
dimensions. Note that with such a curve, the mapping from an `-dimensional
coordinate into the natural numbers follows a Gray-code rule [8, 9] (the coor-
dinates of adjacent indices differ only by one in one of the coordinates) and
changes of direction occur for multiples of powers of P which can be detected
by using a Fourier transformation.
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Figure 2: Plough-track curve for a three-dimensional index assignment.

Before starting the index assignment, we replace the data in each dimension
by their appropriate ranks (this works for arbitrary distributions and resolves
possible problems introduced by clustering). We then scale and round the ranks
to fit into P = {0, 1, . . . , P − 1} via the function scale : r 7→ r̃ = bP 2r−1

2n c. The
plough-track curve is implemented by either retaining this value r̃ (forward
direction) or changing it to P − r̃ − 1 (backward direction) depending on an
even-odd rule for the higher dimensions,

eo : P` → P`, p = (pi) 7→ q = (qi) where qi =

{
pi,

∏
j>i(−1)pj = 1,

P − pi − 1, otherwise.

This even-odd rule is an inverse-Gray-code map. The final hyperindex is then
computed by weighting different columns of the data with powers of P (including
P 0 = 1) and then summing over the rows,

padic : q 7→
∑̀
i=1

qiP
i−1.
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Combining the above, a vector-valued coordinate-to-index map is given by

hyperindex : Rn×` → Rn, X 7→ padic ◦ eo ◦ scale ◦ ranks(X).

As an improvement, the leading dimension with weight P 0 = 1 can use posi-
tions after the decimal place as this dimension does not appear in the even-odd
calculation. Then a sorting algorithm has access to information from within the
sub-hypercube.

Figure 3 shows some tests with clustered data: on the left, an index assign-
ment without ranked data, in the middle a curve using ranked data (note that
each plough-track uses roughly the same amount of points), and on the right
a curve using ranked data, but no sub-hypercube information, i.e., using only
data rounded to integer values which leads to some “backwards leaps”. All these
index assignments start in the lower left corner and are based upon a 10 × 10
grid using P = 10. Here, the index assignment in the middle figure produces
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Figure 3: Indexing a two-dimensional data set

the clearest Fourier power spectrum.

5. Higher-Order Effects

With the index-assignment derived above we can estimate the sensitivity
index SI of an index group I for the model y = f(xI , xÎ). Here xI ∈ R` is the
realisation of an ` dimensional random vector (Xj1 , . . . , Xj`) with ji ∈ I and
xÎ ∈ R(k−`) is the realisation of an k − ` dimensional random vector collecting
the remaining variables Xj , j 6∈ I.

Hence, the multiple realisation matrix X is split into X′ = (xij)i=1,...,n, j∈I ∈
Rn×` and X̄ = (xij)i=1,...,n, j 6∈I ∈ Rn×(k−`). Again, we drop the dependency on
I for the ease of notation.

As a first step we assign an index to each `-dimensional row entry of X′ via
the plough-track curve introduced in the last section.

When the rows of the data matrix X′ are sorted with respect to this index
we obtain the matrix (X′(i)). A triangular reshape produces (X′[i]) again by
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taking odd rows of (X′(i)) in increasing order followed by even rows in decreas-
ing order. Next, if π(X′) = (X′[i]) denotes the associated permutation of the
rows then we again look for resonances in the power spectrum of the resorted
output π(Y). Due to the nature of the plough-track curve, if I = {j1, . . . , j`}
then the first order effects of the input factor j` are located at the frequency
ω` = 1 and its higher harmonics, first order effects of the input factor j`−1 are
located at the frequency ω`−1 = P and its higher harmonics etc., so that first
order effects of the factor j1 are located at the frequency ω1 = P `−1 and its
higher harmonics. For higher order effects corresponding to the index group I,
the superposition principle for trigonometric function shows that the affected
frequencies are ±ω1±ω2±· · ·±ω`. When respecting the higher harmonics of the
individual frequencies, the following list contains all the frequencies contributing
to the sensitivity index SI ,

ΩI = {±m1ω1 ±m2ω2 ± · · · ±m`ω`,mi ∈ {1, 2, . . . ,M}} . (4)

Finally, we can compute an estimate for SI analogously to the first order case
using the complex coefficients cm of a discrete Fourier transform of the resorted
output vector π(Y),

ŜI =

∑
m∈ΩI

|cm|2∑
m6=0 |cm|2

, (5)

see also (3). The composition of the set ΩI also shows that the basic frequency
P must satisfy P > 2M to avoid overlaps in the higher harmonics. Moreover,
the maximum frequency in use, M(1 + P + · · · + P `−1) = M P `−1

P−1 , must not
exceed the Nyquist frequency [n2 ] of the Fourier transform. This yields 2M <

P <
√̀
n+ 1 as a conservative estimate for the relation between the sample

size n, the maximum harmonic M and the basic frequency P . For total effects
(here: the accumulated effect of all indexed parameters), the frequency set ΩI
is augmented by frequency components from the subsets of I, ΩTI =

⋃
J⊂I ΩJ .

We then have

STI =
∑
i∈I

Si +
∑

i,j∈I,i<j
Sij +

∑
i,j,k∈I,i<j<k

Sijk + . . . (6)

If the basic frequency satisfies P = 2M + 1 then the set ΩTI contains all fre-
quencies from 1 up to M(P `−1 + · · ·+P +1) (and their negative terms). Hence,
calculation of the total effects requires only the summation over the first few
Fourier coefficients of π(y). If one is only interested in total effects, and not in
individual contributions of higher terms or different factors, then the frequencies
may overlap, i.e., P −M 6> M .

In contrast to the one-dimensional case, where a monotonic structure is
enforced onto the input signal, the multi-dimensional resorting process produces
“dirty” step functions so that the overall signal quality deteriorates. A further
analysis of the error introduced via resorting is under investigation.
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Figure 4: Box plots of First and Fourth Sensitivity indices for the Sobol´ g-function computed
with EASI, RBD and EFAST.

6. Examples

We apply the one-dimensional algorithm on a widely used test function.
This benchmark function is non-monotonic and has been proposed by Sobol´,
see [10] and [5, §2.9.3]. It is given by

Y =
k∏
i=1

|4Xi − 2|+ ai
1 + ai

where k = 8, (ai) = (0, 1, 4.5, 9, 99, 99, 99, 99) and Xi ∼ U(0, 1). The analytical
values for the first order effects are given by

Vi = V (E(Y |Xi)) =
1

3(1 + ai)2
, V = V (Y ) =

8∏
i=1

(Vi+1)−1, whence Si =
Vi
V
.

We tested the EASI implementation against a RBD and an EFAST implementa-
tion. We performed 150 runs per sample size (100, 300, 1000, 3000, 10000, 30000).
The results are reported in Figure 4. EASI was used with input data from a
Latin hypercube sampling algorithm while RBD used random permutations of
equidistant samples from the zig-zag function, EFAST uses a sample-size depen-
dent frequency selection scheme. We conclude that all of the methods perform
equally well. Moreover, in this example EASI and RBD exhibit the same flaws:
For small sample sizes the true value is over-estimated, while for large sam-
ple sizes a slight under-estimation occurs. This might be remedied by using
bias-correction techniques which are under investigation for EASI, see (7). In
contrast, EFAST is able to estimate small sensitivity indices with only a few re-
alisations. The sharp bend in the model at x1 = 0.5 is not resolved by harmonic
functions. One has to consider higher harmonics to achieve unbiased results.

We continue with a test of the multi-dimensional algorithm using the so-
called Ishigami function from [5, §2.9.3], given by

Y = sinX1 + 7.0 sin2X2 + 0.1X4
3 sinX1
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Figure 5: Analysis of Ishigami function.

where Xi ∼ U(−π, π). A short calculation reveals that the expectation con-
ditioned on X3 satisfies E(Y |X3) = E(Y ), whence the first order sensitivity
index of X3 is S3 = V (E(Y |X3))/V (Y ) = E(E(Y |X3) − E(Y ))2/V (Y ) = 0.
Moreover, the first order sensitivity indices S1 and S2 account for 76% of the
variance. Hence 24% of the variance must be due to higher order effects. We
have simulated 10,000 runs using Latin hypercube sampling, and then carried
out the multi-dimensional EASI algorithm for ` = 3 dimensions. Figure 5 shows
sorted inputs in the upper part. We see that X3 (blue/black) is associated with
frequency ω3 = 1, while X2 (red/medium grey) is associated with ω2 = 11 and
X1 (green/light grey) with ω1 = 112 = 121. Note also the dirty step functions
which are produced by the multi-dimensional sorting algorithm. The sorted
output is presented in middle part of the plot. It also shows periodic behaviour,
however, the frequencies are not directly linked to those in the input. With
the reordering of the data an artificial time-scale has been introduced so that a
frequency analysis may now be carried out. This is shown in the lower part by
providing the power spectrum of the sorted output.

In this frequency plot, we see that X3 has no main effect (blue/dark back-
ground lines) which would have been found in the frequencies ω3 = 1, . . . ,Mω1 =
5, whileX1 (ω1 = 121) andX2 show main effects, however forX2 the effect is not
found in the fundamental frequency, but in the fourth harmonic ω = 44 = 4ω2,
hence the influence of this factor is not visible when using sensitivity measures
based on linear regression. We spot second order effects (green/light grey back-
ground lines) at frequencies 119 and 123 corresponding to ω1±2ω3, hence there
is an interaction between X1 and X3 (or rather X2

3 ), but there are no third
order effects visible (red/medium grey background lines).

With all k = 3 factors listed in the index set I = {1, 2, 3} all effects in
the output should be ascribed to a specific input factor or an interaction of
input factors. However, the total effect of I is estimated by ŜTI = 0.91 in
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Figure 6: Time-dependent sensitivity indices for Level E example.

contrast to theoretically STI = 1.0. Thus, the absolute values derived from the
frequency decomposition of π(y) are not reliable. Moreover, it also shows that
the sample size can also be too large: From the 10,000 samples available, only
M(1+P+P 2) = 665 Fourier coefficients are used for spectral analysis, all others
contribute to sporadic errors which only form part of the overall variance, but
not part of input-factor related effects. Here, also the need for bias-correction
techniques is apparent.

Let us now apply the EASI method to a more realistic test case. In various
publications (see [2], and [11] for a review), the PSACOIN Level E code [12] was
used both as a benchmark of Monte Carlo simulations and as a benchmark for
sensitivity analysis methods. This computational model predicts the radiologi-
cal dose to humans over geological time scales due to the underground migration
of radionuclides from a hypothetical nuclear waste disposal site through a sys-
tem of idealised natural and engineered barriers. The model has a total of 33
parameters, 12 of which are taken as independent uncertain parameters. The
uncertainties are either uniformly or log-uniformly distributed. The parameters
of the distributions have been selected on the basis of expert judgement.

A sample containing 215 = 32768 realisations1 of the k = 12 dimensional
input distribution has been generated using Latin hypercube sampling. The
time-dependent output is analysed using the EASI method for first-order ef-
fects. Results for the most influential factors v1, the water velocity in the first
geosphere layer, and W , the stream flow rate, can be found in Figure 6. These
values are plotted against the asymptotic results taken from [2] which were ob-

1Evaluation of all the model runs took less then three hours.
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Figure 7: Normalised first and second order effects for Level E example.

tained from a Sobol’ algorithm. As a rule of thumb the estimation error is of
order 1√

n
≈ 0.6%. Hence the results show a good agreement despite the use of

different time discretisations.
The analysis of first and second order effects is shown in Figure 7. For each

timestep, a matrix containing first order effects as diagonal entries and second
order effects in the off-diagonal entries is shown. This matrix is normalised so
that the maximal value is plotted in black. We see that parameters 4 (v1) and
12 (W ) are of importance, here v1 interacts with several other parameters. For
some time steps, the interaction between v1 and W is the dominating influence
on the dose output. Moreover, for early times parameters 7 and 11 (Neptunium
chain retardation factors) have no noticeable influence while for later times
parameters 6 and 10 (Iodine retardation factors) are of no influence. Note that
the Iodine decay dominates the dose at early times, while decay products from
the Neptunium chain are responsible for the dose at later times which perfectly
agrees with these results. The source terms in parameters 1 to 3 are of very
little influence.

For further examples on the application of variance-based sensitivity indices
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methods including EASI see [13].

7. Conclusions and Outlook

The proposed algorithm connects variance-based sensitivity analysis ideas
with Monte-Carlo-based ones. The examples suggest that the performance of
EASI is on-par with established methods like RBD. Moreover, the accuracy
achieved by analysing given data is enough for practical purposes. The algo-
rithm for first order effects is easily implemented using a sort() and an fft()
algorithm. Unfortunately, the estimation of total effects for models with large
numbers of parameters is still out of reach for the EASI method.

As EASI is a post-processing algorithm, there are connections to the statis-
tical tool of the correlation ratio introduced in [14] which estimates (1) by using
piecewise constant approximations of E[Y |Xj ]. For correlation ratios many the-
oretical results are available which may also be used for improvements of the
EASI method. As an example, one quickly notices that the estimates produced
by EASI are biased with respect to the maximal number of harmonics M . This
problem has also been spotted in the theory of correlation ratios. In [15] an
unbiased estimator was derived which is easily adapted to our set-up,

Ŝ′j = 1
n−2M

(
nŜj − 2M

)
, (7)

as we are using 2M out of n Fourier coefficients. For higher order effects, the
calculation of the degrees of freedom is also straight-forward.

The idea of sorting and shuffling data might be of use for signal processing
applications which require periodic data, e.g., wavelet decompositions using
periodic boundaries or cyclic moving averages.
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